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Abstract

Groundbreaking language-vision architectures like CLIP and DALL-E proved the
utility of training on large amounts of noisy image-text data, without relying on
expensive accurate labels used in standard vision unimodal supervised learning.
The resulting models showed capabilities of strong text-guided image generation
and transfer to downstream tasks, while performing remarkably at zero-shot clas-
sification with noteworthy out-of-distribution robustness. Since then, large-scale
language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made
further improvements. Studying the training and capabilities of such models re-
quires datasets containing billions of image-text pairs. Until now, no datasets of
this size have been made openly available for the broader research community.
To address this problem and democratize research on large-scale multi-modal
models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered
image-text pairs, of which 2.32B contain English language. We show successful
replication and fine-tuning of foundational models like CLIP, GLIDE and Stable
Diffusion using the dataset, and discuss further experiments enabled with an openly
available dataset of this scale. Additionally we provide several nearest neighbor
indices, an improved web-interface for dataset exploration and subset generation,
and detection scores for watermark, NSFW, and toxic content detection. 1

1 Introduction

Learning from multimodal data such as text, images, and audio is a longstanding research challenge
in machine learning [31, 51, 56, 83, 86]. Recently, contrastive loss functions combined with large
neural networks have led to breakthroughs in the generalization capabilities of vision and language
models [58, 59, 66]. For instance, OpenAI’s CLIP models [58] achieved large gains in zero-shot
classification on ImageNet [65], improving from the prior top-1 accuracy of 11.5% [41] to 76.2%.
In addition, CLIP achieved unprecedented performance gains on multiple challenging distribution
shifts [3, 23, 61, 70, 78, 82]. Inspired by CLIP’s performance, numerous groups have further improved
image-text models by increasing the amount of computation and the training set size [28, 54, 89, 94].
Another recent success of multimodal learning is in image generation, where DALL-E [59] and later

1Project page: https://laion.ai/laion-5b-a-new-era-of-open-large-scale-multi-modal-datasets/
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models [52, 60, 64, 66, 90] demonstrated the potential of text-guided image generation by producing
high-quality images specific to the provided text.

A critical ingredient in this new generation of image-text models is the pre-training dataset. All of the
aforementioned advances rely on large datasets containing hundreds of millions or even billions of
image-text pairs, e.g., 400 million for CLIP [58] and 6.6 billion for BASIC [54]. However, none of
these datasets are publicly available. While OpenAI still released the CLIP models publicly [58],
later papers made neither the pre-training dataset nor the resulting models available to the wider
research community [2, 28, 52, 54, 66, 89, 90]. As a result, research in this area has pooled into a
small number of industrial research labs, limiting transparency and impeding research progress.

In this work, we address this challenge and make multimodal training more accessible by assembling
a public dataset that is suitable for training large image-text models. Specifically, we introduce
LAION-5B, the largest public image-text dataset containing over 5.8 billion examples (see Table 1
for a comparison). By starting from Common Crawl [1] and filtering this data source with an existing
CLIP model, we derive a dataset consisting of three parts: 2.32 billion English image-text examples,
2.26 billion multilingual examples, and 1.27 billion examples that are not specific to a particular
language (e.g., places, products, etc.). Beyond assembling the dataset, we also explore its ethical
implications and flaws that emerge with large-scale data collection. By releasing LAION-5B publicly,
we offer the first opportunity for the community to audit and refine a dataset of this magnitude.
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Figure 1: Zero-Shot Accuracy. CLIP models
trained on LAION-400M (ours) [69], a previously
released subset of LAION-5B, show competitive
zero-shot accuracy compared to CLIP models
trained on OpenAI’s original training set WIT
when evaluated on ImageNet1k.

Dataset # English Img-Txt Pairs
Public Datasets

MS-COCO 330K
CC3M 3M

Visual Genome 5.4M
WIT 5.5M

CC12M 12M
RedCaps 12M

YFCC100M 100M2

LAION-5B (Ours) 2.3B
Private Datasets

CLIP WIT (OpenAI) 400M
ALIGN 1.8B
BASIC 6.6B

Table 1: Dataset Size. LAION-5B is more than 20
times larger than other public English image-text
datasets. We extend the analysis from Desai et al.
[14] and compare the sizes of public and private
image-text datasets.

To validate that LAION-5B is indeed suitable for training large image-text models, we conduct
multiple experiments. We focus on matching the performance of OpenAI’s CLIP models because
they are the largest publicly released image-text models. OpenAI’s CLIP models were trained on
400 million image-text pairs, and hence we also train CLIP models on a subset of LAION-5B
containing the same number of examples (“LAION-400M”). Across a diverse range of problem
settings including ImageNet (zero-shot), distribution shifts, VTAB, retrieval, and fine-tuning, our
models trained on LAION-400M match or come close to the performance of OpenAI’s CLIP models.
Our ViT-L/14 models trained with OpenCLIP are the first open source reproductions of the largest
CLIP models released by OpenAI.

Despite these validation results, LAION-5B is not a finished data product. Due to the immense size
of current image-text pre-training datasets, curating LAION-5B for widespread use goes beyond the
scope of a single research paper. Hence we do not only release our dataset, but also our software
stack we built for assembling LAION-5B. We view our initial data release and this paper as a first
step on the way towards a widely applicable pre-training dataset for multimodal models. As a result,

2Although YFCC100M contains 100M image-text pairs, it is unclear how well the text matches the image
for an average example from the dataset. Radford et al. [57]’s curation procedure reduced YFCC100M to 15M
samples.
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we strongly recommend that LAION-5B should only be used for academic research purposes
in its current form. We advise against any applications in deployed systems without carefully
investigating behavior and possible biases of models trained on LAION-5B.

The remainder of the paper proceeds as follows. After reviewing related work, we present our data
collection process for LAION-5B in Section 3. Section 4 then describes LAION-5B’s composition
including its various subsets. To validate LAION-5B, we reproduce and evaluate different image-text
models in Section 5. Before concluding, we discuss the technical limitations of LAION-5B in
Section 6 and safety and ethics concerns in Section 7.

2 Related Work

Vision-Language Models. Radford et al. [58] made a large step forward in multimodal learning
for image-text data with their CLIP (Contrastive Language–Image Pre-training) model. The authors
proposed a contrastive learning scheme to embed both images and text into a shared representation
space, which enabled unparalleled performance in zero-shot image classification. Moreover, CLIP
made large progress on multiple challenging distribution shifts [78, 84].

After CLIP’s initial success, ALIGN and BASIC improved contrastive multimodal learning by
increasing the training set size and the batch size used for training [28, 54]. LiT also increased training
scale and experimented with a combination of pre-trained image representations and contrastive
fine-tuning to connect frozen image representations to text [94]. Flamingo introduced the first large
vision-language model with in-context learning [2]. Other papers have combined contrastive losses
with image captioning to further improve performance [43, 89]. Beyond image classification and
retrieval, the community later adapted CLIP to further vision tasks such as object navigation and
visual question answering [17, 32, 50, 72].

Another direction that has recently seen large progress in multimodal learning is text-guided image
generation [47, 62, 95]. Specifically, DALL-E demonstrated diverse image generation capabilities
for text prompts combining multiple concepts [59]. GLIDE, DALL-E 2, Imagen, Parti, and Stable
Diffusion then improved visual fidelity and text-prompt correspondence [52, 60, 64, 66, 90].

Image-Text Datasets. Earlier dataset creation efforts such as MS-COCO and Visual Genome curated
image and region labels through human annotation [36, 44]. While this resulted in high-quality
labels, it also limited the scale of the datasets to only 330K and 5M examples, respectively. The web-
harvested YFCC-100M dataset is substantially larger with about 99 million images and one million
videos from Flickr, but only contains the user-generated metadata without additional annotations
collected specifically for training computer vision models [79]. As a result, the text associated with
an image sometimes has little to no correspondence with the actual image content.

To address this shortcoming of web-harvested image-text data, the Conceptual Captions dataset
(CC3M) started with images and alt-text collected from the web, but then performed additional data
cleaning procedures [71]. To increase the size of the dataset, researchers later relaxed the filtering
protocol to arrive at the subsequent CC12M dataset [11]. Building datasets from alt-text continued
with ALT200M [26] and ALIGN [28], which increased the dataset size up to 1.8 billion image-text
pairs. In contrast to relying on alt-text, RedCaps used the captions provided by Reddit users to collect
higher quality captions [14].

Datasets with non-English image-text pairs are less common. As a result, researchers translated
English captioning datasets to other languages such as Farsi, Korean, and Japanese [67, 73, 74].
To the best of our knowledge, the largest multilingual dataset before LAION-5B has around 36
million samples from Wikipedia Image Text [75]. With the release of LAION-5B, researchers now
have access to roughly two orders of magnitude more multilingual samples, which provides new
opportunities for research on low-resource languages and multilingual models.

Scaling Behavior. Improving model performance by increasing data scale has been a theme in
machine learning since at least the ImageNet dataset [13]. In the following decade, computer
vision benefited from growth in model, data, and compute scale, in addition to advances in both
convolutional and transformer architectures [15, 33, 81, 92]. Industrial research labs assembled
large internal datasets such as Instagram-1B, JFT300M, and JFT3B to support image pre-training
[46, 77, 93]. Natural language processing (NLP) demonstrated the beneficial effect of model, data,
and compute scale on generalization through large language models such as GPT-3 [8] and associated
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Figure 2: Overview of the acquisition pipeline: Files are downloaded, tracked, and undergo
distributed inference to determine inclusion. Those above the specified CLIP threshold are saved.

experiments on scaling behavior [30]. Community efforts like the The Pile [18] and BigScience
ROOTS [40] made large text datasets more accessible.

3 Collection Methodology

We constructed LAION-5B starting from Common Crawl, a public web archive [1]. The Common
Crawl organization crawls the web since 2008 and publishes the results in snapshots approximately
every month. Recent snapshots each contain about 300 TiB of data for around 3 billion web pages. In
the following, we introduce our pipeline to assemble and filter a vision-language dataset from images
in Common Crawl and their associated HTML alt-text.

3.1 Dataset Assembly Pipeline

Our dataset assembly pipeline follows the flowchart of Figure 2. At a high level, the pipeline consists
of three main components: (i) distributed filtering of the Common Crawl web pages, (ii) distributed
downloading of image-text pairs, and (iii) content filtering. The code used for the dataset pipeline
may be found on GitHub3. We now describe each component in more detail.

Web page filtering. To extract image-text pairs from Common Crawl, we parse the HTML IMG
(image) tags from Common Crawl’s WAT metadata files.4 Specifically, we focus on images with an
alt-text so we can create image-text pairs. The alt-text is an HTML attribute of IMG tags containing
alternative text for situations where the corresponding image cannot be rendered. For instance, screen
reader software for a visually impaired person may read the alt-text in place of an image, or a search
engine may use the alt-text to better index a web page without analyzing the actual image content.

After extracting the alt-text, we perform language detection using CLD3 [53] with three possible
outputs: English, another language, or no detected language (i.e., all detections are below a confidence
threshold [69]). Based on a manual inspection of a random sample, the “no language” set contains
language-agnostic short form text such as the names of products and places.

We stored the resulting data in a PostgreSQL server for processing in the next stages of the pipeline.
We maintained about 500M image URLs in the server at all times.

Downloading Image-Text Pairs. In order to maximize resource utilization, we downloaded the raw
images from the parsed URLs with asynchronous requests using the Trio and Asks Python libraries.
To limit costs, we chose a small cloud node with 2 vCPUs, 1GB of RAM, and 10Mbps download
bandwidth as a worker instance. Such a worker can process 10,000 links in about 10 – 15 minutes.
We utilized roughly 300 workers in parallel and batched the workload into chunks of 10,000 links
taken from the aforementioned PostgreSQL server.

Post-Processing. After downloading the WAT files from Common Crawl, we removed data with less
than 5 characters of text, less than 5 KB of image data, and potentially malicious, large, or redundant
images. To conclude the pipeline, we filtered image-text pairs based on their content. Specifically,

3https://github.com/rvencu/crawlingathome-gpu-hcloud
4See https://commoncrawl.org/the-data/get-started/ for details of the metadata format.
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Q: An armchair that

looks like an apple

C: Green Apple Chair C: sun snow dog

Q: A dog rolling in

the snow at sunset

C: Color Palettes

Q: A graphic design

color palette

C: pink, japan, 
aesthetic image

Q: pink photo

of Tokyo

Figure 3: LAION-5B examples. Sample images from a nearest neighbor search in LAION-5B using
CLIP embeddings. The image and caption (C) are the first results for the query (Q).

we computed cosine similarities between the image and text encodings with OpenAI’s ViT-B/32
CLIP model. For languages other than English, we utilized the multi-lingual CLIP ViT-B/32 from
Carlsson et al. [10]. While OpenAI also released larger CLIP models later, these models were not
available when we began to assemble LAION-5B. For consistency, we therefore relied on ViT-B/32
CLIP models for the entire dataset. We removed all English image-text pairs with cosine similarity
below 0.28, and all other pairs with similarity below 0.26. This step removed around 90% of the
original 50 billion images, leaving just short of 6 billion examples.

3.2 Safety During Collection

Current automated filtering techniques are far from perfect: harmful images are likely to pass, and
others are likely to be falsely removed. We make a best effort to identify, document, and tag such
content. In the case of illegal content, we computed CLIP embeddings to filter out such samples.
Furthermore, these images and texts could amplify the social bias of machine learning models,
especially ones trained with no or weak supervision [76]. It is important to note that the above
mentioned classifiers are not perfect, especially keeping the complexity of these tasks and the diverse
opinions of different cultures in mind. Therefore, we advocate using these tags responsibly, not
relying on them to create a truly safe, “production-ready” subset after removing all potentially
problematic samples. For a detailed discussion in this regard, we refer to Sec. 7.

To encourage research in fields such as dataset curation, we refrain from removing potentially
offensive samples and tag them instead. The user can decide whether to include content depending
on their task. To this end, we also encourage model developers to state, e.g., in their model card [49]
which subsets and tagged images are used.

We apply Q16 [68] and our own specialized pornographic and sexualized content classifier (here
referred to as NSFW) to identify and document a broad range of inappropriate concepts displaying
not only persons but also objects, symbols, and text, see cf. [68] and Appendix Sec. C.5 and Sec. C.6
for details. Both classifiers are based on CLIP embeddings. Following our main intention of a
publicly available dataset, these two approaches, as with all other implementations related to LAION
5B, are open-sourced.

We separate pornographic content and otherwise inappropriate content (e.g. harm, exploitation and
degradation). Both can be dis- and enabled in the publicly available dataset exploration UI.5 With both
together, the UI and the openly accessible code, we encourage users to explore and, subsequently,
report further not yet detected content and thus contribute to the improvement of our and other
existing approaches.

4 Dataset Composition

We release LAION-5B as the following three subsets:

• 2.32 billion English image-text pairs. We refer to this subset as LAION-2B-en or LAION-2B
if the language is clear from context.

5https://knn5.laion.ai/
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• 2.26 billion image-text pairs from over 100 other languages. In the multilingual subset,
the top-5 most frequent languages are Russian (10.6%), French (7.4%), German (6.6%),
Spanish (6.6%), and Chinese (6.3%).

• 1.27 billion samples where a language could not be clearly detected. Based on visually
inspecting a random subset of these low-confidence language samples, the corresponding
images often depict products or places. The captions contain language with clear semantics,
but might also include noise such as keywords for search engine optimiziation or product
tags.

We provide metadata files in the Apache Parquet format that consist of the following attributes for
each image-text pair:

• A 64-bit integer identifier
• The URL of the image.
• The text string.
• Height and width of the image.
• Cosine similarity between the text and image embeddings.
• The output from our NSFW and watermark detectors (one score between 0 and 1 each).

3% of images were detected as NSFW, which can be filtered out by a user with the NSFW tag.

5 Experiments Validating LAION-5B

In this section, we showcase prior work using the LAION-400M [69] and other subsets as well as
our CLIP reproduction studies to give quantitative and qualitative evidence of the dataset’s utility for
training SOTA large scale language-vision models.

5.1 Usage Examples

Subdataset Generation. LAION-5B’s scale enables novel dataset curation for computer vision
related tasks. Recently, researchers have utilized both LAION-5B and a subset, LAION-400M, as a
data source in vision related tasks such as facial representation learning [96] and invasive species
mitigation [38]. Within LAION, we have compiled from LAION-5B both LAION-High-Resolution6,
a 170M subset for superresolution models, and LAION-Aesthetic7, a 120M subset of aesthetic images,
as determined by a linear estimator on top of CLIP.

CLIP Reproduction and Improvements. Gao et al. [19], trained an enhanced CLIP architecture
on the LAION-400M subset, outperforming OpenAI’s CLIP on ImageNet zero-shot classification
top-1 accuracy. See Sec. 5.2 for our CLIP reproduction experiments using models of different
scales. Training on a LAION-5B subset, Li et al. [42] developed BLIP to unify understanding and
generation for vision-language tasks via a novel Vision-Language Pretraining (VLP) framework. It
has been shown that BLIP matched or outperformed comparable models as per CIDEr, SPICE, and
BLEU@4 metrics. Eichenberg et al. [16] used a LAION subset for MAGMA, a model generating text
“answers” for image-question pairs; MAGMA achieves state of the art results on OKVQA metrics
and outperforming Frozen [80].

Image Generation. Rombach et al. [63] utilized a subset of LAION-5B in training latent diffusion
models (LDM) that achieved state-of-the-art results on image inpainting and class-conditional image
synthesis. The work was further extended into stable diffusion project that used subsets of LAION-
5B (LAION-2B-en, laion-high-resolution and laion-aesthetics8) for training a publicly available
SOTA text-to-image generative model (see Appendix Sec. F.2). Furthermore, Gu et al. [21] used
LAION-400M to train VQ diffusion text-to-image generation models, which have been shown to be
more efficient, and are able to generate higher quality images. Moreover, Saharia et al. [66] showed
an improved architecture of a diffusion model that was trained on a subset of LAION-400M that
outperforms OpenAI’s recent DALLE-2 and achieves a new state-of-the-art COCO FID of 7.27.

6https://huggingface.co/datasets/laion/laion-high-resolution
7https://github.com/LAION-AI/laion-datasets/blob/main/laion-aesthetic.md
8See https://github.com/CompVis/stable-diffusion for more details
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5.2 Experiments on CLIP Reproduction

In an effort to reproduce the results of CLIP [58], and to validate the data collection pipeline we
describe in Sec. 3, we trained several models on LAION-400M [69] and a model on LAION-2B-en,
datasets which are both subsets of LAION-5B. As training such models require large compute due
to dataset and model sizes that are considered in the experiments, the usage of supercomputers and
large compute clusters is necessary in order to train the models efficiently.

We used OpenCLIP [27], an open source software for training CLIP-like models. After adapting
OpenCLIP for distributed training and execution on JUWELS Booster supercomputer [29], we
reproduced CLIP models of different size on the LAION-400M subset. We trained ViT-B/32, ViT-
B/16, and ViT-L/14 following CLIP [58], and an additional model that we call ViT-B/16+, a slightly
larger version of ViT-B/16. We followed the same hyper-parameter choices of the original CLIP
models. We used between 128 and 400 NVIDIA A100 GPUs to train the models. All trained models
may be found in the OpenCLIP repository9. For more information about hyper-parameters and
training details, see Appendix Sec. E.1.

5.2.1 Zero-Shot Classification and Robustness Performance

Following CLIP [58] and subsequent works, we evaluate the models on zero-shot classification. For
each downstream dataset, we use a set of pre-defined prompts for each class, which we collected from
prior works [58, 94]. We compute the embeddings of each class by averaging over the embedding of
the prompts, computed each using the text encoder. For each image, and for each class, we compute
the cosine similarity between their embeddings, and classify each image as the class that have the
largest cosine similarity with the image embedding. We evaluate the models using top-1 accuracy.

In Tab. 2, we show a comparison between models trained on LAION (400M, 2B) and original CLIP
from [58]. We follow [94] and evaluate robustness performance on ImageNet distribution shift
datasets [3, 23, 25, 61, 82]. Additionally, we construct a benchmark we call VTAB+, a superset of
VTAB [91], on which we compute the average top-1 accuracy over 35 tasks10. We can see that on
ImageNet-1k (noted "INet" on the table), performance of LAION-400M models and original CLIP
models (trained on a 400M private dataset) is matched well. On the four ImageNet distribution shift
datasets, we observe some larger differences, notably on ObjNet (CLIP WIT is better) and INet-S
(LAION is better), which allows us to conclude that in overall, CLIP models trained on LAION match
in their robustness original CLIP. With ViT-B/32 and ViT-L/14, training on the larger LAION-2B-en
improves over LAION-400M model everywhere . Overall, on VTAB+, performance of LAION and
CLIP WIT models are similar, except on ViT-L/14, where we observe an advantage of CLIP WIT.

To obtain an idea about how the zero-shot performance improves with scale, we show the relationship
between the total compute and accuracy on VTAB+ on models trained on LAION (400M, 2B-en).
In Figure 4, we see that accuracy on VTAB+ improves with compute (log-log plot). It would be
interesting to study in future work if the relationship between compute and accuracy keeps showing
the same trend or whether we start to see saturation, like it was observed in [93]. Here, we can report
that increasing either model or data scale for CLIP pre-training results in improvement of zero-shot
classification performance on various downstream transfer targets. For a full overview of zero-shot
classification and retrieval results, view Sec. E.3 of the Appendix.

To show that larger dataset scale matters for the performance of pre-trained models, we perform
additional experiments using ViT-B/32 and ViT-L/14 on different LAION-5B and LAION-400M
subsets, while varying the amount of training compute (samples seen). Our findings confirm that the
effect of dataset scale is significant, given sufficient compute for training. For instance, for the same
amount of compute (34B images seen), training ViT-L/14 on LAION-2B-en (75.4%) outperforms
LAION-400M (73.9%) on ImageNet-1k zero-shot classification. Same effect is observed for smaller
ViT-B/32 model. For more detailed results, see Fig. 12 and Tab. 6 in the Appendix.

9https://github.com/mlfoundations/open_clip
10[91] showed that different aggregation strategies have high rank correlation (Kendall score) with the simple

top-1 average accuracy over datasets, thus we follow the same strategy. We also compute the ranks of each
model on each task and average the ranks, and find that the ranking is similar to averaging top-1 accuracy.
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Figure 4: The relationship between total compute (giga multiply–accumulates (GMACS)) and zero-
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B/32 CLIP WIT 63.3 56.0 69.4 42.3 44.2 45.4
LAION-400M 62.9-0.4 55.1-0.9 73.4+4.0 49.4+7.1 43.9-0.3 45.6+0.2

LAION-2B-en 65.7+2.4 57.4+1.4 75.9+6.5 52.9+10.6 48.7+4.5 47.9+2.5

B/16 CLIP WIT 68.3 61.9 77.7 48.2 55.3 47.5
LAION-400M 67.0-1.3 59.6-2.3 77.9+0.2 52.4+4.2 51.5-3.8 48.3+0.8

B/16+ LAION-400M 69.2 61.5 80.5 54.4 53.9 49.2

L/14 CLIP WIT 75.6 69.8 87.9 59.6 69.0 55.7
LAION-400M 72.8-2.8 65.4-4.4 84.7-3.2 59.6 59.9-9.1 51.8-3.9

LAION-2B-en 75.2-0.3 67.7-2.0 87.4-0.5 63.3+3.7 65.5-3.6 54.6-1.2

Table 2: Comparison between CLIP models trained on LAION (400M, 2B) and the original CLIP
models [58] trained on OpenAI’s WebImageText (WIT) dataset. We show zero-shot top-1 classifica-
tion accuracy (%) on various datasets including ImageNet, four ImageNet distribution shift datasets,
and a benchmark we call VTAB+, where we average performance over 35 tasks. See Appendix E.3
for more details about the datasets used for evaluation and the results.

5.3 Experiments with Generative Models

To validate LAION-5B as a dataset for training strong text-to-image generation models, we fine-tuned
OpenAI’s GLIDE [52] on LAION-5B data. The obtained results comparing generated samples from
original OpenAI GLIDE and from our reproduction (LAIONIDE) are compiled into an interactive
web demo11. See Appendix Sec F for more technical details on experiments with GLIDE (F.1) and
Stable Diffusion (F.2).

11https://wandb.ai/afiaka87/glide_compare/reports/laionide-v3-benchmark–VmlldzoxNTg3MTkz
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6 Technical Limitations

The large scale of current image-text datasets makes it infeasible to thoroughly investigate all aspects
of a dataset in a single publication. Hence we now outline some potential technical limitations
specifically affecting LAION-5B. These potential limitations are starting points for future work on
analyzing and improving image-text datasets.

Data Overlap. Our experiments in Section 5.2 show that models trained on LAION-5B achieve good
performance on a variety of downstream tasks. However, the LAION-5B training set may overlap
with some of the downstream test sets if these test sets are also included in Common Crawl. If overlap
is present, it may lead to incorrectly large test set accuracies that overstate the true generalization
capabilities of models trained on LAION-5B.

Overall, we do not consider potential test set overlap to be a serious threat for the validity of results
obtained with LAION-5B. OpenAI encountered the same question in the context of their pre-training
dataset for CLIP and found only few examples of substantial performance difference due to data
overlap on downstream target datasets [58]. Some datasets such as ObjectNet [3] are likely not
contained in Common Crawl because ObjectNet was not assembled from web images. Instead, the
authors of ObjectNet tasked MTurk workers to take new pictures in their own homes. Nevertheless,
measuring the degree of overlap between LAION-5B and popular computer vision benchmarks is an
important question for future work, which will include further de-duplication efforts.

Other text sources. Birhane et al. [6] described the shortcomings of alt-text and noted that alt-text
is not necessarily a good description of the corresponding image. For instance, the alt-text may be
search engine optimization (SEO) spam, an incoherent list of keywords, or overly corrupted otherwise.
In such cases, the language in the text annotations may become less informative or entirely useless
for training. For ImageNet zero-shot classification, BASIC [54] has demonstrated strong results
when turning 5 billion of the 6.6 billion captions into the form of CLASS_1 and CLASS_2 and ...
and CLASS_K, by using an internal multi-label classification dataset (JFT-3B). Thus, image captions
formed by just concatenating class names may also serve as meaningful alternative of otherwise
corrupted text. Such a finding adds a possibility of employing generated together with existing natural
language captions for training contrastive image-language models with strong zero-shot performance.

Filtering with CLIP. CLIP allows the curation and collection of this dataset to be low-cost and
scalable. Such an automated process reduces dramatically necessity for the human control which
would be otherwise intractable for such large scale collection. However, through curating with CLIP,
we also incur its flaws and model biases. For additional discussion of CLIP filtering related to safety
and ethics, see Appendix Sec. G.2.

Filtering by a small scale CLIP ViT-B/32 may leave more image-text pairs with weak or no semantic
connection in the dataset while also accidentally removing some high quality image-text pairs than
filtering with stronger, larger scale models that were not available in the time of our experiments.
The larger CLIP ViT-L/14 model may create a less noisy version of LAION datasets than what was
possible with smaller scale CLIP ViT-B/32. We hypothesize that filtering Common Crawl with a
CLIP ViT-L model will further increase the quality of our dataset. It is subject to our future work
to create a CLIP ViT L/14 filtered version of LAION-400M and LAION-5B to test how this affects
model training and downstream transfer performance.

7 Safety and Ethical Discussion

Recent developments in large-scale models, such as GPT-3 [9], CLIP [57], ALIGN [28], GLIDE
[52], and DALLE-2 [60] have potential for far-reaching impact on society, both positive and negative,
when deployed in applications such as image classification and generation, recommendation systems,
or search engines. Besides model parameter scaling, the advances made so far also rely on the
underlying large-scale datasets. Recent research [4, 5] described many potential negative societal
implications that may arise due to careless use of vision-language models, e.g., the models perform
worse for certain groups of users or reproduce discriminatory behavior.

Unfortunately, only a minority of these models are publicly released, most of them are only accessible
by an “input to output” interface. Importantly, the underlying large-scale datasets are also not
often publicly available. While open-source efforts exist to re-implement model architectures and
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training, the closed nature of large-scale datasets used for model training makes any proper systematic
investigation of model training and model behavior very hard or even impossible. Studying full
training, comparison of different model architectures and progress in large-scale multi-modal learning
becomes restricted to those institutions that were able to obtain their closed large-scale datasets. It
also results in safety issues of creating and using such models, as broad research community does not
get to test both model and the dataset used for its training for causes underlying undesired behaviours.

LAION-5B as an open large-scale dataset provides here not only a chance to make progress in careful
studies of the trained models’ capabilities and replication but also to investigate how uncurated
large-scale datasets impact various model biases and under which circumstances their usage may
result in undesired safety issues. Such research can help to design automated ways to curate and
create datasets from uncurated ones that alleviate the bias and safety issues. To this end, LAION
also created a number of tools to aid researchers and other users in large-scale data handling and
exploration. One such a tool uses pre-computed image embeddings to enable search of images guided
either by text or image input via an easily and publically accessible web interface (CLIP retrieval
tool12, see Appendix Sec. C.4). LAION made also source code for the tool and routines necessary to
build an own version of it publicly available13 (see Appendix Sec C, C.2, C.3 for more details).

After the release of LAION-400M, several groups (e.g., [6]) already used such tools and investigated
potential problems arising from an unfiltered dataset. Motivated by these findings, with LAION-5B,
we introduced an improved inappropriate content tagging (cf. Sec. 3.2) as well as a watermark filter,
which can improve the safety and quality of the text-to-image models trained on the dataset.

Such development indicates that this dataset acts as a starting point, and is not the final endpoint, for
creating further improved datasets to train models for various tasks. In our opinion, this process is
not supposed to be a non-transparent closed-door avenue. It should be approached by broad research
community, resulting in open and transparent datasets and procedures for model training. Towards
meeting this challenge, the large-scale public image-text dataset of over 5.8 billion pairs and further
annotations introduced here provides diversity that can be a starting point for ensuring balance and
for selecting safe, curated subsets for corresponding target applications. We encourage everybody to
participate in this exciting and important future journey.

In the current form, we consider this dataset a research artefact and strongly advocate academic use-
only and advise careful investigation of downstream model biases (Appendix Sec. G.2). Additionally,
we encourage users to use the described tools and to transparently explore and, subsequently, report
further not yet detected content and model behaviour to our dataset repository14, and help to further
advance existing approaches for data curation using the real-world large dataset introduced here.

Privacy. We comment on privacy issues arising from Common Crawl as source of links in LAION-5B
and measures undertaken to handle those in the Appendix Sec. G.1

8 Conclusion

By releasing LAION-5B, a larger updated version of an openly available dataset that contains over 5
billion image-text pairs, we have further pushed the scale of open datasets for training and studying
state-of-the-art language-vision models. This scale gives strong increases to zero-shot transfer and
robustness.

To validate the utility of LAION-5B, we demonstrated that a subset of our dataset can be used to train
SOTA CLIP models of various scale that match the strong zero-shot and robustness performance of
the original models trained on closed curated data, or to fine-tune generative models like GLIDE,
producing samples of good quality. The dataset thus provides opportunities in multi-language large-
scale training and research of language-vision models, that were previously restricted to those having
access to proprietary large datasets, to the broader research community. Finally, thanks to its large
scale, even a rather strict subset filtering (driven by various criterion like NSFW, watermark presence,
resolution) provides high-quality datasets that are still large enough to provide sufficient scale for the
training or fine-tuning of strong specialized language-vision models.

12https://knn5.laion.ai
13https://github.com/rom1504/clip-retrieval
14https://github.com/laion-ai/laion5b-bias
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