
Appendix

A Training Details

We use a distributed RL training setup with 256 parallel actors. For Impala agents, the learner samples
from a replay buffer that acts like a queue. For R2D2 agents, the learner samples from a replay buffer
using prioritized replay. Training took 8-36 hours per experiment on a 2⇥ 2 TPUv2.

All agents share the same policy network architecture and hyperparameters (Table S1). We use an
Adam optimizer for all experiments. The hyperparameters used to train Impala [17] and R2D2 [25]
are mostly taken from the original implementations. For Impala, we set the unroll length to 128, the
policy network cost to 0.85, and state-value function cost to 1.0. We also use two heads to estimate
the state-value functions for extrinsic and intrinsic reward separately. For R2D2, we set the unroll
length to 100, burn-in period to 20, priority exponent to 0.9, Q-network target update period to 400,
and replay buffer size to 10,000.

Table S1: Common architecture and hyperparameters for all agents.

Setting Value

Image resolution: 96x72x3
Number of action repeats: 4
Batch size: 32
Agent discount �: 0.99
Learning rate: 0.0003
ResNet num channels (policy): 16, 32, 32
LSTM hidden units (memory): 256

A.1 Training Details for NGU Variants

We use a simplified version of the full NGU agent as to focus on the episodic novelty component.
One major difference is that we only learn one value function, associated with a single intrinsic
reward scale � and discount factor �. The discount factor � is 0.99 and we sweep for � (Table S2).
Another major difference is that our lifetime novelty factor ↵ is always set to 1.

The NGU memory buffer is set to 12,000, so that it can always has the capacity to store the the entire
episode. The buffer is reset at the start of the episode. The intrinsic reward is calculated from a kernel
operation over state representations stored in the memory buffer. We use the same kernel function
and associated hyperparameters (e.g. number of neighbors, cluster distance, maximum similarity)
found in Badia et al. [3].

For Vis-NGU, the 32-dimension controllable states come from a learned inverse dynamics model. The
inverse dynamics model is trained with an Adam optimizer (learning rate 5e-4, �1 = 0.0, �2 = 0.95,
✏ is 6e-6). For the variants, we use frozen pretrained representations from BERT, ALM, or CLIP. The
ALM pretrained embeddings are size 768 and the CLIP embeddings are 512. Med-ALM comprises
a 71M parameter NFNet image encoder and 77M BERT text encoder. Small-ALM comprises a
25M Resnet image encoder and 44M BERT text encoder. Using Small-ALM can help mitigate the
increased inference time. To manage training time, we use Small-ALM in the City environment,
where the episode is magnitudes longer than Playroom. For the LSE-NGU ImageNet control, we use
the representations from a frozen 71M parameter NFNet pretrained on ImageNet (F0 from Brock
et al. [5]). This roughly matches the size of the CLIP and Med-ALM image encoders.

We notice that it is crucial for the pretrained representations to only be added to the buffer every 8
timesteps. Meanwhile, Vis-NGU adds controllable states every timestep, which is as or more effective
than every 8. This may be due to some interactions between the kernel function and the smoothness
of the learned controllable states. We also find that normalizing the intrinsic reward, like in RND, is
helpful in some settings. We use normalization for Lang-NGU and LSE-NGU on the Playroom tasks.

15



Table S2: Hyperparameters for the family of NGU agents on the Playroom tasks. All agents except
Lang-NGU use a scaling factor of 0.01 in City. Lang-NGU uses 0.1.

Environment Method Embedding Type Intrinsic Reward Scale � Entropy cost

Playroom lift, put Vis-NGU Controllable State 3.1e-7 6.2e-5
Lang-NGU BERT 0.029 2.4e-4

CLIPtext 0.02 2.3e-4
ALMtext 0.0035 9.1e-5

LSE-NGU CLIPimage 0.029 2.6e-4
ALMimage 0.012 1.6e-4
ImageNet 0.0072 6.4e-5

Playroom find Vis-NGU Controllable State 3.1e-6 2.6e-5
Lang-NGU BERT 0.029 2.4e-4

CLIPtext 0.0047 4.1e-5
ALMtext 0.013 1.9e-4

LSE-NGU CLIPimage 0.0083 6.7e-5
ALMimage 0.0051 1.2e-4
ImageNet 0.013 1.0e-4

A.2 Training Details for RND-Inspired Agents

For the RND-inspired exploration agents, the hyperparameters for training the trainable network
are taken from the original implementation [7]. We perform a random hyperparameter search over
a range of values for the intrinsic reward scale, V-Trace entropy cost, and the learning rate for the
trainable network. The values can be found in Table S3. We also normalize all intrinsic reward with
the rolling mean and standard deviation.

Table S3: Hyperparameters for the family of RND-inspired agents. Learning rate is used for the
trainable network.

Environment Setting Intrinsic reward scale � Entropy cost Learning rate

Playroom lift, put Vis-RND 1.4e-4 1.2e-4 1.2e-3
Lang-RND 3.2e-6 8.1e-5 5.3e-4
ALM-ND (Text) 8.4e-6 2.5e-5 3.1e-3
ALM-ND (Image) 1.1e-5 2.2e-5 2.1e-3
LD 1.1e-5 2.7e-5 1.7e-3
S-LD 1.4e-6 7.6e-5 1.8e-4

Playroom find Vis-RND 9.9e-5 4.4e-5 5.4e-4
Lang-RND 7.2e-4 8e-5 1e-3
ALM-ND (Text) 2.3e-4 3.9e-5 9.6e-4
ALM-ND (Image) 3e.0-3 9.5e-5 2.1e-4
LD 4.1e-5 4.3e-5 2e-3
S-LD 4.1e-5 4.3 e-5 2.e-3

The various RND-inspired agents differ in the input and output space of the trainable network and
target functions (Figure S1). Some trainable networks and target networks involve a convolutional
network, which consists of (64, 128, 128, 128) channels with (7, 5, 3, 3) kernel and (4, 2, 1, 1)
stride. For ND, we balance the model capacity of the trainable network with the memory required
for learning larger networks. We notice that using larger networks as the target function can make
distillation harder and therefore, requires more careful parameter tuning. Our experiments use the
26M parameter Small-ALM vision encoder for generating target outputs, which minimizes the
discrepancy in complexity between the trainable network and target function. This also managed the
memory requirements during training.

A.3 Engineering Considerations

Integrating large pretrained models into RL frameworks is nontrivial. High quality pretrained models
are orders of magnitudes larger than policy networks, introducing challenges with inference speed.

16



5y
µ�

ĞO
<
�

YÈy¡µy�®�į<�ÒâºÈ¬į "Èºî�µįYyÈ��Òį"Öµ�Ò¡ºµ įįįįįįįįįYÈy¡µy�®�į<�ÒâºÈ¬į įįįįįįįįįį"Èºî�µįYyÈ��Òį"Öµ�Ò¡ºµ

�<<

;5LįĘ�¡´ċįøùÿę

(´y��

AÖÒÅÖÒįĘ�¡´ċįøùÿę

�<<

;5LįĘ�¡´ċįøùÿę

(´y��

AÖÒÅÖÒįĘ�¡´ċįøùÿę

h
¡Ì
ĞO
<
�

5SY;įĘ�¡´ċįøùÿę

;5LįĘ�¡´ċįøùÿę

Y�çÒ

AÖÒÅÖÒįĘ�¡´ċįøùÿę

5SY;įĘ�¡´ċįøùÿę

;5LįĘ�¡´ċįøùÿę

Y�çÒ

AÖÒÅÖÒįĘ�¡´ċįøùÿę

�
5;

Ğ<
�
įĘ
Y�
çÒ
ę

�<<

;5LįĘ�¡´ċįþýÿę

(´y��

AÖÒÅÖÒįĘ�¡´ċįþýÿę AÖÒÅÖÒįĘ�¡´ċįþýÿę

�
5;

Ğ<
�
įĘ
(´

y�
�ę

;5LįĘ�¡´ċįþýÿę

AÖÒÅÖÒįĘ�¡´ċįþýÿę AÖÒÅÖÒįĘ�¡´ċįþýÿę

;5LįĘ�¡´ċįþýÿę

�5;į(´y��į
�µ�º��È

(´y��

5SY;įĘ�¡´ċįùüýę

;5LįĘ�¡´ċįþýÿę

Y�çÒ

�5;įY�çÒį
�µ�º��È

Y�çÒ

Figure S1: Architecture diagrams of the trainable network and frozen target functions for the RND-
inspired family of methods. The teal square boxes are paired outputs, such that the trainable function
is trained to match the frozen target function. None of the parameters here are shared with the policy
or value network.

Slow inference not only increases iteration and training times but also may push learning further
off-policy in distributed RL setups [e.g. 17, 25]. We mitigate this issue in Lang-NGU and LSE-
NGU by only performing inference computations when it is necessary. We compute the pretrained
representations only when they are required for adding to the NGU buffer (i.e. every 8 timesteps).

A.4 S-LD Construction

As explained in Section 5.1, we compare the efficacy of exploration induced by the language
distillation (LD) method with that induced by a shuffled variant, S-LD. LD employs an exploration
bonus based on the prediction error of a captioning network fC : OV ! OL, where the target value
is the oracle caption. Our goal with S-LD is to determine whether the efficacy of the exploration
is due to the specific abstractions induced by fC , or whether it is due to some low level statistical
property (e.g. the discrete nature of OL, or the particular marginal output distribution).

We sample a fixed, random mapping f̂S : OV ! OL while trying to match the low-level statistics
of fC . To do this, we construct a (fixed, random) smooth partitioning of OV into discrete regions,
which in turn are each assigned to a unique caption from the output space of fC . The regions are
sized to maintain the same marginal distribution of captions, P⇡LD (L) ⇡ P⇡S�LD (L).

17



Figure S2: Architecture diagram for a generic Impala agent used in our Playroom experiments. We
feed the image observation and language instruction to the policy and value networks. During training,
we also use the scene caption to calculate the intrinsic reward, which corresponds to the gray shaded
box. There is no parameter sharing between the networks inside and outside of the gray box.

More precisely, our procedure for constructing f̂S is as follows. We build f̂S as the composition of
three functions, f̂S = g3 � g2 � g1:

• g1 : OV ! R is a fixed, random function, implemented using a neural network as in Vis-
RND.

• g2 : R ! Cat(K) is a one-hot operation, segmenting g1(OV ) into K non-overlapping,
contiguous intervals.

• g3 : Cat(K) ! OL is a fixed mapping from the discrete categories to set of captions
produced by the language oracle, fC .

To ensure that the marginal distribution of captions seen in fC was preserved in fS , we first measure
the empirical distribution of oracle captions encountered by ⇡LD, a policy trained to maximize
the LD intrinsic reward. We denote the observed marginal probability of observing caption li as
P⇡LD (OL = li) = qi (where the ordering of captions li 2 OL is fixed and random). We then measure
the empirical distribution of g1 under the same action of the same policy, P⇡LD (g1(OV )), and define
the boundaries of the intervals of g2 by the quantiles of this empirical distribution so as to match
the CDF of q, i.e. so that P⇡LD (g2 � g1(OV ) = i) = qi. Finally, we define g3 to map from the ith

category to the corresponding caption li, so that P⇡LD (g3 � g2 � g1(OV ) = li) = qi.

B Additional ablation: Pretrained controllable states

The state representations used by Vis-NGU are trained jointly with the policy, whereas the pretrained
representations used by Lang-NGU and LSE-NGU are frozen during training. To isolate the effect
of the knowledge encoded by the representations, we perform an additional experiment where we
pretrain the controllable states and freeze them during training. We use the weights of the inverse
dynamics model from a previously trained Vis-NGU agent. Figure S3 shows that pretrained Vis-
NGU learns at the same rate as Vis-NGU (if not slower). Thus, the increased performance in Lang-
NGU and LSE-NGU agents is due to the way the vision-language embeddings are pretrained on
captioning datasets. This furthermore suggests that the converged controllable states do not fully

18



capture the knowledge needed for efficient exploration and in fact may even hurt exploration at the
start of training by focusing on the wrong parts of the visual observation.

Figure S3: Vis-NGU with a pretrained inverse dynamics model learns slower than the baseline Vis-
NGU agent that uses online learned controllable states.

19



C Additional Figures

oºÖįyÈ�į®ºº¬¡µ�įyÒįyį�È��µį�ººÈį¡µįyį
�yÈ¬į�È�èįÅy¡µÒ��į�È¡�¬į�ÈºÖµ�įóººÈį
yÅyÈÒ´�µÒÌį¡µįyįyÅyÈÒ´�µÒį�Ö¡®�¡µ�ĉ

oºÖįyÈ�į®ºº¬¡µ�įyÒįyįÅºÌÒįº�ò��į¡µįyį
®¡� Òį�È�èįÌÒÖ��ºįÌ ºÅÌį¡µįyįyÅyÈÒ´�µÒį
�Ö¡®�¡µ�ĉ

oºÖį�yµįÌ��įÒâºįyÈ´į� y¡ÈÌĊįyµį
ºÒÒº´yµĊįyµ�įyįÌ �®�ĉ

oºÖįyÈ�į º®�¡µ�įyį �®¡�ºÅÒ�ÈĉįoºÖį�yµį
Ì��įyį���ĉ

oºÖį�yµįÌ��įyį���ĊįyįÌ �®�Ċįyį�ºº¬�yÌ�Ċį
yįÒ���èĊįyµ�įyįÈÖ���Èį�Ö�¬ĉ

oºÖį�yµįÌ��įyįÌÒºÈy��įÒÈyèĊįyįÒÈy¡µĊįyį
Èº�ºÒĊįyµ�įyį�yÈĉ

oºÖįyÈ�į®ºº¬¡µ�įyÒįyį�®Ö�į�È�èį�È¡�¬į
º�ò��Ìį¡µįyįº�ò��į�Ö¡®�¡µ�ĉ

oºÖį�yµįÌ��įyµįyÈ´� y¡ÈĊįyµįºÒÒº´yµĊį
yįÌ �®�Ċįyµ�įyįÒ���èĉ

oºÖįyÈ�į º®�¡µ�įyįÅºÒÒ��įÅ®yµÒĉįoºÖį
�yµįÌ��įyįÌÒºÈy��įÒÈyèįyµ�įyį���ĉ

oºÖį�yµįÌ��įyį�yÒ ÒÖ�įyµ�įyįÈÖ���Èį
�Ö�¬ĉ

oºÖį�yµįÌ��įyį���ĊįyįÌÒºÈy��įÒÈyèĊįyį
Èº�¬�ÒĊįyį�ÖÌĊįyµ�įyį´Ö�ĉ

oºÖįyÈ�į®ºº¬¡µ�įyÒįyįòÈ�į è�ÈyµÒį¡µįyį
ÅyÈ¬ĉ

Figure S4: Example scenes and associated captions from multi-room Playroom used for the find
task (left column), single-room Playroom used for the lift and put tasks (middle column), and City
(right column).

20



Table S4: Mean and standard error of coverage (number of bins reached on map) by variants of NGU
agents using different state representations. The City consists of 1024 total bins, although not all
are reachable. With the ground truth (continuous) embedding type, the NGU state representation is
the global coordinate of the agent location. With the ground truth (discrete) embedding type, the
representation is a one-hot encoding of the bins. A non-adaptive, uniform random policy is also
included as baseline (‘N/A - Random Actions’).

Embedding Type Coverage (number of bins)

Ground Truth (continuous) 346± 3.2
Ground Truth (discrete) 539± 3.5

N/A – Random Actions 60± 0.53

NGU with Controllable State 83± 6.9
NGU with ImageNet 111± 10.6

Lang-NGU with CLIP 225± 8.9
Lang-NGU with Small-ALM 241± 9.0

LSE-NGU with CLIP 153± 7.1
LSE-NGU with Small-ALM 162± 5.6

Figure S5: Heatmaps of agent coverage over the City environment.

Figure S6: For both CLIP and ALM representations, LSE-NGU and Lang-NGU learn at comparable
speeds, suggesting that the method can transfer well to environments without language annotations.

21



Figure S7: Lang-NGU and LSE-NGU agents learn to interact with objects (holding and foveating)
earlier in training compared to the Vis-NGU agent. The benefit is larger for the put task, where the
extrinsic reward also reinforces object interaction.

22


	Introduction
	Related Work
	Method
	Never Give Up (NGU)
	Random Network Distillation (RND)

	Experimental Setup
	Environments
	Captioning Engine
	Training Details

	Results
	Motivation: Language is a Meaningful Abstraction
	Pretrained Vision-Language Representations Improve Exploration

	Discussion
	Training Details
	Training Details for NGU Variants
	Training Details for RND-Inspired Agents
	Engineering Considerations
	S-LD Construction

	Additional ablation: Pretrained controllable states
	Additional Figures

