
Disentangling the Predictive Variance of
Deep Ensembles through the Neural Tangent Kernel

Seijin Kobayashi
Department of Computer Science

ETH Zürich
seijink@ethz.ch

Pau Vilimelis Aceituno
Institute of Neuroinformatics

University of Zürich & ETH Zürich
pau@ini.ethz.ch

Johannes von Oswald
Department of Computer Science

ETH Zürich
voswaldj@ethz.ch

Abstract

Identifying unfamiliar inputs, also known as out-of-distribution (OOD) detection,
is a crucial property of any decision making process. A simple and empirically val-
idated technique is based on deep ensembles where the variance of predictions over
different neural networks acts as a substitute for input uncertainty. Nevertheless, a
theoretical understanding of the inductive biases leading to the performance of deep
ensemble’s uncertainty estimation is missing. To improve our description of their
behavior, we study deep ensembles with large layer widths operating in simplified
linear training regimes, in which the functions trained with gradient descent can
be described by the neural tangent kernel. We identify two sources of noise, each
inducing a distinct inductive bias in the predictive variance at initialization. We
further show theoretically and empirically that both noise sources affect the pre-
dictive variance of non-linear deep ensembles in toy models and realistic settings
after training. Finally, we propose practical ways to eliminate part of these noise
sources leading to significant changes and improved OOD detection in trained deep
ensembles.

1 Introduction

Modern artificial intelligence uses intricate deep neural networks to process data, make predictions
and take actions. One of the crucial steps toward allowing these agents to act in the real world is to
incorporate a reliable mechanism for estimating uncertainty – in particular when human lives are
at risk [1, 2]. Although the ongoing success of deep learning is remarkable, the increasing data,
model and training algorithm complexity make a thorough understanding of their inner workings
increasingly difficult. This applies when trying to understand when and why a system is certain or
uncertain about a given output and is therefore the topic of numerous publications [3–10].

Principled mechanisms for uncertainty quantification would rely on Bayesian inference with an
appropriate prior. This has led to the development of (approximate) Bayesian inference methods
for deep neural networks [11–15]. Simply aggregating an ensemble of models [16] and using the
disagreement of their predictions as a substitute for uncertainty has gained popularity. However, the
theoretical justification of deep ensembles remains a matter of debate, see Wilson and Izmailov [17].
Although a link between Bayesian inference and deep ensembles can be obtained, see [18, 19], an
understanding of the widely adopted standard deep ensemble and it’s predictive distribution is still
missing [20, 21]. Note that even for principled Bayesian approaches there is no valid theoretical or
practical OOD guarantee without a proper definition of out-of-distribution data [22].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

One avenue to simplify the analyses of deep neural networks that gained a lot of attention in
recent years is to increase the layer width to infinity [23, 24] or to very large values [25, 26].
In the former regime, an intriguing equivalence of infinitely wide deep networks at initialization
and Gaussian processes allows for exact Bayesian inference and therefore principled uncertainty
estimation. Although it is not possible to generally derive a Bayesian posterior for trained infinite or
finite layer width networks, the resulting model predictions can be expressed analytically by kernels.
Given this favorable mathematical description, the question of how powerful and similar these models
are compared to their arguably black-box counterparts arises, with e.g. moderate width, complex
optimizers and training stochasticity [25, 27–32].

In this paper, we leverage this tractable description of trained neural networks and take a first step
towards understanding the predictive distribution of neural networks ensembles with large but finite
width. Building on top of the various studies mentioned, we do so by studying the case where
these networks can be described by a kernel and study the effect of two distinct noise sources
stemming from the network initialization: The noise in the functional initialization of the network
and the initialization noise of the gradient, which affects the training and therefore the kernel. As we
will show, these noise sources will affect the predictive distributions differently and influence the
network’s generalization on in- and out-of-distribution data.

Our contributions are the following:

• We provide a first order approximation of the predictive variance of an ensemble of linearly
trained, finite-width neural networks. We identify interpretable terms in the refined variance
description, originating from 2 distinct noise sources, and further provide their analytical
expression for single layer neural networks with ReLU non-linearities.

• We show theoretically that under mild assumptions these refined variance terms survive
nonlinear training for sufficiently large width, and therefore contribute to the predictive
variance of non-linearly trained deep ensembles. Crucially, our result suggests that any finer
description of the predictive variance of a linearized ensemble can be erased by nonlinear
training.

• We conduct empirical studies validating our theoretical results, and investigate how the
different variance terms influence generalization on in - and out-of-distribution. We highlight
the practical implications of our theory by proposing simple methods to isolate noise sources
in realistic settings which can lead to improved OOD detection.1

2 Neural network ensembles and their relations to kernels

Let fθ = f(·, θ) : Rh0 → RhL denote a neural network parameterized by the weights θ ∈ Rn.
The weights consist of weight matrices and bias vectors {(Wl, bl)}Ll=1 describing the following
feed-forward computation beginning with the input data x0:

zl+1 =
σw√
hl

W l+1xl + bl+1 with xl+1 = ϕ(zl+1). (1)

Here hl is the dimension of the vector xl and ϕ is a pointwise non-linearity such as the softplus
log(1 + ex) or Rectified Linear Unit i.e. max(0, x) (ReLU) [33]. We follow Jacot et al. [24] and use
σw =

√
2 to control the standard deviation of the initialised weights W l

ij , b
l
i ∼ N (0, 1).

Given a set of N datapoints X = (xi)0≤i≤N ∈ RN×h0 and targets Y = (yi)0≤i≤N ∈ RN×hL , we
consider regression problems with the goal of finding θ∗ which minimizes the mean squared error
(MSE) loss L(θ) = 1

2

∑N
i=0 ∥f(xi, θ)− yi∥22. For ease of notation, we denote by f(X , θ) ∈ RN ·hL

the vectorized evaluation of f on each datapoint and Y ∈ RN ·hL the target vector for the entire
dataset. As the widths of the hidden layers grow towards infinity, the distribution of outputs at
initialization f(x, θ0) converges to a multivariate gaussian distribution due to the Central Limit
Theorem [23]. The resulting function can then accurately be described as a zero-mean Gaussian
process, coined Neural Network Gaussian Process (NNGP), where the covariance of a pair of output
neurons i, j for data x and x′ is given by the kernel

1Source code for all experiments: github.com/seijin-kobayashi/disentangle-predvar

2

github.com/seijin-kobayashi/disentangle-predvar

K(x, x′)i,j = lim
h→∞

E[f i(x, θ0)f
j(x′, θ0)] (2)

with h = min(h1, ..., hL−1). This equivalence can be used to analytically compute the Bayesian
posterior of infinitely wide Bayesian neural networks [34].

On the other hand infinite width models trained via gradient descent (GD) can be described by the
Neural Tangent Kernel (NTK). Given θ, the NTK Θθ of fθ is a matrix in RN ·hL × RN ·hL with the
(i, j)-entry given as the following dot product

⟨∇θf(xi, θ),∇θf(xj , θ)⟩ (3)

where we consider without loss of generality the output dimension of f to be hL = 1 for
ease of notation. Furthermore, we denote Θθ(X ,X) := ∇θf(X , θ)∇θf(X , θ)T the matrix and
Θθ(x

′,X) := ∇θf(x
′, θ)∇θf(X , θ)T the vector form of the NTK while highlighting the dependen-

cies on different datapoints.

Lee et al. [25] showed that for sufficiently wide networks under common parametrizations, the
gradient descent dynamics of the model with a sufficiently small learning rate behaves closely to its
linearly trained counterpart, i.e. its first-order Taylor expansion in parameter space. In this gradient
flow regime, after training on the mean squared error converges, we can rewrite the predictions of the
linearly trained models in the following closed-form:

f lin(x) =f(x, θ0) +Qθ0(x,X)(Y − f(X , θ0)) (4)

where Qθ0(x,X) := Θθ0(x,X)Θθ0(X ,X)−1 with Θθ0 the NTK at initialization, i.e. of f(., θ0).
The linearization error throughout training supt≥0 ∥f lin

t (x) − ft(x)∥ is further shown to decrease
with the width of the network, bounded by O(h− 1

2). Note that one can also linearize the dynamics
without increasing the width of a neural network but by simply changing its output scaling [26].

When moving from finite to the infinite width limit the training of a multilayer perceptron (MLP) can
again be described with the NTK, which now converges to a deterministic kernel Θ∞ [24], a result
which extends to convolutional neural networks [27] and other common architectures [35, 36]. A
fully trained neural network model can then be expressed as

f∞(x) = f(x, θ0) + Θ∞(x,X)Θ∞(X ,X)−1(Y − f(X , θ0)). (5)

where f({X , x}, θ0) ∼ N (0,K({X , x}, {X , x})).

2.1 Predictive distribution of linearly trained deep ensembles

In this Section, we study in detail the predictive distribution of ensembles of linearly trained models,
i.e. the distribution of f lin(x) given x over random initializations θ0. In particular, for a given
data x, we are interested in the mean E[f(x)] and variance V[f(x)] of trained models over random
initialization. The former is typically used for the prediction of a deep ensemble, while the latter is
used for estimating model or epistemic uncertainty utilized e.g. for OOD detection or exploration.
To start, we describe the simpler case of the infinite width limit and a deterministic NTK, which
allows us to compute the mean and variance of the solutions found by training easily:

E[f∞(x)] =Q∞(x,X)Y,

V[f∞(x)] =K(x, x) +Q∞(x,X)K(X ,X)Q∞(x,X)T − 2Q∞(x,X)K(X , x)
(6)

where we introduced Q∞(x,X) = Θ∞(x,X)Θ∞(X ,X)−1.

For finite width linearly trained networks, the kernel is no longer deterministic, and its stochasticity
influences the predictive distribution. Because there is probability mass assigned to the neighborhood
of rare events where the NTK kernel matrix is not invertible, the expectation and variance over
parameter initialization of the expression in equation 4 diverges to infinity.

Fortunately, due to the convergence in probability of the empirical NTK to the infinite width counter-
part [24], we know these singularities become rarer and ultimately vanish as the width increases to
infinity. Intuitively, we should therefore be able to assign meaningful, finite values to these undefined

3

quantities, which ignores these rare singularities. The delta method [37] in statistics formalizes this
intuition, by using Taylor approximation to smooth out the singularities before computing the mean
or variance. When the probability mass of the empirical NTK is highly concentrated in a small
radius around the limiting NTK, the expression 4 is roughly linear w.r.t the NTK entries. Given
this observation, we prove (see Appendix A.2) the following result, and justify that the obtained
expression is informative of the empirical predictive mean and variance of deep ensembles. Rewriting
equation 4 into

f lin(x) =f(x, θ0) + Q̄(x,X)(Y − f(X , θ0))

+ [Qθ0(x,X)− Q̄(x,X)](Y − f(X , θ0))
(7)

where Q̄(x,X) = Θ̄(x,X)Θ̄(X ,X)−1 and Θ̄ = E(Θθ0), we state:
Proposition 2.1. For one hidden layer networks parametrized as in equation 1, given an input x and
training data (X ,Y), when increasing the hidden layer width h, we have the following convergence
in distribution over random initialization θ0:

√
h[Qθ0(x,X)− Q̄(x,X)](Y − f(X , θ0))

dist.→ Z(x)

where Z(x) is the linear combination of 2 Chi-Square distributions, such that

V(Z(x)) = lim
h→∞

(hVc(x) + hVi(x))

where

Vc(x) =V[Θθ0(x,X)Θ̄(X ,X)−1Y] + V[Q̄(x,X)Θθ0(X ,X)Θ̄(X ,X)−1Y]

− 2Cov[Q̄(x,X)Θθ0(X ,X)Θ̄(X ,X)−1Y,Θθ0(x,X)Θ̄(X ,X)−1Y],

Vi(x) =V[Θθ0(x,X)Θ̄(X ,X)−1f(X , θ0)] + V[Q̄(x,X)Θθ0(X ,X)Θ̄(X ,X)−1f(X , θ0)]

− 2Cov[Q̄(x,X)Θθ0(X ,X)Θ̄(X ,X)−1f(X , θ0),Θθ0(x,X)Θ̄(X ,X)−1f(X , θ0)].

We omit the dependence of θ0 on the width h for notational simplicity. While the expectation or
variance of equation 4 for any finite width is undefined, their empirical mean and variance are with
high probability indistinguishable from that of the above limiting distribution (see Lemma A.1). Note
that the above proposition assumes the noise in Θθ0 to be decorrelated from f(x, θ0), which can hold
true under specific constructions of the network that are of practical interest as we will see in the
following (c.f. Appendix A.3.2).

Given Proposition 2.1, we now describe the approximate variance of f lin(x) for L = 2, which we
can extend to the general L > 2 case using an informal argument (see A.2.2):
Proposition 2.2. Let f be a neural network with identical width of all hidden layers, h1 = h2 =
... = hL−1 = h. We assume ∥Θθ0 − Θ̄∥2F = Op(

1
h). Then,

V[f lin(x)] ≈ Va(x) + Vc(x) + Vi(x) + Vcor(x) + Vres(x)

where

Va(x) =K̄(x, x) + Q̄(x,X)K̄(X ,X)Q̄(x,X)T − 2Q̄(x,X)K̄(X , x),

Vcor(x) =2E
[
[Θθ0(x,X)− Q̄(x,X)Θθ0(X ,X)][Θ̄(X ,X)−1Θθ0(X ,X)Θ̄(X ,X)−1]

]
· [K̄(X , x)− K̄(X ,X)Q̄(x,X)T]

and Vres(x) = O(h−2) as well as K̄ the expectation over initializations of the finite width counterpart
of the NNGP kernel.

Several observations can be made: First, the above expression only involves the first and second
moments of the empirical, finite width NTK, as well as the first moment of the NNGP kernel. These
terms can be analytically computed in some settings. We provide in Appendix A.4.3 some of the
moments for the special case of a 1-hidden layer ReLU network, and show the analytical expression
correspond to empirical findings.

Second, the decomposition demonstrates the interplay of 2 distinct noise sources in the predictive
variance:

4

0.25 0.00 0.25

0.4

0.2

0.0

0.2

0.4

0.000
0.018
0.036
0.054
0.072
0.090
0.108
0.126

0.25 0.00 0.25

0.4

0.2

0.0

0.2

0.4

0.000
0.012
0.024
0.036
0.048
0.060
0.072
0.084
0.096
0.108

0.25 0.00 0.25

0.4

0.2

0.0

0.2

0.4

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024
0.027

0.25 0.00 0.25

0.4

0.2

0.0

0.2

0.4

0.000000
0.000045
0.000090
0.000135
0.000180
0.000225
0.000270

Figure 1: Empirical variance V[f(x)] of our kernel models f lin, f lin-a, f lin-c and f lin-i on a toy
regression problem, consisting in regressing against a value of 1 on the purple and -1 on the green
datapoints. Left: V[f lin(x)] as a superposition of the three isolated components right of it. Center left:
V[f lin-a(x)] which correlates with the distance to the datapoints. Center right: V[f lin-c(x)] which
correlates with the angle to the datapoints. Right: V[f lin-i(x)] which depends on distance and angle
to the datapoints.

• Va is the variance associated to the expression in the first line of equation 7. Intuitively, it is
the finite width counterpart of the predictive variance of the infinite width model (equation
6), as it assumes the NTK is deterministic. The variance stems entirely from the functional
noise at initialization and converges to the infinite width predictive variance as the width
increases.

• Vc and Vi stem from the second line of equation 7. Vc is a first-order approximation of the
predictive variance of a linearly trained network with pure kernel noise, without functional
noise i.e. Vc ≈ V[Qθ0(x,X)Y]. On the other hand, Vi depends on the interplay between
the 2 noises, and can be identified as the predictive variance of a deep ensemble with a
deterministic NTK Θ̄ and a new functional prior g(x) = Θθ0(x,X)Θ̄(X ,X)−1f(X , θ0).
Intuitively, this new functional prior can be seen as a data-specific inductive bias on the
NTK formulation of the predictive variance (see Appendix A.3.1 for more details).

• Vcor is a covariance term between the 2 terms in equation 7 and also contains the correlation
terms between Θθ0 and f(x, θ0). In general, its analytical expression is challenging to
obtain as it requires the 4th moments of the finite width NNGP kernel fluctuation. Here,
we provide its expression under the same simplifying assumption that the noise in Θθ0
is decorrelated from f(x, θ0). We therefore do not attempt to describe it in general, and
focus in our empirical Section on the terms that are tractable and can be easily isolated for
practical purposes.

Each of Vc,Vi,Vcor decay in O(h−1), which, together with Va, provide a first-order approximation
of the predictive variance of f lin(x). Note that Va and Vc are of particular interest, as removing
either the kernel or the functional noise at initialization will collapse the predictive variance of the
trained ensemble to either one of these 2 terms.

2.2 Predictive distribution of standard deep ensemble of large width

An important question at this point is to which extent our analysis for linearly trained models applies
to a fully and non-linearly trained deep ensemble. Indeed, if the discrepancy between the predictive
variance of a linearly trained ensemble and its non-linear counterpart is of a larger order of magnitude
than the higher-order correction in the variance term, the latter can be ’erased’ by training. Building
on top of previous work, we show that, under the assumption of an empirically supported conjecture
[38], for one hidden layer networks trained on the Mean Squared Error (MSE) loss, this discrepancy
is asymptotically dominated by the refined predictive variance terms of the linearly trained ensemble
we described in Section 2.1.

Proposition 2.3. Let f be a neural network with identical width of all hidden layers, h1 = h2 = ... =
hL−1 = h, and such that the derivative of the non-linearity ϕ′ is bounded and Lipschitz continuous
on R. Let the training data (X ,Y) contained in some compact set, such that the NTK of f on X is
invertible. Let ft (resp. f lin

t) be the model (resp. linearized model) trained on the MSE loss with
gradient flow at timestep t with some learning rate. Assuming

sup
t
∥Θθ0 −Θθt∥F = O(

1

h
) (8)

5

64 128 256 512 1024

h

1

.1

.01

V
[f

(x
)]

V
Va

Vc

Vi
1/h

32 64 128 256

h

1

.1

.01

V
[f

(x
)]

V
Va

Vc

Vi
1/h

64 128 256 512 1024

h

0.5

.05

.005

V
[f

(x
)]

Vres 1/h2

32 64 128 256

h

0.5

.05

.005

V
[f

(x
)]

Vres 1/h2

Figure 2: Empirical predictive variance V,Va,Vi,Vc of an ensemble of 100 models. Upper Left:
Linearized feed forward networks of various depths and widths trained on a subset of MNIST. Upper
Right: Linearized convolutional neural networks of various depth and widths trained on a subset of
CIFAR10. Lower Left (resp. Right): 1/h2 scaling of Vres of an ensemble of MLPs (resp. CNN) of
various depths and widths trained on a subset of MNIST (resp. CIFAR10). Although the theoretical
result on the scaling of 1/h of the variance terms influenced by the kernel noise as well as 1/h2 of
the residual holds only for depth L = 2 (line plots), the same scaling is observed for deeper networks
as suggested by our informal result (L = 3 in dashed lines, L = 5 in dashed-dotted lines). All plots
are plotted in the log-log scale.

Then, ∀x, ∀δ > 0,∃C,H : ∀h > H ,

P
[
sup
t
∥f lin

t (x)− ft(x)∥2 ≤ C

h

]
≥ 1− δ. (9)

In particular, for one hidden layer networks, after training,

|V̂(f(x))− V̂(f lin(x))| = Op(V̂
[
[Qθ0(x,X)− Q̄(x,X)](Y − f(X , θ0))

]
) (10)

where V̂ denotes the empirical variance with some fixed sample size.

The proof can be found in Appendix A.1.1. While only the bound supt∥Θθ0 −Θθt∥F = O(1√
h
) has

been proven in previous works [25], many empirical studies including those in the present work (see
Appendix Fig. 5, Table 3) have shown that the bound decreases faster in practice, on the order of
O(h−1) [25, 38]. Note that this result suggests the approximation provided in Proposition 2.2 is as
good as it gets for describing the predictive variance of non-linearly trained ensembles: the higher
order terms would be of a smaller order of magnitude than the non-linear correction to the training,
rendering any finer approximation pointless.

3 Disentangling deep ensemble variance in practice

The goal of this Section is to validate our theoretical findings in experiments. First, we aim to
show qualitatively and quantitatively that the variance of linearly trained neural networks is well
approximated by the decomposition introduced in Proposition 2.2. To do so, we investigate ensembles
of linearly trained models and analyze their behavior in toy models and on common computer vision
classification datasets. We then extend our analyses to fully-trained non-linear deep neural networks
optimized with (stochastic) gradient descent in parameter space. Here, we confirm empirically the
strong influence of the variance description of linearly trained models in these less restrictive settings
while being trained to very low training loss. Therefore we showcase the improved understanding of
deep ensembles through their linearly trained counterpart and highlight the practical relevance of our
study by observing significant OOD detection performance differences of models when removing
noise sources in various settings.

6

3.1 Disentangling noise sources in kernel models

To isolate the different terms in Proposition 2.2, we construct, from a given initialization θ0 with the
associated linearized model f lin, three additional linearly trained models:

f lin-c(x) = Qθ0(x,X)Y
f lin-a(x) = f(x, θ0) + Q̄(x,X)(Y − f(X , θ0))

f lin-i(x) = g(x, θ0) + Q̄(x,X)(Y − g(X , θ0))

where g(x, θ0) = Θθ0(x,X)Θ̄(X ,X)−1f(X , θ0). Note that the predictive variance over random
initialization of these functions corresponds to respectively Vc,Va,Vi as defined in Section 2.1.

As one can see, we can simply remove the initialization noise from f lin by subtracting the initial
(noisy) function f(x, θ0) before training resulting in a centered model f lin-c. Equivalently, we can
remove noise that originates from the kernel by using the empirical average over kernels resulting in
model f lin-a. Finally, we can isolate f lin-i by the same averaging trick as in f lin-a but use as functional
noise g(x, θ0) which can be precomputed and added to f lin-c before training. Note that we neglect
the terms involving covariance terms and focus on the parts which are easy to isolate, for linearly
trained as well as for standard models. This will later allow us to study practical ways to subtract
important parts of the predictive distribution for neural networks leading for example to significant
OOD detection performance differences. Now we explore the differences and similarities of these
disentangled functions and their respective predictive distributions.

3.1.1 Visualizations on a star-shaped toy dataset

To qualitatively visualize the different terms, we construct a two-way star-shaped regression problem
on a 2d-plane depicted in Figure 1. After training an ensemble we visualize its predictive variance
on the input space. Our first goal is to visualize qualitative differences in the predictive variance of
ensembles consisting of f lin and the 3 disentangled models from above. We train a large ensemble
of size 300 where each model is a one-layer ReLU neural network with hidden dimension 512
and 1 hidden layer. As suggested analytically for one hidden layer ReLU networks (see Appendix
A.4.3), for example V[f lin-c(x)] depends on the angle of the datapoints while V[f lin(x)] depicts a
superposition of the 3 isolated variances. While the ReLU activation does not satisfy the Lipschitz-
continuity assumption of Proposition 2.3, we use it to illustrate and validate our analytical description
of the inductive biases induced by the different variance terms. We use the Softplus activation which
behaved similarly to ReLU in the experiments in the next Section.

3.1.2 Disentangling linearly trained / kernel ensembles for MNIST and CIFAR10

Next, we move to a quantitative analysis of the asymptotic behavior of the various variance terms,
as we increase the hidden layer size. In Figure 2, we analyze the predictive variance of the kernel
models based on MLPs and Convolutional Neural Networks (CNN) for various depths and widths
and on subsets of MNIST [39] and CIFAR10. As before, we construct a binary classification task
through a MSE loss with dataset size of N = 100 and confirm, shown in Figure 2, that Vc, Vi decay
by 1/h over all of our experiments. Crucially, we see that they contribute to the overall variance V
even for relatively large widths. We further observe a decay in 1/h2 of the residual term as predicted
by Proposition 2.2. As in all of our experiments, the variance magnitude and therefore the influence
on f lin of the disentangled parts is highly architecture and dataset-dependent. Note that the small size
of the datasets comes from the necessity to compute the inverse of the kernels for every ensemble
member, see Appendix B for a additional analysis on larger datasets and scaling plots of Vcor.

In Table 1, we quantify the previously observed qualitative difference of the various predictive
variances by evaluating their performance on out-of-distribution detection tasks, where high predictive
variance is used as a proxy for detecting out-of-distribution data. We focus our attention on analysing
V[f lin-c(x)] and V[f lin-a(x)], as they are the variance terms containing purely the functional and kernel
noise, respectively. As an evaluation metric, we follow numerous studies and compute the area under
the receiver operating characteristics curve (AUROC, c.f. Appendix B). We fit a linearized ensemble
on a larger subset of the standard 10-way classification MNIST and CIFAR10 datasets using MSE
loss. When training our ensembles on MNIST, we test and average the OOD detection performance
on FashionMNIST (FM) [40], E-MNIST (EM) [41] and K-MNIST (KM) [42]. When training our
ensembles on CIFAR10, we compute the AUROC for SVHN [43], LSUN [44], TinyImageNet (TIN)

7

Table 1: Test set accuracy and AUROC for deep ensembles of size 10 of MLPs (h = 1024, L = 3)
and CNNs (h = 256, L = 3) trained on a subset (N=1000) and on of full MNIST and CIFAR10.
We indicate small standard deviations σ < 0.005 obtained over ensemble size (E) with ±.00. In all
experiments, the various disentangled models show significant differences in behavior. All linearly
trained models follow the gradient descent models behavior tightly. When optimizing with SGD,
isolating initial noise sources still affect the ensemble behavior significantly and can lead to improved
OOD detection as well as test set accuracy.

Model CNN, CIFAR10, N=1000, E=10 MLP, MNIST, N=1000, E=30

Test (%) SVHN LSUN iSUN Test (%) FM EM KM

f lin 36.43±.90 .532±.006 .809±.004 .783±.004 91.53±.40 .962±.006 .922±.000 .982±.001

f lin-c 37.2±.44 .567±.006 .693±.001 .674±.004 89.67±.15 .935±.005 .881±.003 .967±.002

f lin-a 30.90±.53 .510±.006 .764±.003 .738±.000 91.27±.06 .978±.003 .922±.001 .987±.000

f lin-i 32.85±.21 .591±.003 .683±.001 .660±.000 91.60±.42 .970±.004 .908±.001 .983±.002

f gd 39.70±.52 .516±.002 .789±.003 .763±.004 91.43±.49 .971±.005 .924±.001 .986±.001

f gd-c 37.47±.49 .562±.004 .691±.004 .670±.002 89.67±.06 .937±.005 .884±.003 .968±.002

f gd-a 30.53±1.15 .509±.004 .758±.005 .734±.003 90.73±.32 .978±.003 .922±.001 .987±.000

f gd-i 31.20±.14 .583±.000 .656±.003 .638±.003 90.65±.35 .977±.003 .913±.002 .987±.002

Model CNN, CIFAR10, N=50000, E=5 MLP, MNIST, N=50000, E=5

Test (%) SVHN LSUN iSUN Test (%) FM EM KM

f sgd 62.68±.36 .557±.01 .884±.00 .864±.00 95.70±.12 .974±.005 .930±.001 .991±.001

f sgd-c 57.03±.14 .554±.00 .791±.00 .781±.00 94.43±.01 .924±.016 .873±.006 .962±.004

f sgd-a 58.83±.22 .455±.00 .864±.00 .845±.00 97.48±.13 .988±.002 .943±.001 .995±.001

and CIFAR100 (C100), see Appendix Table 4 for the variance magnitude and AUROC values for all
datasets.

The results show significant differences in variance magnitude and AUROC values. While we do not
claim competitive OOD performance, we aim to highlight the differences in behavior of the isolated
functions developed above: we see for instance that for (MLP, MNIST, N=1000), f lin-a generally
performs better than f lin in OOD detection. Indeed, the overall worse performance of V[f lin-c(x)]
seems to be affecting that of V[f lin(x)] which contains both terms. On the other hand, we see that for
the setup (CNN, CIFAR10, N=1000) V[f lin(x)] is not well described by this interpolation argument,
which highlights the influence of the other variance terms described in Proposition 2.2. Furthermore,
the OOD detection capabilities of each function seem to be highly dependent on the particular data
considered: Ensembles of f lin-c are relatively good at identifying SVHN data as OOD, while being
poor at identifying LSUN and iSUN data. These observations highlight the particular inductive bias
of each variance term for OOD detection on different datasets.

We further report the test set generalization of the ensemble mean of different functions, highlighting
the diversity in the predictive mean of these models as well. Note that for N >= 1000 we trained the
ensembles in linear fashion with gradient flow (which coincides with the kernel expression) up until
the MSE training error was smaller than 0.01.

3.2 Does the refined variance description generalize to standard gradient descent in practice?

In this Section, we start with empirical verification of Proposition 2.3 and show that the bound
in equation 10 holds in practice. Given this verification, we then propose equivalent disentangled
models as those previously defined but in the non-linear setting, and 1) show significant differences
in their predictive distribution but also 2) investigate to which extent improvements in OOD detection
translate from kernel / linearly to fully non-linearly trained models. We stress that we do not consider
early stopped models and aim to connect the kernel with the gradient descent models faithfully.

3.2.1 Survival of the kernel noise after training

To validate Proposition 2.3, we first introduce f gd(x) = f(x,θt), a model trained with standard
gradient descent of t steps i.e. θt = θ0 −

∑t−1
i=0 η∇θf(X , θi)(Y − f(X , θi)). To empirically verify

8

Proposition 2.3, we introduce the following ratio

R(f) = exp
(
Ex∼X ′

(
log[

∥V̂[f lin(x)]− V̂[f gd(x)]∥
∥V̂c(x) + V̂i(x)∥

]
))

(11)

where the empirical variances are computed over random initialization, and the expectation over
some data distribution which we choose to be the union of the test-set and the various OOD datasets.
Given a datapoint x, the term inside the log measures the ratio between the discrepancy of the
variance between the linearized and non-linear ensemble, against the refined variance terms. R(f)
is then the geometric mean of this ratio over the whole dataset. Proposition 2.3 predicts that the
ratio remains bounded as the width increases, suggesting that the refined terms contribute to the
final predictive variance of the non-linear model in a non negligible manner. We empirically verify
this prediction for various depths in Fig. 3 and Appendix Figure 6, for functions trained on subsets
MNIST and CIFAR10. Note that for all our experiments we also empirically verify the assumption
from Proposition 2.3 (see Appendix Figure 5, Table 3).

3.2.2 Disentangling noise sources in gradient descent non-linear models

64 1024 2048 3072

h

.2

.4

R
(f

)

L = 2 L = 3 L = 4

Figure 3: R(f) of MLPs with multiple widths
and depths (L ∈ {2, 3, 4}) trained on a subset
(100) of MNIST . As predicted, we observe R(f)
bounded as we increase the width in support of our
theoretical analysis.

Motivated by the empirical verification of Propo-
sition 2.3, we now aim to isolate different noise
sources in non-linear models trained with gra-
dient descent. Starting from a non-linear net-
work f gd, we follow the same strategy as before
and silence the functional initialization noise by
centering the network (referred as f gd-c(x)) by
simply subtracting the function at initialization.
On the other hand, we remove the kernel noise
with a simple trick: We first sample a random
weight θc0 once, and use it as the weight initial-
ization for all ensemble members. A function
noise is added by first removing the function
initialization from θc0, and adding that of a sec-
ond random network which is not trained. The
resulting functions (referred as f gd-a(x)) will induce and ensemble which will only differ in their
functional initialization while having the same Jacobian

f gd-c(x) = f(x, θt)− f(x, θ0),

f gd-a(x) = f(x, θct)− f(x, θc0) + f(x, θ0).

We furthermore introduce f gd-i(x), the non linear counterpart to f lin-i(x), which we construct similarly
to f gd-a(x) but using g(x, θ0, θ

c
0) = Θθ0(x,X)Θθc(X ,X)−1f(X , θ0) as the function initialization

instead of f(x, θ0) (see Section 2.1 and Appendix A.3.1 for the justification). Unlike f gd-a and
f gd-c, constructing f gd-i requires the inversion of large matrices due to the way g is defined, a
challenging task for realistic settings. While its practical use is thus limited, we introduce it to
illustrate the correspondence of correspondence of the predictive variance of linearized vs non-linear
deep ensemble.

Given these simple modifications of f gd, we rerun the experiments conducted for the linearly trained
models for moderate dataset sizes (N=1000). We observe close similarities in the OOD detection
capabilities as well as predictive variance between the introduced non-linearly trained ensembles
and their linearly trained counterparts. We further train these models on the full MNIST dataset
(N=50000) for which we show the same trend in Appendix Table 5. We also include the ensemble’
performance when trained on the full CIFAR10 dataset. Intriguingly, the relative performance of
the ensemble is somewhat preserved in both settings between N=1000 and N=50000, even when
training with SGD, promoting the use of quick, linear training on subset of data as a proxy for the
OOD performance of a fully trained deep ensemble.

Similar to the case of (MLP, MNIST, N=1000/50000), we observe that f gd ensemble performance
is an interpolation of f gd-c and f gd-a which interestingly performs often favorably, on different
OOD data. To understand if the noise introduced by SGD impacts the predictive distribution of
our disentangled ensembles, we compared the behavior of f gd and f sgd in the lower data regime

9

of N = 1000. Intriguingly, we show in Appendix Table 6 that no significant empirical difference
between GD and SGD models can be observed and hypothesize that noise sources discussed in this
study are more important in our approximately linear training regimes. To speed up experiments we
used (S)GD with momentum (0.9) in all experiments of this subsection.

3.2.3 Removing noise of models possibly far away from the linear regime

Finally, we investigate the OOD performance of the previously introduced model variants f sgd, f sgd-c

and f sgd-d in more realistic settings. To do so we train the commonly used WideResNet 28-10 [45] on
CIFAR10 with BatchNorm [46] Layers and cross-entropy (CE) loss with batchsize of 128, without
data augmentation (see Table 3.2.3). These network and training algorithm choices are considered
crucial to achieving state-of-the-art and superior performance compared to their linearly trained
counterparts. Strikingly, we notice that our model variants, which each isolate a different initial
noise source, significantly affect the OOD capabilities of the final models when the training loss is
virtually 0 - as in all of our experiments. This indicates that the discussed noise sources influence the
ensemble’s predictive variance long throughout training. We provide similar results for CIFAR100
and FashionMNIST in Table B.1 and B.1 of the Appendix B. We stress that we do not claim that our
theoretical assumptions hold in this setup.

Table 2: Test set accuracy and AUROC for WRN 28-10 ensembles of size 8 trained on CIFAR10 on
the cross entropy (CE) or MSE loss. While the models perform similarly on test set, a significant
advantage of f sgd-c in OOD detection is observed across most OOD datasets. Standard deviations σ
computed over 5 seeds are indicated with ±. In bold are values that outperform f sgd with p < 0.2.

Model Loss Test (%) C100 SVHN LSUN TIN iSUN

f sgd CE 89.36±0.36 0.830±0.001 0.900±0.002 0.891±0.002 0.860±0.001 0.883±0.001

f sgd-c CE 89.56±0.30 0.831±0.003 0.899±0.004 0.895±0.003 0.862±0.003 0.885±0.003

f sgd-a CE 89.01±0.32 0.827±0.002 0.894±0.003 0.887±0.003 0.855±0.004 0.879±0.002

f sgd MSE 77.94±0.22 0.739±0.004 0.863±0.006 0.823±0.007 0.795±0.007 0.813±0.008

f sgd-c MSE 77.88±0.30 0.739±0.001 0.880±0.006 0.829±0.005 0.807±0.006 0.813±0.005

f sgd-a MSE 75.34±0.18 0.707±0.004 0.841±0.011 0.784±0.003 0.763±0.010 0.761±0.002

4 Conclusion

The generalization on in-and out-of-distribution data of deep neural network ensembles is poorly
understood. This is particularly worrying since deep ensembles are widely used in practice when
trying to asses if data is out-of-distribution. In this study, we try to provide insights into the sources of
noise stemming from initialization that influence the predictive distribution of trained deep ensembles.
By focusing on large-width models we are able to characterize two distinct sources of noise and
describe an analytical approximation of the predictive variance in some restricted settings. We then
show theoretically and empirically how parts of this refined predictive variance description in the
linear training regime survive and impact the predictive distribution of non-linearly trained deep
ensembles. This allows us to extrapolate insights of the tractable linearly trained deep ensembles into
the non-linear regime which can lead to improved out-of-distribution detection of deep ensembles
by eliminating potentially unfavorable noise sources. Although our theoretical analysis relies on the
closeness to linear gradient descent which has shown to result in less powerful models in practice,
we hope that our surprising empirical success of noise disentanglement sparks further research into
using the lens of linear gradient descent to understand the mysteries of deep learning.

Acknowledgments and Disclosure of Funding

Seijin Kobayashi was supported by the Swiss National Science Foundation (SNF) grant CR-
SII5_173721. Pau Vilimelis Aceituno was supported by the ETH Postdoctoral Fellowship program
(007113). Johannes von Oswald was funded by the Swiss Data Science Center (J.v.O. P18-03).
We thank Christian Henning, Frederik Benzing and Yassir Akram for helpful discussions. Seijin
Kobayashi and Johannes von Oswald are grateful for Angelika Steger’s and João Sacramento’s overall
support and guidance.

10

References
[1] Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and Siegfried Wahl.

Leveraging uncertainty information from deep neural networks for disease detection. bioRxiv,
2017.

[2] Ashwin Carvalho. Predictive control under uncertainty for safe autonomous driving: Integrating
data-driven forecasts with control design. In PhD Thesis, 2016.

[3] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin, Joshua V.
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
Evaluating predictive uncertainty under dataset shift. In Advances in Neural Information
Processing Systems 33, 2019.

[4] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations, 2018.

[5] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.
Do deep generative models know what they don’t know? In International Conference on
Learning Representations, 2019.

[6] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2017.

[7] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. In Advances in Neural Information
Processing Systems 31. 2018.

[8] Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon,
and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In Advances
in Neural Information Processing Systems 32. 2019.

[9] Johannes von Oswald, Seijin Kobayashi, Alexander Meulemans, Christian Henning, Benjamin
F. Grewe, and João Sacramento. Neural networks with late-phase weights. In International
Conference on Learning Representations, 2021.

[10] Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble: an alternative approach to efficient
ensemble and lifelong learning. In International Conference on Learning Representations,
2020.

[11] David J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural
Computation, 4(3):448–472, 1992.

[12] Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In International Conference on Machine Learning, 2011.

[13] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the 31st International
Conference on Machine Learning. PMLR, 2014.

[14] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In Proceedings of the 32nd International Conference on Machine Learning.
PMLR, 2015.

[15] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of The 33rd International Conference on Machine
Learning. PMLR, 2016.

[16] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems 30. 2017.

[17] Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic
perspective of generalization. arXiv, 2020.

11

[18] Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the
neural tangent kernel. In Advances in Neural Information Processing Systems 34. 2020.

[19] Francesco D’Angelo and Vincent Fortuin. Repulsive deep ensembles are bayesian. In Advances
in Neural Information Processing Systems, 2021.

[20] Seijin Kobayashi, Johannes von Oswald, and Benjamin F Grewe. On the reversed bias-variance
tradeoff in deep ensembles. ICML Workshop on Uncertainty and Robustness in Deep Learning,
2021.

[21] Frederik Benzing, Simon Schug, Robert Meier, Johannes von Oswald, Yassir Akram, Nicolas
Zucchet, Laurence Aitchison, and Angelika Steger. Random initialisations performing above
chance and how to find them. arXiv, 2022.

[22] Francesco D’Angelo and Christian Henning. Uncertainty-based out-of-distribution detection
requires suitable function space priors. arXiv, 2021.

[23] Jaehoon Lee, Jascha Sohl-Dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

[24] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems 32.
2018.

[25] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear
models under gradient descent. Journal of Statistical Mechanics: Theory and Experiment, 2020.

[26] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. In Advances in Neural Information Processing Systems 33. 2019.

[27] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems 33. 2019.

[28] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M.
Roy, and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss
landscape geometry and the time evolution of the neural tangent kernel. In Advances in Neural
Information Processing Systems, 2020.

[29] Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. In
Advances in Neural Information Processing Systems, 2020.

[30] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? In Advances in Neural Information Processing Systems,
2020.

[31] Dingli Yu, Ruosong Wang, Zhiyuan Li, Wei Hu, Ruslan Salakhutdinov, Sanjeev Arora, and
Simon S. Du. Enhanced convolutional neural tangent kernels. arXiv, 2020.

[32] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and
lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment,
2020.

[33] Richard Hans Robert Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney J. Douglas,
and H. Sebastian Seung. Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit. Nature, 2000.

[34] Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg,
1996.

[35] Greg Yang. Tensor programs II: Neural tangent kernel for any architecture. arXiv, 2020.

12

[36] Greg Yang and Etai Littwin. Tensor programs IIb: Architectural universality of neural tangent
kernel training dynamics. In Proceedings of the 38th International Conference on Machine
Learning. PMLR, 2021.

[37] J. L. Doob. The Limiting Distributions of Certain Statistics. The Annals of Mathematical
Statistics, 6:160 – 169, 1935.

[38] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’ Ascoli,
Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of generalization
with number of parameters in deep learning. Journal of Statistical Mechanics: Theory and
Experiment, 2020.

[39] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs.
Available: http://yann.lecun.com/exdb/mnist, 2010.

[40] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

[41] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: Extending
MNIST to handwritten letters. arXiv, 2017.

[42] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and
David Ha. Deep learning for classical japanese literature. arXiv, 2018.

[43] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning, 2011.

[44] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construction of a
large-scale image dataset using deep learning with humans in the loop. arXiv, 2015.

[45] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference, 2016.

[46] Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, 2015.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? Yes, our theoretical heavily relies on

assumptions that have to be met in practice. Arguably these assumptions are not met in
standard deep learning setups. [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our study
aims at developing a method and theory of improving out-of-distribution of deep neural
networks. While advances in understanding deep ensembles and better OOD detection
can improve AI systems in general and can have a lasting societal impact, we do not
anticipate any immediate direct, especially negative, societal impact originating from
our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The full set of

assumptions of all theoretical results is provided in the Appendix.
(b) Did you include complete proofs of all theoretical results? [Yes] All proofs for our

theoretical results are included in the Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] We include
code and instructions to reproduce main results as part of our submission and will
include an URL linking to the code upon publication.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Complete list of hyperparameters provided in the SM.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Information about the used
hardware can be found in the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

