
SketchBoost: Fast Gradient Boosted Decision Tree for
Multioutput Problems

Leonid Iosipoi
Sber AI Lab and HSE University, Moscow, Russia

iosipoileonid@gmail.com

Anton Vakhrushev
Sber AI Lab, Moscow, Russia

btbpanda@gmail.com

Abstract

Gradient Boosted Decision Tree (GBDT) is a widely-used machine learning al-
gorithm that has been shown to achieve state-of-the-art results on many standard
data science problems. We are interested in its application to multioutput problems
when the output is highly multidimensional. Although there are highly effective
GBDT implementations, their scalability to such problems is still unsatisfactory.
In this paper, we propose novel methods aiming to accelerate the training process
of GBDT in the multioutput scenario. The idea behind these methods lies in the
approximate computation of a scoring function used to find the best split of decision
trees. These methods are implemented in SketchBoost, which itself is integrated
into our easily customizable Python-based GPU implementation of GBDT called
Py-Boost. Our numerical study demonstrates that SketchBoost speeds up the train-
ing process of GBDT by up to over 40 times while achieving comparable or even
better performance.

1 Introduction

Gradient Boosted Decision Tree (GBDT) is one of the most powerful methods for solving prediction
problems in both classification and regression domains. It is a dominant tool today in application
domains where tabular data is abundant, for example, in e-commerce, financial, and retail industries.
GBDT has contributed to a large amount of top solutions in benchmark competitions such as Kaggle.
This makes GBDT a fundamental component in the modern data scientist’s toolkit.

Figure 1: Training time of XGBoost and CatBoost
for different number of classes on a synthetic dataset
for multiclass classification. Synthetic dataset con-
tains 2000k instances, each described by 100 fea-
tures. The maximal tree depth was limited to 6. The
experiment was conducted on GPU. Further details
are given in the Supplementary Material.

The main focus of this paper is the scalability of
GBDT to multioutput problems. Such problems in-
clude multiclass classification (a classification task
with more than two mutually exclusive classes),
multilabel classification (a classification task with
more than two classes that are not mutually ex-
clusive), and multioutput regression (a regression
task with a multivariate response variable). These
problems arise in various areas such as Finance
[Obermann and Waack, 2016], Multivariate Time
Series Forecasting [Zhai, Yao, and Zhou, 2020],
Recommender Systems [Jahrer, Töscher, and Leg-
enstein, 2010], and others.

There are several extremely efficient, open-source,
and production-ready implementations of gra-
dient boosting such as XGBoost [Chen and
Guestrin, 2016], LightGBM [Ke, Meng, Finley,
Wang, Chen, Ma, Ye, and Liu, 2017], and Cat-

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Boost [Prokhorenkova, Gusev, Vorobev, Dorogush, and Gulin, 2018]. Even for them, learning a
GBDT model for moderately large datasets can require much time. Furthermore, this time also grows
with the output size of a model. Figure 1 demonstrates how rapidly the training time of XGBoost and
CatBoost grows with the output dimension. Consequently, the number of possible applications of
GBDT in the multioutput regime is very limited.

GBDT is a boosting-based algorithm that ensembles decision trees as “base learners”. At each
boosting step, a newly added tree improves the ensemble by minimizing the error of an already built
composition. There are two possible strategies on how to use GBDT to handle a multioutput problem.

• One-versus-all strategy. Here, at each boosting step, a single decision tree is built for every output.
Consequently, every output is handled separately. XGBoost and LightGBM use this strategy.

• Single-tree strategy. Here, at each boosting step, a single multivariate decision tree is built for all
outputs. Consequently, all outputs are handled together. CatBoost uses this strategy.

The computational complexity of both strategies is proportional to the number of outputs. Specifically,
the one-versus-all strategy requires fitting a separate decision tree for each single output at each
boosting step. The single-tree strategy requires scanning all the output dimensions (a) to estimate
the information gain during the search of the best tree structure and (b) to compute leaf values of
a decision tree with a given structure (see details in Section 2). A straightforward idea to reduce
the training time of single-tree GBDT is to exclude some of the outputs during the search of the
tree structure which is the most time-consuming step of GBDT. However, this turns out to be rather
challenging since it is unclear what outputs contribute the most to the information gain. In this paper,
we address this problem and propose novel methods for fast scoring of multivariate decision trees
which show a significant decrease in computational overhead without compromising the performance
of the final model.

Related work. Many suggestions have been made to speed up the training process of GBDT.
Some methods reduce the number of data instances used to train each base learner. For example,
Stochastic Gradient Boosting (SGB) [Friedman, 2002] chooses a random subset of data instances,
gradient-based one-side sampling (GOSS) [Ke et al., 2017] keeps the instances with large gradients
and randomly drops the instances with small gradients, and Minimal Variance Sampling (MVS)
[Ibragimov and Gusev, 2019] randomly chooses the instances to maximize the estimation accuracy of
split scoring. Similarly, some methods reduce the number of features. For example, one can choose
a random subset of features or use principal component analysis or projection pursuit to exclude
weak features; see [Jimenez and Landgrebe, 1999, Zhou, 2012, Appel et al., 2013]. LightGBM [Ke
et al., 2017] uses exclusive feature bundling (EFB) where sparse features are greedily bundled
together. CatBoost [Prokhorenkova et al., 2018] replaces categorical features with numerical ones
using a special algorithm based on target statistics. Finally, some methods reduce the number of split
candidates during the split scoring. The pre-sorted algorithm [Mehta et al., 1996] enumerates all
possible split points on the pre-sorted feature values. The histogram-based algorithm [Alsabti et al.,
1998, Jin and Agrawal, 2003b, Li et al., 2007] buckets continuous feature values into discrete bins
and uses these bins to construct feature histograms.

Regarding the multioutput regime, the existing methods to accelerate the training process of GBDT
naturally fall into the following two categories: problem transformation and algorithm adaptation.
Transformation methods (see, for example, [Hsu et al., 2009, Tai and Lin, 2012, Kapoor et al., 2012,
Cissé et al., 2012, Wicker et al., 2016]) reduce the number of targets before training a model. They
mainly differ in the choice of compression and decompression techniques and significantly rely
on the problem structure or data assumptions. These methods pay a price in terms of prediction
accuracy due to the loss of information during the compression phase, and as a result, they do
not consistently outperform the full baseline. Adaptation methods directly extend some specific
algorithms to efficiently solve multioutput problems. To the best of our knowledge, there are only two
algorithm adaptation works for GBDT. Namely, Si et al. [2017] and Zhang and Jung [2021] consider
models with sparse output and discuss how to utilize this sparsity to enforce the leaf values to be also
sparse. Their modifications of GBDT are called GBDT-Sparse and GBDT-MO (sparse).

We approach the problem of fast GBDT training in the multioutput regime from a different perspective.
Namely, instead of employing the model sparsity, we, loosely speaking, approximate the scoring
function used to find the best tree structure using the most essential outputs while keeping other
boosting steps without change. The methods we suggest are completely different from the ones

2

mentioned above and can be applied to models with both dense and sparse outputs. Moreover,
our methods can be easily combined with transformation methods (by compressing the outputs
beforehand and decompressing predictions afterward) or the sparsity utilization as in GBDT-Sparse
and GBDT-MO (by computing the optimal leaf values with sparsity constraint as in these algorithms).

Contributions. The contributions of this work can be summarized as follows.
• We propose and theoretically justify three novel methods to speed up GBDT on multioutput tasks.

These methods are generic, they can be used with any loss function and do not rely on any specific
data assumptions (for example, sparsity or class hierarchy) or the problem structure (for example,
multilabel or multiclass). Moreover, they do not drop down the model quality and can be easily
integrated into any GBDT realization that uses the single-tree strategy.

• We implemented the proposed methods in SketchBoost. SketchBoost itself is a part of our Python-
based implementation of GBDT called Py-Boost. This implementation seems to be of independent
interest since it does not use low-level programming languages and is easily customizable. Although
it is written in Python, it is fast since it works on GPU.

• We present an empirical study using public datasets which demonstrates that SketchBoost achieves
comparable or even better performance compared to the existing state-of-the-art boosting toolkits
but in remarkably less time.

Paper Organization. First, we review the GBDT algorithm in Section 2. Next, we propose methods
leading to a noticeable reduction in the training time of GBDT on multioutput tasks in Section 3.
We illustrate the performance of these methods on real-world datasets in Section 4. Proofs and
experiment details are postponed to the Supplementary Material.

2 Preliminaries

Let {(xi, yi)}ni=1 be a dataset with n samples, where xi ∈ Rm is an m dimensional input and yi ∈ Rd

is a d dimensional output. Let also F be a class of base learners, that is, functions f : Rm → Rd.
In Gradient Boosting, the idea of which goes back to Schapire [1990], Freund [1995], Freund and
Schapire [1997], the model FT uses T ∈ N base learners f ∈ F and is trained in an additive and
greedy manner. Namely, at the t-th iteration, a newly added base learner f improves the quality of an
already built model Ft−1 by minimization of some specified loss function l : Rd × Rd → R,

Lt(f) =
∑n

i=1
l(yi, Ft−1(xi) + f(xi)).

This optimization problem is usually approached by the Newton method using the second-order
approximation of the loss function

f∗
t ∈ argmin

f∈F

{
n∑

i=1

(
g⊤i f(xi) +

1

2

(
f(xi)

)⊤
Hif(xi)

)
+Ω(f)

}
, (1)

where we omitted a term independent of f ; here Ω(f) is a regularization term, usually added to build
non-complex models, and

gi = ∇al(y, a)
∣∣∣y = yi

a = Ft−1(xi)

, Hi = ∇2
aal(y, a)

∣∣∣y = yi

a = Ft−1(xi)

. (2)

Due to the complexity of optimization over a large set of base learners F , the problem (1) is solved
typically in a greedy fashion which leads us to an approximate minimizer ft. Finally, the model Ft is
updated by applying a learning rate ε > 0 typically treated as a hyperparameter: Ft = Ft−1 + εft.

GBDT uses decision trees as the base learners F ; see the seminal paper of Friedman [2001]. A
decision tree is a model built by a recursive partition of the feature space into several disjoint regions.
Each final leaf is assigned to a value, which is a response of the tree in the given region. Based on
this construction mechanism, a decision tree f can be expressed as

f(x) =
∑J

j=1
vj · [x ∈ Rj],

where [predicate] denotes the indicator function, J is the number of leaves, Rj is the j-th leaf, and
vj ∈ Rd is the value of j-th leaf. The problem of learning ft can be naturally divided into two separate
problems: (1) finding the best tree structure (dividing the feature space into J areas R1, . . . , RJ), and
(2) fitting a decision tree with a given structure (computing leaf values v1, . . . , vJ).

3

Finding the leaf values. Since decision trees take constant values at each leaf, for a decision tree ft
with leaves R1, . . . , RJ , we can optimize the objective function from (1) for each leaf Rj separately,

vj = argmin
v∈Rd

{ ∑
xi∈Rj

(
g⊤i v +

1

2
v⊤Hiv

)
+

λ

2
∥v∥2

}
= −

(∑
xi∈Rj

Hi + λI

)−1(∑
xi∈Rj

gi

)
,

where we employ l2 regularization on leaf values with a parameter λ > 0; here I denotes the identity
matrix and ∥ · ∥ denotes the Euclidean norm.

It is worth mentioning that if the loss function l is separable with respect to different outputs, all
Hessians H1, . . . ,Hn are diagonal. If it is not the case, it is a common practice to purposely simplify
them to this extent in order to avoid time-consuming matrix inversion. It is done so in most of the
single-tree GBDT algorithms (for example, CatBoost, GBDT-Sparse, and GBDT-MO). We will also
follow this idea in our work. For diagonal Hessians, the optimal leaf values can be rewritten as

vj = −
∑

i∈R gji∑
i∈R hj

i + λ
, where gi =

g1i
...
gdi

 and Hi =

h1
i . . . 0
...

. . .
...

0 . . . hd
i

 . (3)

Finding the tree structure. Substituting the leaf values from (3) back into the objective function,
and omitting insignificant terms, we obtain

Loss(ft) = −1

2

J∑
j=1

S(Rj), where S(R) =

d∑
j=1

(∑
xi∈R gji

)2∑
xi∈R hj

i + λ
. (4)

The function S(·) will be referred to as the scoring function. To find the best tree structure, we use a
greedy algorithm that starts from a single leaf and iteratively adds branches to the tree. At a general
step, we want to split one of existing leaves. To do this, we iterate through all leaves, features, and
thresholds for each feature (they are usually determined by the histogram-based algorithm). For all
leaves R and all possible splits for R, say Rleft and Rright, we compute the impurity score given by
S(Rleft) + S(Rright). The best split is considered the one which achieves the largest impurity score.
This is equivalent to maximization of the information gain which is usually defined as the difference
between values of the loss function before and after the split, that is,

Gain = −0.5
(
S(R)−

(
S(Rleft) + S(Rright)

))
.

Similar to the previous step, some simplifications can be made to speed up computation of the scoring
function which is done a tremendous number of times. For instance, GBDT-Sparse does not use the
second-order information at all (Hessians are simplified to identity matrices). In the multioutput
regime of CatBoost, the second-order derivatives are left out during the split search and are used only
to compute leaf values. GBDT-MO uses the second-order derivatives in both steps but it increases the
computational complexity twice (histograms for both gradients and Hessians need to be accumulated).

3 Sketched Split Scoring

In this section, we propose three novel methods to speed up the split search for multivariate decision
trees. These methods can achieve a good balance between reducing the computational complexity in
the output dimension and keeping the accuracy for learned decision trees. They are generic and can
be used together with the methods mentioned in the Related work section that aim at reducing the
number of sample instances, features, or split candidates. Moreover, the proposed methods are easy
to implement upon modern boosting frameworks such as XGBoost, LightGBM, and CatBoost.

As it was mentioned before, there are two “best practices” to speed up the training of a GBDT model
on multioutput tasks: (a) to totally ignore the second-order derivatives during the split search and
(b) to use only the main diagonal of the second-order derivatives to compute the leaf values. It is done
so, for example, in CatBoost, one of the few boosting toolkits that use the single-tree strategy and
achieve state-of-the-art results on multioutput problems. We will also develop our work on this basis.

The proposed methods are applied at each boosting step before the search for the best tree structure
and after first- and second-order derivatives (see (2)) are computed. The key idea of the proposed

4

methods is to reduce the number of gradient values used in the split search so that the scoring function
S from (4) or, equivalently, the information gain will not change much. Specifically, the scoring
function without the second-order information can be rewritten as

SG(R) =

∥∥G⊤vR
∥∥2

|R|+ λ
, where G =

g11 g21 . . . gd1
...

...
. . .

...
g1n g2n . . . gdn

 and vR =

[x1 ∈ R]
...

[xn ∈ R]

 .

Here G ∈ Rn×d is the gradient matrix and vR is the indicator vector of the leaf R (its i-th coordinate is
equal to 1 if xi ∈ R and 0 otherwise). Note that we added the subscript to S to indicate its dependence
on the gradient matrix G. To reduce the complexity of computing SG in d, we approximate it with
SGk

for some other matrix Gk ∈ Rn×k with k ≪ d. We will refer to Gk as the sketch matrix and to
k as the reduced dimension or sketching dimension. We emphasize that Gk is assumed to be used
only in building histograms and finding the tree structure. After this, the optimal leaf values of a tree
are assumed to be computed fairly using the full gradient matrix G.

Further we discuss three novel methods to construct reasonably good sketches Gk — Top Outputs,
Random Sampling, and Random Projections. These methods are motivated by the minimization of
the approximation error given by

Error(SG, SGk
) = supR

∣∣SG(R)− SGk
(R)
∣∣.

Here the supremum is taken over all possible leaves R. The reason for this choice is that we want the
proposed approximation to be universal and uniformly accurate for all splits we will possibly iterate
over. In the Supplementary Material, we show that the proposed methods lead to a nearly-optimal
upper bounds on the proposed error. Since the corresponding optimization problem is an instance of
Integer Programming problem, methods leading to the optimal upper bounds can be obtained only by
brute force, which is not an option in our case. For further details see the Supplementary Material.

3.1 Top Outputs

The key idea of Top Outputs is rather straightforward: to choose the columns of G with the largest
Euclidian norm. Namely, by a slight abuse of notation, let us denote the columns of G by g1, . . . , gd.
Let also i1, . . . , id be the indexes which sort the columns of G in descending order by their norm,
that is, ∥gi1∥ ≥ ∥gi2∥ ≥ . . . ≥ ∥gid∥. Now the full gradient matrix and its sketch can be written as

G =

(| | |
g1 g2 . . . gd
| | |

)
and Gk =

(| | |
gi1 gi2 . . . gik
| | |

)
.

The parameter k here can be chosen adaptively to the norms of g1, . . . , gd. We have not considered
this generalization here since, in our view, it will greatly complicate the algorithm. Moreover, the
adaptive choice of k may result in large values for this parameter and hence less gain in training time.

It is worth pointing out that Top Outputs is akin to the Gradient-based One-Side Sampling (GOSS),
which is successively used in LightGBM; see [Ke et al., 2017]. In GOSS, data instances with
small gradients are excluded to speed up the split search. Similarly, Top Outputs excludes output
components with small gradient values.

This method has one major drawback. This method chooses top k output dimensions which may
not vary much from step to step. For instance, if several columns have large norms and others have
medium norms, Top Outputs may completely ignore the latter columns during the split search. Below
we consider another method that deals with this problem by introducing the randomness in the choice
of output dimensions.

3.2 Random Sampling

The probabilistic approach for algebraic computations, sometimes called the “Monte-Carlo method”,
is ubiquitous; we refer the reader to the monographs of Robert and Casella [2005],Mahoney [2011],
and Woodruff [2014]. Here we consider its application to the fast split search.

The key idea of Random Sampling is to randomly sample the columns of G with probabilities
proportional to their norms. Namely, we define the sampling probabilities by

pi = ∥gi∥2
/∑d

j=1
∥gj∥2, i = 1, . . . , d.

5

These probabilities are known to be optimal for random sampling since they minimize the variance
of the resulting estimate; see, for example, [Robert and Casella, 2005]. Further, let i1, . . . , ik
be independent and identically distributed random variables taking values j with probabilities pj ,
j = 1, . . . , k. These random variables represent indexes of the chosen columns of G. Finally, we
consider the following sketch

Gk =

(| | |
gi1 gi2 . . . gik
| | |

)
, where gi =

1√
kpi

gi.

The additional column normalization by 1/
√
kpi is needed for unbiasedness of the resulting estimate.

There is a close affinity between Importance Sampling and Minimal Variance Sampling (MVS) of
Ibragimov and Gusev [2019]. MVS decreases the number of sample instances in the split search by
maximizing the estimation accuracy of split scoring. Our idea is the same with the only difference
that it is applied to output dimensions rather than sample instances.

Random Sampling works well especially in the extreme cases as those mentioned above. For example,
if several outputs have large weights and others have medium weights, Random Sampling will not
ignore the latter outputs due to randomness. Or, if the number of outputs with large weights is larger
than k, Random Sampling will choose different output dimensions at different steps. As a result, the
corresponding base learners will also be quite different, which usually leads to a better generalization
ability of the ensemble; see Breiman [1996].

3.3 Random Projections

In the previous section, the sketch Gk was constructed by sampling columns from G according to
some probability distribution. This process can be viewed as multiplication of G by a matrix Π,
Gk = GΠ, where Π ∈ Rd×k has independent columns, and each column is all zero except for a 1 in
a random location. In Random Projections, we consider sampling matrices Π, every entry of which
is an independently sampled random variable. This results in using random linear combinations of
columns of G as columns of Gk.

This approach is based on the Johnson-Lindenstrauss (JL) lemma; see the seminal paper of Johnson
and Lindenstrauss [1984]. They showed that projections Π from d dimensions onto a randomly
chosen k-dimensional subspace do not distort the pairwise distances too much. Indyk and Motwani
[1998] proved that to obtain the same guarantee, one can independently sample every entry of Π
using the normal distribution. In fact, this is true for many other distributions; see, for example,
Achlioptas [2003]. Since there was no significant difference between distributions in our numerical
experiments, we decided to focus on the normal distribution.

In Random Projections, we consider the following sketch

Gk = GΠ,

where Π ∈ Rd×k is a random matrix filled with independently sampled N (0, k−1) entries. In the
Supplementary Material, we discuss why this choice leads to a nearly-optimal solution to the problem
we consider and why the property of preserving the pairwise distances matters here.

Random Projections has the same merits as Random Sampling since it is also a random approach.
Besides that, the sketch matrix Gk here uses gradient information from all outputs since each column
of Gk is a linear combination of columns of G.

3.4 Complexity analysis.

Most of the GBDT frameworks use histogram-based algorithm to speed up split finding; see [Alsabti,
Ranka, and Singh, 1998], [Jin and Agrawal, 2003a], and [Li, Wu, and Burges, 2008]. Instead of
finding the split points on all possible feature values, histogram-based algorithm buckets feature values
into discrete bins and uses these bins to construct feature histograms during training. Let us say that
the number of possible splits per feature is limited to h ≪ n (usually h ≤ 256 to store the histogram
bin index using a single byte). It is shown in [Ke et al., 2017] that in the case of a single output,
splitting a leaf R with nR samples requires O(mnR) operations for histogram building and O(hm)
operations for split finding. As a result, if the actual tree construction is performed using a depth-first-
search algorithm, the complexity of building a complete tree of depth D is O(Dnm+2Dhm). In the

6

multioutput scenario, this complexity increases by d times: splitting a leaf R with nR samples costs
O(mnRd+ hmd) and depth-wise tree construction costs O(Dmnd+ 2Dhmd). The methods we
propose reduce the impact of d to k with k ≪ d. They require a preprocessing step which can be done,
depending on the method, in O(ndk) or O(nd) operations. As a result, the complexity of building
a complete tree of depth D using the depth-first search can be reduced from O(Dmnd+ 2Dhmd)
to O(nd+Dmnk + 2Dhmk). Taking into account that n, m, and d can be extremely large, these
methods may lead to a significant improvement in the training time.

4 Numerical Experiments

In this section, we numerically compare (a) the proposed methods from Section 3 to speed up GBDT
in the multioutput regime and (b) existing state-of-art boosting toolkits supporting multioutput tasks.

Data. The experiments are conducted on 9 real-world publicly available datasets from Kaggle,
OpenML, and Mulan1 for multiclass (4 datasets) and multilabel (3 datasets) classification and
multitask regression (2 datasets). The associated details are given in the Supplementary Material.

Py-Boost. We implemented a simple and fast GBDT toolkit called Py-Boost. It is written in Python
and hence is easily customizable. Py-Boost works only on GPU and uses Python GPU libraries such
as CuPy and Numba. It follows the classic scheme described in [Chen and Guestrin, 2016]; further
details are provided in the Supplementary Material. Py-Boost is available on GitHub2.

SketchBoost. SketchBoost is a part of Py-Boost library which implements the following three
sketching strategies for fast split search: Top Outputs (Section 3.1), Random Sampling (Section 3.2),
and Random Projections (Section 3.3). For convenience, Py-Boost without any sketching strategy is
referred to as SketchBoost Full. All the following experimental results and evaluation code are also
available on GitHub3.

Baselines. Primarily we compare SketchBoost with XGBoost (v1.6.0) and CatBoost (v1.0.5).
There are two reasons why we have chosen these GBDT frameworks. First, they are commonly
used among practitioners and represent two different approaches to multiouput tasks (one-vs-all
and single-tree). Second, they can be efficiently trained on GPU, which allows us to compare their
training time with GPU-based SketchBoost (with an exception for CatBoost which supports multilabel
classification and multioutput regression tasks only on CPU). The reason why we have not considered
LightGBM as a baseline is that it uses the same multiouput strategy as XGBoost (one-vs-all) and
its latest version (v3.3.2) does not support multilabel classification and multioutput regression tasks
without external wrappers. Further, we also compare SketchBoost with TabNet (v3.1.1), a popular
deep learning model for tabular data; see [Arik and Pfister, 2021]. Our aim here is not to make an
exhaustive comparison with existing deep learning approaches (it deserves its own investigation),
but to make a comparison with a different in nature approach which moreover often has satisfactory
complexity on large multioutput datasets.

Experiment Design. If there is no official train/test split, we randomly split the data into training
and test sets with ratio 80%-20%. Then each algorithm is trained with 5-fold cross-validation (the
train folds are used to fit a model and the validation fold is used for early stopping). We evaluate
all the obtained models on the test set and get 5 scores for each model. The overall performance of
algorithms is computed as an average score. As a performance measure, we use the cross-entropy
for classification and RMSE for regression, but, for the sake of completeness, we also report the
accuracy score for classification and R-squared score for regression in the Supplementary Material.
For XGBoost, Catboost, and TabNet, we do the hyperparameter optimization using the Optuna
framework [Akiba, Sano, Yanase, Ohta, and Koyama, 2019]. For SketchBoost, we use the same
hyperparameters as for CatBoost (to speed up the experiment; we do not expect that hyperparameters
will vary much since we use the same single-tree approach). The sketch size k is iterated through
the grid {1, 2, 5, 10, 20} (or through a subset of this grid with values less than the output dimension).
Further information on experiment design is given in the Supplementary Material.

1http://mulan.sourceforge.net/datasets.html
2https://github.com/sb-ai-lab/Py-Boost
3https://github.com/sb-ai-lab/SketchBoost-paper

7

http://mulan.sourceforge.net/datasets.html
https://github.com/sb-ai-lab/Py-Boost
https://github.com/sb-ai-lab/sketchboost-paper
http://mulan.sourceforge.net/datasets.html
https://github.com/sb-ai-lab/Py-Boost
https://github.com/sb-ai-lab/SketchBoost-paper

Table 1: Test errors (cross-entropy for classification and RMSE for regression) ± their standard deviation.
SketchBoost Baseline

Dataset Top Outputs Random Sampling Random Projection SketchBoost Full CatBoost XGBoost TabNet
(for the best k) (for the best k) (for the best k) (multioutput) (multioutput) (one-vs-all) (multioutput)

Multiclass classification
Otto (9 classes) 0.4715 0.4636 0.4566 0.4697 0.4658 0.4599 0.5363

±0.0035 ±0.0026 ±0.0023 ±0.0030 ±0.0033 ±0.0028 ±0.0063
SF-Crime (39 classes) 2.2070 2.2037 2.2038 2.2067 2.2036 2.2208 2.4819

±0.0005 ±0.0004 ±0.0004 ±0.0003 ±0.0005 ±0.0008 ±0.0199
Helena (100 classes) 2.5923 2.5693 2.5673 2.5865 2.5698 2.5889 2.7197

±0.0024 ±0.0022 ±0.0026 ±0.0025 ±0.0025 ±0.0032 ±0.0235
Dionis (355 classes) 0.3146 0.3040 0.2848 0.3114 0.3085 0.3502 0.4753

±0.0011 ±0.0014 ±0.0012 ±0.0009 ±0.0010 ±0.0020 ±0.0126

Multilabel classification
Mediamill (101 labels) 0.0745 0.0745 0.0743 0.0747 0.0754 0.0758 0.0859

±1.3e-04 ±1.3e-04 ±1.1e-04 ±1.3e-04 ±1.1e-04 ±1.1e-04 ±3.3e-03
MoA (206 labels) 0.0163 0.0160 0.0160 0.0160 0.0161 0.0166 0.0193

±2.2e-05 ±1.0e-05 ±6.0e-06 ±9.0e-06 ±2.6e-05 ±2.1e-05 ±3.0e-04
Delicious (983 labels) 0.0622 0.0619 0.0620 0.0619 0.0614 0.0620 0.0664

±6.2e-05 ±5.9e-05 ±6.2e-05 ±5.5e-05 ±5.2e-05 ±3.3e-05 ±8.0e-04

Multitask regression
RF1 (8 tasks) 1.1860 0.9944 0.9056 1.1687 0.8975 0.9250 3.7948

±0.1366 ±0.1015 ±0.0582 ±0.0835 ±0.0384 ±0.0307 ±1.5935
SCM20D (16 tasks) 88.7442 86.2964 85.8061 91.0142 90.9814 89.1045 87.3655

±0.6346 ±0.4398 ±0.5534 ±0.3397 ±0.3652 ±0.4950 ±1.3316

Table 2: Training time per fold in seconds.
(CatBoost does not support multilabel classification and multioutput regression tasks in the GPU mode.)

SketchBoost (GPU) Baseline (CPU/GPU)

Dataset Top Outputs Random Sampling Random Projection SketchBoost Full CatBoost XGBoost TabNet
(for the best k) (for the best k) (for the best k) (multioutput) (multioutput) (one-vs-all) (multioutput)

Multiclass classification GPU GPU GPU
Otto (9 classes) 113 102 89 131 73 1244 903
SF-Crime (39 classes) 705 676 612 1146 659 4016 2683
Helena (100 classes) 154 180 113 355 436 1036 1196
Dionis (355 classes) 1889 2038 419 23919 18600 18635 1853

Multilabel classification CPU GPU GPU
Mediamill (101 labels) 251 263 294 1777 10164 2074 1231
MoA (206 labels) 103 189 87 696 9398 376 672
Delicious (983 labels) 575 664 1259 19553 20120 15795 2902

Multitask regression CPU GPU GPU
RF1 (8 tasks) 369 396 340 413 804 315 207
SCM20D (16 tasks) 499 528 479 597 798 1432 296

Results. The final test errors are summarized in Table 1. Experiments show that, in general,
SketchBoost with a sketching strategy obtains results comparable to or even better than the competing
boosting frameworks. Promisingly, there is always a sketching strategy that outperforms SketchBoost
Full. Random Projection achieves the best scores, but Random Sampling also performs quite well.
The deterministic Top Outputs strategy scores less than other baselines everywhere. In addition, it
is noticeable that the one-vs-all strategy implemented in XGBoost leads to a worse generalization
ability than the single-tree strategy on most datasets.

The dependence of test scores on the sketch size k for four datasets is shown in Figure 2; for other
datasets see the Supplementary Material. It confirms the idea that, in general, the larger values k we
take, the better performance we obtain. Moreover, our numerical study shows that there is a wide
range of values of k for which sketching strategies work well; see the detailed results for all k in
the Supplementary Material. For most datasets, k ≤ 10 is enough to obtain a result similar to or
even better than SketchBoost Full or other baselines. Loosely speaking, an intuitive explanation
of why reducing the output dimension may increase the ensemble quality is that building a tree
using all outputs often leads to bad split choices for some particular outputs. Sketching strategies
use small groups of outputs, which leads to better tree structures for these outputs and a more
diverse ensemble overall. In this connection, the optimal value of k strongly depends on the relations
between the outputs in a given dataset. With limited resources in practice, we would recommend
using a predefined value k = 5. It is common in GBDTs: modern toolkits have more than 100
hyperparameters, and many of them are not usually tuned (default values typically work well). But at
the same time, one can always add k to the set of hyperparameters that are tuned. In our view, an

8

Figure 2: Dependence of test errors (cross-entropy for classification and RMSE for regression)
on sketch dimension k.

Figure 3: Learning curves for validation error for SketchBoost Full and SketchBoost with Random Sampling.

additional hyperparameter will not play a significant role here taking into account that hyperparameter
optimization is usually done using the random search or Bayesian optimization.

Further, the learning curves for validation errors on some datasets are given in Figure 3. In general,
it shows that small values of k result in a slower error decay at early iterations. But if k is properly
defined, the validation error of SketchBoost with a sketching strategy is comparable to the error
of SketchBoost Full, and hence both algorithms need approximately the same number of steps to
convergence. This means that the proposed sketching strategies do not result in more complex models
and do not significantly affect the model size or inference time. Detailed information on the number
of steps to convergence for all strategies and baselines is given in the Supplementary Material.

SketchBoost does a good job in reducing the training time. In Table 2 we compare training times
for SketchBoost, XGBoost, CatBoost, and TabNet. One can see that it significantly increases with
the dataset size and, in particular, the output dimension. If a dataset is small, as, for example, RF1
(8 targets, 9k rows, 64 features) or Otto (9 classes, 61k rows, 93 features), our Python implementation
is slightly slower than the efficient CatBoost or XGBoost GPU implementations written on low-level
programming languages. But for Dionis (355 classes, 416k rows, 60 features), our implementation
together with a sketching strategy becomes 40 times faster than XGBoost or CatBoost without
sacrificing performance. Overall, we can conclude that the proposed sketching algorithms can
significantly speed up SketchBoost Full and can lead to considerably faster training than other GBDT
baselines. We recall that CatBoost can be trained on GPU only for multiclass classification tasks, and
hence the time comparison with other algorithms on other tasks is not fair for CatBoost.

Finally, we see that all the GBDT implementations outperform TabNet in terms of test score on almost
all tasks; see Table 1 again. These results confirm the conclusion from the recent surveys [Borisov,
Leemann, Seßler, Haug, Pawelczyk, and Kasneci, 2021] and [Qin, Yan, Zhuang, Tay, Pasumarthi,
Wang, Bendersky, and Najork, 2021] that algorithms based on gradient-boosted tree ensembles still
mostly outperform deep learning models on tabular supervised learning tasks. Nevertheless, Table 2
shows that TabNet converges faster than GBDTs without sketching strategies. Moreover, TabNet is
even faster than SketchBoost with sketching strategies on two regression tasks. The reason for this is
that if the target dimension is high, it affects the complexity of a neural network only in the last layer
and, in general, has little effect on the training time. Further, it is also worth mentioning that neural
networks tend to have much more hyperparameters than GBDTs and, as the result, need more time to
be properly fine-tuned. Further details on this experiment are given in the Supplementary Material.

Comparison with GBDT-MO. We also compare SketchBoost with GBDT-MO Full and GBDT-
MO (sparse) from Zhang and Jung [2021] (we want to highlight that GBDT-Sparse from Si et al.
[2017] does not have an open-source implementation). As sketching strategies, we consider here only
Random Sampling and Random Projection. As the baseline, we consider only CatBoost on CPU (to
make it comparable to GBDT-MO which works only on CPU). The datasets to compare and the best
hyperparameters were taken from the original paper.

9

Table 3: Test scores (accuracy for classification and RMSE for regression) ± their standard deviation.
SketchBoost GBDT-MO Baseline

Dataset Random Sampling Random Projection SketchBoost Full GBDT-MO (sparse) GBDT-MO Full CatBoost
(for the best k) (for the best k) (multioutput) (for the best k) (multioutput) (multioutput)

Multiclass classification
MNIST (10 classes) 0.9755 0.9740 0.9730 0.9758 0.9760 0.9684

±0.0042 ±0.0032 ±0.0028 ±0.0048 ±0.0040 ±0.0040
Caltech (101 classes) 0.5704 0.5623 0.5549 0.4796 0.4469 0.5049

±0.0273 ±0.0159 ±0.0080 ±0.0375 ±0.0590 ±0.0167

Multilabel classification
NUS-WIDE (81 labels) 0.9892 0.9897 0.9893 0.9892 0.9891 0.9893

±0.0003 ±0.0003 ±0.0002 ±0.0006 ±0.0002 ±0.0001

Multitask regression
MNIST-REG (24 tasks) 0.2661 0.2654 0.2660 0.2736 0.2723 0.2708

±0.0019 ±0.0012 ±0.0019 ±0.0017 ±0.0026 ±0.0023

Table 4: Training time per fold in seconds.
SketchBoost (GPU) GBDT-MO (CPU) Baseline (CPU)

Dataset Random Sampling Random Projection SketchBoost Full GBDT-MO (sparse) GBDT-MO Full CatBoost
(for the best k) (for the best k) (multioutput) (for the best k) (multioutput) (multioutput)

Multiclass classification
MNIST (10 classes) 102 66 46 399 362 156
Caltech (101 classes) 15 16 13 1312 776 136

Multilabel classification
NUS-WIDE (81 labels) 36 72 87 3660 2606 13857

Multitask regression
MNIST-REG (24 tasks) 120 45 90 163 210 964

Summary results are presented in Table 3 and Table 4. SketchBoost with sketching strategies
outperforms other algorithms on most datasets in terms of accuracy. GBDT-MO (sparse) is everywhere
slower than GBDT-MO Full (because of optimization with a sparsity constraint). Furthermore, its
training time is comparable to CatBoost. The time comparison with SketchBoost is not fair because
of the GPU training, but, as it is shown, it is orders of magnitude faster. It is worth noting that
SketchBoost Full is sometimes faster than SketchBoost with a sketching strategy. The reason for
this is that if the dataset is small, then each boosting iteration requires little time. Therefore, when a
sketching strategy is used, the speed up for each boosting iteration may be insignificant (especially
because of ineffective utilization of GPU). At the same time, the number of iterations needed to
convergence may be greater, which may result in an increase in the overall training time. Exactly this
happened here. Further details on this experiment are given in the Supplementary Material.

5 Conclusion

Figure 4: Training time of XGBoost, CatBoost,
and SkechBoost in the same experiment as in Fig-
ure 1. Here SketchBoost uses Random Projection
with sketch dimension k = 5. Further details are
given in the Supplementary Material.

In this paper, we presented effective methods to
speed up GBDT on multioutput tasks. These meth-
ods are generic and can be easily integrated into
any single-tree GBDT realization. On real-world
datasets, these methods achieve comparable and
sometimes even better results to the existing state-
of-the-art GBDT implementations but in remark-
ably less time. The proposed methods are imple-
mented in SketchBoost which itself is a part of our
Python-based implementation of GBDT called Py-
Boost. Figure 4 concludes this paper by showing
the gain in training time of SkechBoost in the same
experiment as in Figure 1 from the Introduction.

Acknowledgements

We would like to thank Gleb Gusev and Bulat Ibragimov for helpful discussions and feedback for
an earlier draft of this work, Dmitry Simakov and Mikhail Kuznetsov for the help with the TabNet
experiments, and Maxim Savchenko and all the Sber AI Lab team for their support and active interest
in this project. We would also like to thank the anonymous reviewers for their thoughtful feedback.

10

References
Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins.

Journal of Computer and System Sciences, 66(4):671–687, 2003.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
Next-Generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, KDD ’19, pages
2623–2631, 2019.

Khaled Alsabti, Sanjay Ranka, and Vineet Singh. CLOUDS: A Decision Tree Classifier for Large
Datasets. In Proceedings of the Fourth International Conference on Knowledge Discovery and
Data Mining, KDD’98, pages 2–8. AAAI Press, 1998.

Ron Appel, Thomas Fuchs, Piotr Dollár, and Pietro Perona. Quickly Boosting Decision Trees:
Pruning Underachieving Features Early. In Proceedings of the 30th International Conference on
International Conference on Machine Learning, number 3 in ICML’13, pages 594–602. PMLR,
2013.

Sercan Ö. Arik and Tomas Pfister. Tabnet: Attentive Interpretable Tabular Learning. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(8):6679–6687, 2021.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep Neural Networks and Tabular Data: A Survey, 2021.

Leo Breiman. Bagging Predictors. Machine learning, 24(2):123–140, 1996.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 785–794. Association for Computing Machinery, 2016.

M. Cissé, T. Artières, and Patrick Gallinari. Learning Compact Class Codes for Fast Inference
in Large Multi Class Classification. In Proceedings of the 2012th European Conference on
Machine Learning and Knowledge Discovery in Databases - Volume Part I, ECMLPKDD’12,
pages 506–520, 2012.

Yoav Freund. Boosting a Weak Learning Algorithm by Majority. Information and Computation, 121
(2):256–285, 1995.

Yoav Freund and Robert E Schapire. A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189 – 1232, 2001.

Jerome H. Friedman. Stochastic Gradient Boosting. Computational Statistics & Data Analysis, 38
(4):367–378, 2002.

Daniel Hsu, Sham M. Kakade, John Langford, and Tong Zhang. Multi-Label Prediction via Com-
pressed Sensing. In Proceedings of the 22nd International Conference on Neural Information
Processing Systems, NIPS’09, pages 772–780. Curran Associates Inc., 2009.

Bulat Ibragimov and Gleb Gusev. Minimal Variance Sampling in Stochastic Gradient Boosting,
2019.

Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of
Dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
STOC ’98, pages 604–613, 1998.

Michael Jahrer, Andreas Töscher, and Robert Legenstein. Combining Predictions for Accurate
Recommender Systems. In Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’10, pages 693–702, New York, NY, USA, 2010.
Association for Computing Machinery.

11

L.O. Jimenez and D.A. Landgrebe. Hyperspectral Data Analysis and Supervised Feature Reduction
via Projection Pursuit. IEEE Transactions on Geoscience and Remote Sensing, 37(6):2653–2667,
1999.

Ruoming Jin and Gagan Agrawal. Efficient Decision Tree Construction on Streaming Data. In
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD’03, pages 571–576, New York, NY, USA, 2003a. Association for Computing
Machinery.

Ruoming Jin and Gagan Agrawal. Communication and Memory Efficient Parallel Decision Tree
Construction. In Proceedings of the Third SIAM International Conference on Data Mining, pages
119–129. SIAM, 2003b.

William Johnson and Joram Lindenstrauss. Extensions of lipschitz maps into a hilbert space.
Contemporary Mathematics, 26:189–206, 1984.

Ashish Kapoor, Raajay Viswanathan, and Prateek Jain. Multilabel Classification using Bayesian
Compressed Sensing. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 25 of NIPS’12, pages 2645–2653. Curran
Associates, Inc., 2012.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, pages 3149–3157.
Curran Associates Inc., 2017.

Ping Li, Christopher J. C. Burges, and Qiang Wu. McRank: Learning to Rank Using Multiple
Classification and Gradient Boosting. In Proceedings of the 20th International Conference on
Neural Information Processing Systems, NIPS’07, pages 897–904. Curran Associates Inc., 2007.

Ping Li, Qiang Wu, and Christopher Burges. McRank: Learning to Rank Using Multiple Classification
and Gradient Boosting. In Advances in Neural Information Processing Systems, volume 20. Curran
Associates, Inc., 2008.

Michael W. Mahoney. Randomized Algorithms for Matrices and Data. Foundations and Trends in
Machine Learning, 3(2):123–224, 2011.

Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. SLIQ: A Fast Scalable Classifier for Data
Mining. In International Conference on Extending Database Technology, pages 18–32. Springer-
Verlag, 1996.

Lennart Obermann and Stephan Waack. Interpretable Multiclass Models for Corporate Credit Rating
Capable of Expressing Doubt. Frontiers in Applied Mathematics and Statistics, 2, 2016.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. CatBoost: Unbiased Boosting with Categorical Features. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, pages 6639–6649.
Curran Associates Inc., 2018.

Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Mike
Bendersky, and Marc Najork. Are Neural Rankers still Outperformed by Gradient Boosted
Decision Trees? In International Conference on Learning Representations, 2021.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods (Springer Texts in Statistics).
Springer-Verlag, Berlin, Heidelberg, 2005. ISBN 0387212396.

Robert E. Schapire. The Strength of Weak Learnability. Machine Learning, 5(2):197–227, 1990.

Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, and Cho-Jui Hsieh.
Gradient Boosted Decision Trees for High dimensional Sparse Output. In Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 3182–3190. PMLR, 2017.

12

Farbound Tai and Hsuan-Tien Lin. Multilabel Classification with Principal Label Space Transforma-
tion. Neural Computation, 24(9):2508–2542, 2012.

Jörg Wicker, Andrey Tyukin, and Stefan Kramer. A Nonlinear Label Compression and Transformation
Method for Multi-Label Classification using Autoencoders. In The 20th Pacific Asia Conference
on Knowledge Discovery and Data Mining (PAKDD), volume 9651 of Lecture Notes in Computer
Science, pages 328–340, Switzerland, 2016. Springer International Publishing.

David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra. Foundations and Trends in
Machine Learning, 10(1–2):1–157, 2014.

Naiju Zhai, Peifu Yao, and Xiaofeng Zhou. Multivariate Time Series Forecast in Industrial Process
Based on XGBoost and GRU. In 2020 IEEE 9th Joint International Information Technology and
Artificial Intelligence Conference (ITAIC), volume 9, pages 1397–1400. IEEE, 2020.

Zhendong Zhang and Cheolkon Jung. GBDT-MO: Gradient-Boosted Decision Trees for Multiple
Outputs. IEEE Transactions on Neural Networks and Learning Systems, 32:3156–3167, 2021.

Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, 2012.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See the
Supplementary Material

(b) Did you include complete proofs of all theoretical results? [Yes] See the Supplementary
Material

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See the
Supplementary Material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the Supplementary Material

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 4 and the Supplementary Material

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the Supplementary Material

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See the Supplementary

Material
(b) Did you mention the license of the assets? [Yes] We use open source assets
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See the Supplementary Material
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We use open source assets
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Preliminaries
	Sketched Split Scoring
	Top Outputs
	Random Sampling
	Random Projections
	Complexity analysis.

	Numerical Experiments
	Conclusion

