
Neural Payoff Machines: Predicting Fair and Stable
Payoff Allocations Among Team Members

Daphne Cornelisse1 Thomas Rood1 Mateusz Malinowski3 Yoram Bachrach3

Tal Kachman1,2∗

1Department of Artificial Intelligence, Radboud University, Netherlands
2Donders Institute for Brain, Cognition and Behavior, Radboud University, Netherlands

3DeepMind, UK

Abstract
In many multi-agent settings, participants can form teams to achieve collective
outcomes that may far surpass their individual capabilities. Measuring the rela-
tive contributions of agents and allocating them shares of the reward that promote
long-lasting cooperation are difficult tasks. Cooperative game theory offers so-
lution concepts identifying distribution schemes, such as the Shapley value, that
fairly reflect the contribution of individuals to the performance of the team or the
Core, which reduces the incentive of agents to abandon their team. Applications of
such methods include identifying influential features and sharing the costs of joint
ventures or team formation. Unfortunately, using these solutions requires tackling
a computational barrier as they are hard to compute, even in restricted settings.
In this work, we show how cooperative game-theoretic solutions can be distilled
into a learned model by training neural networks to propose fair and stable pay-
off allocations. We show that our approach creates models that can generalize to
games far from the training distribution and can predict solutions for more players
than observed during training. An important application of our framework is Ex-
plainable AI: our approach can be used to speed-up Shapley value computations
on many instances.

1 Introduction
The ability of individuals to form teams and collaborate is crucial to their performance in many en-
vironments. The success of humans as a species hinges on our capability to cooperate at scale [23].
Similarly, cooperation between learning agents is necessary to achieve high performance in many
environments [28, 7, 45, 24] and is a fundamental problem in artificial intelligence [42, 12]. Indi-
vidual agents are often not incentivized by the joint reward achieved by a team but rather by their
share of the spoils. Hence, teams are only likely to be formed when the overall gains obtained by
the team are appropriately distributed between its members. However, understanding how collective
outcomes arise from subsets of locally interacting parts, or measuring the impact of individuals on
the team’s performance, remain open problems.

Direct applications exist in multiple domains. One example is identifying the most influential fea-
tures that drive a model to make a certain prediction [14, 29, 6, 44, 27, 26]; one of the cornerstones
of explainable AI [2, 34]. Another example is sharing the costs of data acquisition or a joint venture
in a fair way between participants [8, 1], or sharing gains between cooperating agents [20, 41]. In
many legislative bodies individual participants have different weights, and passing a decision re-
quires support from a set of participants holding the majority of the weight; different states in the
US electoral college have different numbers of electors, and different countries in the EU Council

∗Correspondence to tal.kachman@donders.ru.nl

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

of Ministers vary in their voting weight. Here, would like to quantify the true political power held
by each participant, or allocate a common budget between them [32, 10].

Cooperative game theory can provide strong theoretical foundations underpinning such applications.
The field provides solution concepts that measure the relative impact of individuals on team perfor-
mance, or the individual rewards agents are entitled to. Power indices such as the Shapley value [40]
or Banzhaf index [9] attempt to divide the joint reward in a way that is fair, and have recently been
used to compute feature importance [29]. In contrast, other solutions such as the Core [22] attempt
to offer a stable allocation of payoffs, where individual agents are incentivised to continue working
with their team, rather than attempting to break away from their team in favor of working with other
agents. Despite their theoretical appeal, these solution concepts are difficult to apply in practice
due to computational constraints. Computing them is typically a hard problem, even in restricted
environments [18, 11, 15].

Our contribution: We construct models that predict fair or stable payoff allocations among team
members, combining solution concepts from cooperative game theory with the predictive power of
neural networks. These neural “payoff machines” take in a representation of the performance or
reward achievable by different subsets of agents, and output a suggested payoff vector allocating
the total reward between the agents. By training the neural networks based on different cooperative
solution concepts, the model can be tuned to aim for a fair distribution of the payoffs (the Shapley
value or Banzhaf index) or to minimize the incentives of agents to abandon the team (the Least-
Core [22, 33, 15]). Figure 1 depicts the two well-studied classes of games on which we evaluate
our approach: weighted voting games [32, 10, 11] and feature importance games in explainable
AI [14, 29].

Figure 1: Evaluation domains for our approach. Left: Weighted voting games (WVGs) model de-
cision making bodies such as the US Electoral College [32, 10]. Right: Applying the Shapley value
in Feature Importance Games enables quantifying the relative impact of features on the decisions of
a model. In this example, a model predicts the price of a house based on several features.

Weighted voting games (WVGs) are arguably the most well-studied class of cooperative games.
Each agent is endowed with a weight and a team achieves its goal if the sum of the weights of
the team members exceeds a certain threshold (quota). We train the neural networks by generating
large sets of such games and computing their respective game theoretic solutions. Our empirical
evaluation shows that the predictions for the various solutions (the Shapley value, Banzhaf index and
Least-Core) accurately reflect the true game theoretic solutions on previously unobserved games.
Furthermore, the resulting model can generalize even to games that are very far from the training
distribution or with more players than the games in the training set.

Feature importance games are a model for quantifying the relative influence of features on the out-
come of a machine learning model [14, 29]. Solving these games for the Shapley value (or any other
game theoretic measure) provides a way to reverse-engineer the key factors that drove a model to
reach a specific decision. This approach is model-agnostic, thus can be applied to make any “black-
box” model more interpretable [2]. One drawback of this approach is the computational complexity
of calculating the Shapley value, making such analysis slow even when using approximation algo-
rithms. Our approach provides a way to significantly speedup Explainable AI analyses, particularly
for datasets with a large number of instances.

2

2 Preliminaries

We provide a brief overview of cooperative game theory (examined in various books [37, 11]) and
brie�y discuss how solution concepts in cooperative game theory have been applied in Explainable
AI [14, 29, 30, 13, 47].

2.1 Cooperative Game Theory

A (transferable utility)cooperative gameconsists of a setN = f 1; 2; : : : ; ng of agents, or players,
and a characteristic functionv : 2n ! R which maps each team of players, orcoalition C � N ,
to a real number. This number indicates the joint reward the players obtained as a team. Gamesv
wherev : 2n ! f 0; 1g (binary range) aresimplegames.

Weighted voting games(WVGs) are a restricted class of simple cooperative games [11], where
each agenti has a weightwi and a team of agentsC � N wins if the sum of the weights of its
participants

P n
i =1 wi exceeds a quotaq. Formally, a WVG is de�ned as the triple(w; q; v) with

weightsw = (w1; w2; : : : ; wn) 2 Rn
� 0 and quota (threshold)q 2 R� 0 where for anyC � N we

havev(C) = 1 if
P n

i =1 wi � qand otherwisev(C) = 0 . If v(C) = 0 we sayC is a losing coalition,
and if v(C) = 1 we say it is a winning coalitions. WVGs have been thoroughly investigated as a
model of voting bodies, such the US Electoral College or the EU Council of Ministers [32, 10].

The characteristic function de�nes the joint value of a coalition, but it does not specify how the
value should be distributed among the agents.Solution conceptsattempt to determine an allocation
p = (p1; : : : ; pn) of the utility v(N) achieved by the grand coalition of all the agents; an allocation
p is called animputationif for any playeri we havepi � 0 and

P n
i =1 pi = v(N). 2 This allocation

is meant to achieve some desiderata, such as fairly re�ecting the contributions of individual agents,
or achieving stability in the sense that no subset of agents is incentivized to abandon the team and
form a new team. We describe three prominent solution concepts that we use in our analysis.

The Core. Rational players may abandon the grand coalition of all the agents if they can increase
their individual utility by doing so. The Core is de�ned as the set of all payoff vectors where no
subset of agents can generate more utility, as measured by the characteristic function, than the total
payoff they are currently awarded by the payoff vector. As such, the Core is viewed as the set of
stablepayoff allocations. Formally, the core [22] is de�ned as the set of all imputationsp such thatP n

i =1 pi = v(N) and that
P

i 2 C pi � v(C) for any coalitionC � N .

The "-Core and Least-Core [33, 15]. Some games have empty cores, meaning that no payoff
allocations achieves full stability (i.e. for any imputationp there exists at least one coalitionC such
that v(C) >

P
i 2 C pi). In such cases, researchers have proposed minimizing the instability. A

relaxation of the core is the" -core, consisting of imputationsp where for any value coalitionC we
havep(C) � v(C) � " . Given an imputationp the differencev(C) �

P
i 2 C pi is called theexcess

of the coalition, and represents the total improvement in utility the members ofC can achieve by
abandoning the grand coalition and working on their own. For an imputation in the"-core, no agent
subsetC can achieve an addition of" in utility over the current total payoff offered to the team (i.e.
no coalition has an excess of more than"). The minimal" for which the"-core is non-empty is
called theLeast-Core Value(LCV). The Least-Core minimizes the incentive of any agent subset to
abandon the grand coalition, and the LCV thus represents the degree of instability (excess) under the
imputation that best minimizes this instability. We �nd the set of payoffs associated with the LVC
through linear programming (full details in Appendix??).

We now discuss twopower indices, payoff distributions re�ecting the true in�uence a player has on
the performance of the team, that fairly allocate the total gains of the teams among the agents in it.

The Shapley Value [40] measures the average marginal contribution of each player across all
permutations of the players. The Shapley value is the unique solution concept that ful�lls several
natural fairness axioms [16], and has thus found many applications from estimating feature impor-
tance [14, 29] to pruning neural networks [46, 19, 21]. Formally, we denote a permutation of the
players by� , where� is a bijective mapping ofN to itself, and the set of all such permutations
by � . By C� (i) we denote all players appearing beforei in the permutation� . The Shapley value

2In a WVG, the value of a coalition is bounded by 1, so if the grand coalitionN indeed has a value of
v(N) = 1 then a solution would be a payoff vectorp = (p1 ; : : : ; pn) where

P n
i =1 pi = 1 .

3

� i (G) of playeri is de�ned as:

� i (G) =
1

N !

X

� 2 �

[v(C� (i) [f i g) � v(C� (i))] (2.1)

Intuitively, one can consider starting with an empty coalition and adding the players' weights in the
order of the permutation; the �rst player whose addition meets or exceeds the quota is considered the
pivotal player in the permutation. The Shapley value then measures the proportion of permutations
where a player is the pivotal player.

The Banzhaf index[9] is another method for distributing payoffs according to a players' ability to
change the outcome of the game, but it re�ects slightly different fairness axioms [43]. The Banzhaf
index � i of a playeri is de�ned as the marginal contribution of a player across allsubsetsnot
containing that player:

� i (G) =
1

2N � 1

X

C � N nf i g

[v(C [f ig) � v(C)] (2.2)

In practice, we �rst compute the set of winning coalitionsCwin � C and count, for each player, the
number of times it is critical orpivotal, that is,v(f Cgni) = 0 .

2.2 Speeding Up Explainable AI In Large Datasets

An important application of our work is to speedup Shapley/core computations of many data in-
stances. In machine learning, we train a modelf � to learn a mapping from some set of input
features to an outcome. For instance, we can train a model to predict the price of a house based on
several features, such as the number of rooms, the year it was built, and so on. In such settings, it is
desirable, but challenging, to explain the model outputs in terms of the input features. Explainable
AI addresses this issue, and recent years showed several applications of game theoretic metrics for
measuring feature importance in the machine learning community [44, 2].

The fastest method to approximate Shapley values (also used in the SHAP package) is a Monte-
Carlo approach [29]. A number of other methods exist whose runtime and accuracy depend on the
number of samples used, usually on the order of several thousands [25, 14, 31, 5]. In a model setting,
the characteristic function takes the value of the trained model output for a given instance:f � � (x).
The Shapley value of a featurei in a data instancex, � x;i is the effect that feature has on the model
outcome. Sampling based-methods compute the contributions with respect to a base value, which is
the average model output across all instances:

f � � (x) = E[f � � (x)] +
nX

i =1

� x;i (2.3)

While effective for obtaining Shapley values of a small set of instances, sampling based methods are
not ideal for large datasets because they require a large number of re-evaluation samples per com-
putation. We show how our approach can be employed to speedup Shapley or Core computations of
many instances through models that learn representations of feature attribution schemes.

3 Methods
Our approach uses machine learning to create game-theoretic estimators. We generate synthetic
datasets of games to train our models, spending compute up-front to allow for instant solutions
afterwards. Our �rst domain concerns weighted voting games (WVGs) as they provide a generic
framework for studying cooperation in multi-agent settings.

Afterwards, we apply our approach to the Shapley-based feature importance setting. The main idea
is that we can speed-up the computations of the relative impact of features on the predictions of a
machine learning model. We do this by training models to approximate Shapley values of features,
and examine their performance on previously unobserved instances.

3.1 Weighted Voting Games

We construct two types of feed-forward neural networks.Fixed-sizemodels are trained on games of
a speci�c number of players. The second type of model can take in and predict payoffs for a varying
number of players. We refer to these asvariable-sizemodels. What follows is a formal description
of the data and architectures for both models. We now describe our data generation process, models,
training procedure, and evaluation metrics used in weighted voting games.

4

3.1.1 Data and Models: Fixed-Size
For eachn player game, we generateG independent and identically distributed games. The train-
ing dataset is given byDn

�xed =
�

X 2 RG� n ; P 2 RG� K
	

whereK denotes the number of out-
puts of interest. Figure 2 depicts the pipeline for generating one data instance. First, we sam-
ple a weight vectorw � Beta(� = 1 ; � = 1) on the interval from 1 to2n, and a quota
q � N (� = 1

4 (2n + 1) n; � 2 = 2n). To create games where players are dependent on each other
to achieve the task at hand, the quota distribution is parameterized such that the average drawn
quota is half of the sum of the players' weights. We then divide the weights by the quota to get the
feature vectorx = 1

q � w . In other words, we haven features which are the weights normalized
as the respective proportion of the quota. Thus, a valuex i > 1 indicates that playeri is a winning
coalition by itself, and needs other players to meet the quota otherwise.

Figure 2:Procedurally generating and solving one weighted voting game.We obtain a weighted
voting game by samplingn weights and a quota. The weights are divided by the quota to create the
inputsx. We solve the game for each considered solution concept to create our targetsp.

We train models to predict the three solutions: the Least-Core, the Shapley values, and the Banzhaf
indices. For the Shapey values and the Banzhaf indices, the model predicts the payoff allocation
(p1; : : : ; pn) so K � n. For the Least-Core solution, we train the model to not only predict the
payoff allocationp1; : : : ; pn , but also to predict the least core Value"min (so in this case the model
hasK = n + 1 outputs). For eachn player game, we produce a modelf � : Rn ! RK , where�
are the model parameters. We use deep feedforward networks forf � . Appendix??contains the full
details about the experimental setup.

3.1.2 Data and Models: Variable-size
For the variable-size case, we consider a maximal number of possible playersM and pad the
inputs with zeros for games with less thanM players. Hence, we generate a single dataset
Dvar =

�
X 2 RG� M ; P 2 RG� K

	
. Similarly to the �xed-size dataset, the feature matrixX con-

tains the normalized weights andP the corresponding solutions with eitherK = M +1 or K = M ,
with the ground truth output vector again padded with zeros when there are fewer thanM players.
Hence, we allow for the prediction of up toM players, and we shuf�e the data so that players are
located at random positions. The least core Value (LCV) is not shuf�ed but stored at the last element
of each row.

We produce a single modelg� : Rn ! RK that can be used for different number of playersn,
where� are the model parameters. The model learns to allocate the joint payoff among at mostM
players. During prediction time we pad the input with zeros when there are fewer thanM players,
and we redistribute the payoffs allocated to non-player entries among the players according to their
original share of the joint payoff. Figure 3 graphically depicts the padding procedure and basic
model architecture.

3.1.3 Training and Evaluation
During training we minimize the Mean square error (MSE) between the true and predicted solutions.
For the variable-size models we also include theM � n padded locations so that the model learns
not to allocate value to non-player entries.

Evaluation metrics. Given a predicted payoff vector̂p = (p̂1; p̂2; : : : ; p̂n), we consider multiple
metrics for assessing the models' performance. First, we quantify the models' predictive perfor-
mance via the Mean absolute error (MAE), de�ned for each game as MAE= 1

n

P n
i =1 jpi � p̂i j,

wheren is the number of players. For the Least-Core there is another natural game theoretic metric.

5

Figure 3:Neural architectures for the variable-size game predictions.We add zero-padding to
allow one model to predict solutions of games of variable sizes. We choose a maximum length
M = 20, and add zero-padding to games with less thanM players. Full details on our data in
Section 3.1.2

The goal of the Least-Core is to minimize the incentives of any subset to abandon the current team
and form its own sub-team. Given a suggested payoff vectorp̂, the maximal excessv(C) �

P
i 2 C p̂i

over all possible coalitionsC measures the incentive to abandon the team, and serves as a good
measure for the quality of the model.

Test data. We sample weightsw � Beta(�; �) with varying parameters for� and� to assess our
models' ability to generalize to previously unobserved instances their ability generalize to games far
outside of the training distribution (full details in Table??, Figure??).

3.2 Feature Importance Games

We perform an experiment to show that neural networks can provide a faster alternative for measur-
ing feature importance at scale. We select a dataset (details in Appendix??), train a model, and use
those to construct a dataset from features to Shapley values using the SHAP KernelExplainer [29]
Following, we partition our dataset into a train and test, and incrementally change the proportions
between the two. For each increment, we train a model for 100 epochs and test it on the remainder
of the unseen instances.

4 Results

We present experimental results that allow us to assess how well neural models are able to learn
a representation of the various solution concepts. We �rst describe the predictive performance of
neural networks in the WVG setting, and consider properties of these solutions that make them
hard to learn. We then consider the explainable AI domain, and study the performance and sample
complexity of Shapley feature importance prediction.

4.1 Weighted Voting Games: Evaluation

For our WVG analysis we train a selection of �xed-size neural networksf N
� � for each number of

playersn 2 f 4; 5; : : : ; 19; 20g3 on G = 5 ; 000 games each. We also train a single variable-size
modelg� � that is trained on one dataset containingG = 17; 500games in total, consisting of2; 500
games for each number of playersn 2 f 4; 5; : : : ; 9; 10g games. The data is padded with zeros to
allow for payoff allocation up toM = 20 players (see details in Section 3.1).

4.1.1 Predictive performance
Table 1 shows that the ability to handle games of variable numbers of players comes at the cost
of having a lower accuracy. However, even for variable-size models, and even under a signi�cant
distribution shift, the errors in predicting all solution concepts are low. We further note that the
error in predicting Least-Core based payoffs are generally larger than for the Shapley and Banzhaf

3A direct computation of the Shapley value requires enumerating through a large list of permutations, which
becomes computationally very costly when there are many players. Hence, for games withn = 9 players or
more, we use Monte-Carlo approximations for the Shapley value to obtain the ground-truth solution. See full
details in Appendix??)

6

	Introduction
	Preliminaries
	Cooperative Game Theory
	Speeding Up Explainable AI In Large Datasets

	Methods
	Weighted Voting Games
	Data and Models: Fixed-Size
	Data and Models: Variable-size
	Training and Evaluation

	Feature Importance Games

	Results
	Weighted Voting Games: Evaluation
	Predictive performance
	Discontinuities in the Solution Space

	Application: Model-based Approach to Explainable AI

	Discussion and Conclusion

