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Abstract

Modern neural networks often have great expressive power and can be trained
to overfit the training data, while still achieving a good test performance. This
phenomenon is referred to as “benign overfitting”. Recently, there emerges a line
of works studying “benign overfitting” from the theoretical perspective. However,
they are limited to linear models or kernel/random feature models, and there is still
a lack of theoretical understanding about when and how benign overfitting occurs
in neural networks. In this paper, we study the benign overfitting phenomenon
in training a two-layer convolutional neural network (CNN). We show that when
the signal-to-noise ratio satisfies a certain condition, a two-layer CNN trained by
gradient descent can achieve arbitrarily small training and test loss. On the other
hand, when this condition does not hold, overfitting becomes harmful and the ob-
tained CNN can only achieve constant level test loss. These together demonstrate
a sharp phase transition between benign overfitting and harmful overfitting, driven
by the signal-to-noise ratio. To the best of our knowledge, this is the first work that
precisely characterizes the conditions under which benign overfitting can occur in
training convolutional neural networks.

1 Introduction

Modern deep learning models often consist of a huge number of model parameters, which is more
than the number of training data points and therefore over-parameterized. These over-parameterized
models can be trained to overfit the training data (achieving a close to 100% training accuracy),
while still making accurate prediction on the unseen test data. This phenomenon has been observed
in a number of prior works (Zhang et al., 2017; Neyshabur et al., 2019), and is often referred to as
benign overfitting (Bartlett et al., 2020). It revolutionizes the classical understanding about the bias-
variance trade-off in statistical learning theory, and has drawn great attention from the community
(Belkin et al., 2018, 2019a,b; Hastie et al., 2019).

There exist a number of works towards understanding the benign overfitting phenomenon. While
they offered important insights into the benign overfitting phenomenon, most of them are limited
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to the settings of linear models (Belkin et al., 2019b; Bartlett et al., 2020; Hastie et al., 2019; Wu
and Xu, 2020; Chatterji and Long, 2020; Zou et al., 2021b; Cao et al., 2021) and kernel/random
features models (Belkin et al., 2018; Liang and Rakhlin, 2020; Montanari and Zhong, 2020), and
cannot be applied to neural network models that are of greater interest. The only notable exceptions
are (Adlam and Pennington, 2020; Li et al., 2021), which attempted to understand benign overfitting
in neural network models. However, they are still limited to the “neural tagent kernel regime” (Jacot
et al., 2018) where the neural network learning problem is essentially equivalent to kernel regression.
Thus, it remains a largely open problem to show how and when benign overfitting can occur in neural
networks.

Clearly, understanding benign overfitting in neural networks is much more challenging than that
in linear models, kernel methods or random feature models. The foremost challenge stems from
nonconvexity: previous works on linear models and kernel methods/random features are all in the
convex setting, while neural network training is a highly nonconvex optimization problem. There-
fore, while most of the previous works can study the minimum norm interpolators/maximum margin
classifiers according to the implicit bias (Soudry et al., 2018) results for the corresponding models,
existing implicit bias results for neural networks (e.g., Lyu and Li (2019)) are not sufficient and a
new analysis of the neural network learning process is in demand.

In this work, we provide one such algorithmic analysis for learning two-layer convolutional neural
networks (CNNs) with the second layer parameters being fixed as +1’s and −1’s and polynomial
ReLU activation function: σ(z) = max{0, z}q , where q > 2 is a hyperparameter. We consider a
setting where the input data consist of label dependent signals and label independent noises, and uti-
lize a signal-noise decomposition of the CNN filters to precisely characterize the signal learning and
noise memorization processes during neural network training. Our result not only demonstrates that
benign overfitting can occur in learning two-layer neural networks, but also gives precise conditions
under which the overfitted CNN trained by gradient descent can achieve small population loss. Our
paper makes the following major contributions:

• We establish population loss bounds of overfitted CNN models trained by gradient descent, and
theoretically demonstrate that benign overfitting can occur in learning over-parameterized neural
networks. We show that under certain conditions on the signal-to-noise ratio, CNN models trained
by gradient descent will prioritize learning the signal over memorizing the noise, and thus achiev-
ing both small training and test losses. To the best of our knowledge, this is the first result on the
benign overfitting of neural networks that is beyond the neural tangent kernel regime.

• We also establish a negative result showing that when the conditions on the signal-to-noise ratio
do not hold, then the overfitted CNN model will achieve at least a constant population loss. This
result, together with our upper bound result, reveals an interesting phase transition between benign
overfitting and harmful overfitting.

• Our analysis is based on a new proof technique namely signal-noise decomposition, which decom-
poses the convolutional filters into a linear combination of initial filters, the signal vectors and the
noise vectors. We convert the neural network learning into a discrete dynamical system of the
coefficients from the decomposition, and perform a two-stage analysis that decouples the com-
plicated relation among the coefficients. This enables us to analyze the non-convex optimization
problem, and bound the population loss of the CNN trained by gradient descent. We believe our
proof technique is of independent interest and can potentially be applied to deep neural networks.

We note that a concurrent work (Frei et al., 2022) studies learning log-Concave mixture data with
label flip noise using fully-connected two-layer neural networks with smoothed leaky ReLU activa-
tion. Notably, their risk bound matches the risk bound for linear models given in Cao et al. (2021)
when the label flip noise is zero. However, their analysis only focuses on upper bounding the risk,
and cannot demonstrate the phase transition between benign and harmful overfitting. Compared
with (Frei et al., 2022), we focus on CNNs, and consider a different data model to better capture
the nature of image classification problems. Moreover, we present both positive and negative results
under different SNR regimes, and demonstrate a sharp phase transition between benign and harmful
overfitting.

Notation. Given two sequences {xn} and {yn}, we denote xn = O(yn) if there exist some ab-
solute constant C1 > 0 and N > 0 such that |xn| ≤ C1|yn| for all n ≥ N . Similarly, we denote
xn = Ω(yn) if there exist C2 > 0 and N > 0 such that |xn| ≥ C2|yn| for all n > N . We say
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xn = Θ(yn) if xn = O(yn) and xn = Ω(yn) both holds. We use Õ(·), Ω̃(·), and Θ̃(·) to hide loga-
rithmic factors in these notations respectively. Moreover, we denote xn = poly(yn) if xn = O(yDn )
for some positive constant D, and xn = polylog(yn) if xn = poly(log(yn)). Finally, for two
scalars a and b, we denote a ∨ b = max{a, b}.

2 Related Work

A line of recent works have attempted to understand why overfitted predictors can still achieve a
good test performance. Belkin et al. (2019a) first empirically demonstrated that in many machine
learning models such as random Fourier features, decision trees and ensemble methods , the popula-
tion risk curve has a double descent shape with respect to the number of model parameters. Belkin
et al. (2019b) further studied two specific data models, namely the Gaussian model and Fourier series
model, and theoretically demonstrated the double descent risk curve in linear regression. Bartlett
et al. (2020) studied over-parameterized linear regression to fit data produced by a linear model
with additive noises, and established matching upper and lower bounds of the risk achieved by the
minimum norm interpolator on the training dataset. It is shown that under certain conditions on the
spectrum of the data covariance matrix, the population risk of the interpolator can be asymptotically
optimal. Hastie et al. (2019); Wu and Xu (2020) studied linear regression in the setting where both
the dimension and sample size grow together with a fixed ratio, and showed double descent of the
risk with respect to this ratio. Chatterji and Long (2020) studied the population risk bounds of over-
parameterized linear logistic regression on sub-Gaussian mixture models with label flipping noises,
and showed how gradient descent can train over-parameterized linear models to achieve nearly opti-
mal population risk. Cao et al. (2021) tightened the upper bound given by Chatterji and Long (2020)
in the case without the label flipping noises, and established a matching lower bound of the risk
achieved by over-parameterized maximum margin interpolators. Shamir (2022) proposed a generic
data model for benign overfitting of linear predictors, and studied different problem settings under
which benign overfitting can or cannot occur.

Besides the studies on linear models, several recent works also studied the benign overfitting and
double descent phenomena in kernel methods or random feature models. Zhang et al. (2017) first
pointed out that overfitting kernel predictors can sometimes still achieve good population risk. Liang
and Rakhlin (2020) studied how interpolating kernel regression with radial basis function (RBF) ker-
nels (and variants) can generalize and how the spectrum of the data covariance matrix affects the
population risk of the interpolating kernel predictor. Li et al. (2021) studied the benign overfitting
phenomenon of random feature models defined as two-layer neural networks whose first layer param-
eters are fixed at random initialization. Mei and Montanari (2019); Liao et al. (2020) demonstrated
the double descent phenomenon for the population risk of interpolating random feature predictors
with respect to the ratio between the dimensions of the random feature and the data input. Adlam and
Pennington (2020) shows that neural tangent kernel (Jacot et al., 2018) based kernel regression has
a triple descent risk curve with respect to the total number of trainable parameters. Montanari and
Zhong (2020) further pointed out an interesting phase transition of the generalization error achieved
by neural networks trained in the neural tangent kernel regime.

3 Problem Setup

In this section, we introduce the data generation model and the convolutional neural network we
consider in this paper. We focus on binary classification, and present our data distribution D in the
following definition.

Definition 3.1. Let µ ∈ Rd be a fixed vector representing the signal contained in each data point.
Then each data point (x, y) with x = [x(1)⊤,x(2)⊤]⊤ ∈ R2d and y ∈ {−1, 1} is generated from the
following distribution D:

1. The label y is generated as a Rademacher random variable.
2. A noise vector ξ is generated from the Gaussian distribution N(0, σ2

p · (I− µµ⊤ · ∥µ∥−2
2 )).

3. One of x(1),x(2) is randomly selected and then assigned as y · µ, which represents the signal;
the other is then given by ξ, which represents noises.
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Our data generation model is inspired by image data, where the inputs consist of different patches,
and only some of the patches are related to the class label of the image. In detail, the patch assigned
as y ·µ is the signal patch that is correlated to the label of the data, and the patch assigned as ξ is the
noise patch that is independent of the label of the data and therefore is irrelevant for prediction. We
assume that the noise patch is generated from the Gaussian distribution N(0, σ2

p ·(I−µµ⊤ ·∥µ∥−2
2 ))

to ensure that the noise vector is orthogonal to the signal vector µ for simplicity. Note that when
the dimension d is large, ∥ξ∥2 ≈ σp

√
d by standard concentration bounds. Therefore, we can treat

∥µ∥2/(σp

√
d) ≈ ∥µ∥2/∥ξ∥2 as the signal-to-noise ratio (SNR). For the ease of discussion, we

denote SNR = ∥µ∥2/(σp

√
d). Note that the Bayes risk for learning our model is zero. We can also

add label flip noise similar to Chatterji and Long (2020); Frei et al. (2022) to make the Bayes risk
equal to the label flip noise and therefore nonzero, but this will not change the key message of our
paper.

Intuitively, if a classifier learns the signal µ and utilizes the signal patch of the data to make predic-
tion, it can perfectly fit a given training data set {(xi, yi) : i ∈ [n]} and at the same time have a good
performance on the test data. However, when the dimension d is large (d > n), a classifier that is a
function of the noises ξi, i ∈ [n] can also perfectly fit the training data set, while the prediction will
be totally random on the new test data. Therefore, the data generation model given in Definition 3.1
is a useful model to study the population loss of overfitted classifiers. Similar models have been
studied in some recent works by Li et al. (2019); Allen-Zhu and Li (2020a,b); Zou et al. (2021a).

Two-layer CNNs. We consider a two-layer convolutional neural network whose filters are applied
to the two patches x(1) and x(2) separately, and the second layer parameters of the network are fixed
as +1/m and −1/m respectively. Then the network can be written as f(W,x) = F+1(W+1,x)−
F−1(W−1,x), where F+1(W+1,x), F−1(W−1,x) are defined as:

Fj(Wj ,x) =
1

m

m∑
r=1

[
σ(⟨wj,r,x

(1)⟩) + σ(⟨wj,r,x
(2)⟩)

]
=

1

m

m∑
r=1

[
σ(⟨wj,r, y · µ⟩) + σ(⟨wj,rξ⟩)

]
for j ∈ {+1,−1}. Here, m is the number of convolutional filters in F+1 and F−1, σ(z) =
(max{0, z})q is the ReLUq activation function where q > 2, wj,r ∈ Rd denotes the weight for
the r-th filter (i.e., neuron), and Wj is the collection of model weights associated with Fj . We also
use W to denote the collection of all model weights. We note that our CNN model can also be
viewed as a CNN with average global pooling (Lin et al., 2013). We train the above CNN model by
minimizing the empirical cross-entropy loss function

LS(W ) =
1

n

n∑
i=1

ℓ[yi · f(W,xi)],

where ℓ(z) = log(1 + exp(−z)), and S = {(xi, yi)}ni=1 is the training data set. We further define
the true loss (test loss) LD(W) := E(x,y)∼Dℓ[y · f(W,x)].

We consider gradient descent starting from Gaussian initialization, where each entry of W+1 and
W−1 is sampled from a Gaussian distribution N(0, σ2

0), and σ2
0 is the variance. The gradient descent

update of the filters in the CNN can be written as

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,rLS(W

(t))

= w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, ξi⟩) · jyiξi −
η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yiµ⟩) · jµ (3.1)

for j ∈ {±1} and r ∈ [m], where we introduce a shorthand notation ℓ
′(t)
i = ℓ′[yi · f(W(t),xi)].

4 Main Results

In this section, we present our main theoretical results. At the core of our analyses and results is a
signal-noise decomposition of the filters in the CNN trained by gradient descent. By the gradient
descent update rule (3.1), it is clear that the gradient descent iterate w

(t)
j,r is a linear combination

of its random initialization w
(0)
j,r , the signal vector µ and the noise vectors in the training data ξi,

i ∈ [n]. Motivated by this observation, we introduce the following definition.

4



Definition 4.1. Let w(t)
j,r for j ∈ {±1}, r ∈ [m] be the convolution filters of the CNN at the t-th

iteration of gradient descent. Then there exist unique coefficients γ(t)
j,r ≥ 0 and ρ

(t)
j,r,i such that

w
(t)
j,r = w

(0)
j,r + j · γ(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi.

We further denote ρ
(t)
j,r,i := ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≤ 0). Then we have that

w
(t)
j,r = w

(0)
j,r + j · γ(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi +

n∑
i=1

ρ(t)
j,r,i

· ∥ξi∥−2
2 · ξi. (4.1)

We refer to (4.1) as the signal-noise decomposition of w
(t)
j,r. We add normalization factors

∥µ∥−2
2 , ∥ξi∥−2

2 in the definition so that γ(t)
j,r ≈ ⟨w(t)

j,r,µ⟩, ρ
(t)
j,r,i ≈ ⟨w(t)

j,r, ξi⟩. In this decomposition,

γ
(t)
j,r characterizes the progress of learning the signal vector µ, and ρ

(t)
j,r,i characterizes the degree of

noise memorization by the filter. Evidently, based on this decomposition, for some iteration t, (i)
If some of γ(t)

j,r’s are large enough while |ρ(t)j,r,i| are relatively small, then the CNN will have small

training and test losses; (ii) If some ρ
(t)
j,r,i’s are large and all γ(t)

j,r’s are small, then the CNN will
achieve a small training loss, but a large test loss. Thus, Definition 4.1 provides a handle for us to
study the convergence of the training loss as well as the the population loss of the CNN trained by
gradient descent.

Our results are based on the following conditions on the dimension d, sample size n, neural network
width m, learning rate η, initialization scale σ0.

Condition 4.2. Suppose that

1. Dimension d is sufficiently large: d = Ω̃(m2∨[4/(q−2)]n4∨[(2q−2)/(q−2)]).
2. Training sample size n and neural network width m satisfy n,m = Ω(polylog(d)).

3. The learning rate η satisfies η ≤ Õ(min{∥µ∥−2
2 , σ−2

p d−1}).
4. The standard deviation of Gaussian initialization σ0 is appropriately chosen such

that Õ(nd−1/2) · min{(σp

√
d)−1, ∥µ∥−1

2 } ≤ σ0 ≤ Õ(m−2/(q−2)n−[1/(q−2)]∨1) ·
min{(σp

√
d)−1, ∥µ∥−1

2 }.

A few remarks on Condition 4.2 are in order. The condition on d is to ensure that the learning
is in a sufficiently over-parameterized setting, and similar conditions have been made in the study
of learning over-parameterized linear models (Chatterji and Long, 2020; Cao et al., 2021). For
example, if we choose q = 3, then the condition on d becomes d = Ω̃(m4n4). Furthermore, we
require the sample size and neural network width to be at least polylogarithmic in the dimension
d to ensure some statistical properties of the training data and weight initialization to hold with
probability at least 1 − d−1, which is a mild condition. Finally, the conditions on σ0 and η are to
ensure that gradient descent can effectively minimize the training loss, and they depend on the scale
of the training data points. When σp = O(d−1/2) and ∥µ∥2 = O(1), the step size η can be chosen
as large as Õ(1) and the initialization σ0 can be as large as Õ(m−2/(q−2)n−[1/(q−2)]∨1). In our
paper, we only require m,n = Ω(polylog(d)), so our initialization and step-size can be chosen as
an almost constant order. Based on these conditions, we give our main result on signal learning in
the following theorem.

Theorem 4.3. For any ϵ > 0, let T = Θ̃(η−1mσ
−(q−2)
0 ∥µ∥−q

2 + η−1ϵ−1m3∥µ∥−2
2 ). Under

Condition 4.2, if n · SNRq = Ω̃(1)*, then with probability at least 1− d−1, there exists 0 ≤ t ≤ T
such that:

1. The CNN learns the signal: maxr γ
(t)
j,r = Ω(1) for j ∈ {±1}.

2. The CNN does not memorize the noises in the training data: maxj,r,i |ρ(T )
j,r,i| = Õ(σ0σp

√
d).

*Here the Ω̃(·) hides an polylog(ϵ−1) factor. This applies to Theorem 4.4 as well.
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3. The training loss converges to ϵ, i.e., LS(W
(t)) ≤ ϵ.

4. The trained CNN achieves a small test loss: LD(W
(t)) ≤ 6ϵ+ exp(−n2).

Theorem 4.3 characterizes the case of signal learning. It shows that, if n·SNRq = Ω̃(1), then at least
one CNN filter can learn the signal by achieving γ

(t)
j,r∗j

≥ Ω(1), and as a result, the learned neural
network can achieve small training and test losses. To demonstrate the sharpness of this condition,
we also present the following theorem for the noise memorization by the CNN.

Theorem 4.4. For any ϵ > 0, let T = Θ̃(η−1m · n(σp

√
d)−q · σ−(q−2)

0 + η−1ϵ−1nm3d−1σ−2
p ).

Under Condition 4.2, if n−1 · SNR−q = Ω̃(1), then with probability at least 1 − d−1, there exists
0 ≤ t ≤ T such that:

1. The CNN memorizes noises in the training data: maxr ρ
(t)
yi,r,i

= Ω(1).

2. The CNN does not sufficiently learn the signal: maxj,r γ
(t)
j,r ≤ Õ(σ0∥µ∥2).

3. The training loss converges to ϵ, i.e., LS(W
(t)) ≤ ϵ.

4. The trained CNN has a constant order test loss: LD(W
(t)) = Θ(1).

Figure 1: Illustration of the phase transi-
tion between benign and harmful overfitting.
The blue region represents the setting under
which the overfitted CNN trained by gradi-
ent descent is guaranteed to have small popu-
lation loss, and the yellow region represents
the setting under which the population loss is
guaranteed to be of constant order. The slim
gray band region is the setting where the pop-
ulation loss is not well characterized.

Theorem 4.4 holds under the condition that n−1 ·
SNR−q = Ω̃(1). Clearly, this is the opposite regime
(up to some logarithmic factors) compared with The-
orem 4.3. In this case, the CNN trained by gradi-
ent descent mainly memorizes noises in the training
data and does not learn enough signal. This, together
with the results in Theorem 4.3, reveals a clear phase
transition between signal learning and noise memo-
rization in CNN training:

• If n·SNRq = Ω̃(1), then the CNN learns the signal
and achieves a O(ϵ+ exp(−n2)) test loss. This is
the regime of benign overfitting.

• If n−1 · SNR−q = Ω̃(1) then the CNN can only
memorize noises and will have a Θ(1) test loss.
This is the regime of harmful overfitting.

The phase transition is illustrated in Figure 1.
Clearly, n · SNRq = Ω̃(1) is the precise condition
under which benign overfitting occurs. Remarkably,
in this case the population loss decreases exponen-
tially with the sample size n. Under our condition
that n = Ω(polylog(d)), this term can also be upper
bounded by 1/poly(d), which is small in the high-
dimensional setting. Note that when ∥µ∥2 = Θ(1)
and σp = Θ(d−1/2), applying standard uniform con-
vergence based bounds (Bartlett et al., 2017; Neyshabur et al., 2018) or stability based bounds (Hardt
et al., 2016; Mou et al., 2017; Chen et al., 2018) typically give Õ(n−1/2) bounds on the general-
ization gap, which are vacuous when n = O(polylog(d)). Our bound under the same setting is
O(1/poly(d)), which is non-vacuous. This is attributed to our precise analysis of signal learning
and noise memorization in Theorems 4.3 and 4.4.

Comparison with neural tangent kernel (NTK) results. We want to emphasize that our analysis
is beyond the so-called neural tangent kernel regime. In the NTK regime, it has been shown that
gradient descent can train an over-parameterized neural network to achieve good training and test
accuracies (Jacot et al., 2018; Du et al., 2019b,a; Allen-Zhu et al., 2019b; Zou et al., 2019; Arora
et al., 2019a; Cao and Gu, 2019a; Chen et al., 2019). However, it is widely believed in literature
that the NTK analyses cannot fully explain the success of deep learning, as the neural networks
in the NTK regime are almost “linearized” (Lee et al., 2019; Cao and Gu, 2019a). Our analysis
and results are not in the NTK regime: In the NTK regime, the network parameters stay close
to their initialization throughout training, i.e., ∥W(t) − W(0)∥F = O(1), so that the NN model

6



can be approximated by its linearization (Allen-Zhu et al., 2019b; Cao and Gu, 2019a; Chen et al.,
2019). In comparison, our analysis does not rely on linearizing the neural network function, and
∥W(t) −W(0)∥F can be as large as O(poly(m)).

5 Overview of Proof Technique

In this section, we discuss the main challenges in the study of CNN training under our setting,
and explain some key techniques we implement in our proofs to overcome these challenges. The
complete proofs of all the results are given in the appendix.

Main challenges. Studying benign overfitting under our setting is a challenging task. The first chal-
lenge is the nonconvexity of the training objective function LS(W). Nonconvexity has introduced
new challenges in the study of benign overfitting particularly because our goal is not only to show
the convergence of the training loss, but also to study the population loss in the over-parameterized
setting, which requires a precise algorithmic analysis of the learning problem.

5.1 Iterative Analysis of the Signal-Noise Decomposition

In order to study the learning process based on the nonconvex optimization problem, we propose a
key technique which enables the iterative analysis of the coefficients in the signal-noise decomposi-
tion in Definition 4.1. This technique is given in the following lemma.

Lemma 5.1. The coefficients γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

in Definition 4.1 satisfy the following equations:

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0, (5.1)

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yi · µ⟩) · ∥µ∥
2
2, (5.2)

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = j), (5.3)

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = −j). (5.4)

Remark 5.2. With the decomposition (4.1), the signal learning and noise memorization processes
of a CNN can be formally studied by analyzing the dynamics of γ(t)

j,r , ρ
(t)
j,r,i, ρ

(t)
j,r,i

based on the dynam-
ical system (5.2)-(5.4). Note that prior to our work, several existing results have utilized the inner
products ⟨w(t)

j,r,µ⟩ during the neural network training process in order to establish generalization
bounds (Brutzkus et al., 2018; Chatterji and Long, 2020; Frei et al., 2021). Similar inner product
based arguments are also implemented in Allen-Zhu and Li (2020a,b); Zou et al. (2021a), which
study different topics related to learning neural networks. Compared with the inner product based
argument, our method has two major advantages: (i) Based on the definition (5.2)-(5.4) and the fact
that ℓ′(t)i < 0, it is clear that γ(t)

j,r , ρ
(t)
j,r,i are monotonically increasing, while ρ(t)

j,r,i
is monotonically

decreasing throughout the whole training process. In comparison, monotonicity does not hold in the
inner product based argument, especially for ⟨w(t)

j,r, ξi⟩. (ii) Our signal-noise decomposition also
enables a clean homogeneity-based proof for the convergence of the training loss to an arbitrarily
small error rate ϵ > 0, which will be presented in Subsection 5.2.

With Lemma 5.1, we can reduce the study of the CNN learning process to the analysis of the discrete
dynamical system given by (5.1)-(5.4). Our proof then focuses on a careful assessment of the values
of the coefficients γ(t)

j,r , ρ
(t)
j,r,i, ρ

(t)
j,r,i

throughout training. To prepare for more detailed analyses, we
first present the following bounds of the coefficients, which hold throughout training.
Proposition 5.3. Under Condition 4.2, for any T ∗ = η−1poly(ϵ−1, ∥µ∥−1

2 , d−1σ−2
p , σ−1

0 , n,m, d),
the following bounds hold for t ∈ [0, T ∗]:

1. 0 ≤ γ
(t)
j,r , ρ

(t)
j,r,i ≤ 4 log(T ∗) for all j ∈ {±1}, r ∈ [m] and i ∈ [n].

2. 0 ≥ ρ(t)
j,r,i

≥ −2maxi,j,r{|⟨w(0)
j,r ,µ⟩|, |⟨w

(0)
j,r , ξi⟩|} − 16n

√
log(4n2/δ)

d · 4 log(T ∗) for all j ∈
{±1}, r ∈ [m] and i ∈ [n].
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We can then prove the following lemma, which demonstrates that the training objective function
LS(W) can dominate the gradient norm ∥∇LS(W

(t))∥F along the gradient descent path.

Lemma 5.4. Under Condition 4.2, for any T ∗ = η−1poly(ϵ−1, ∥µ∥−1
2 , d−1σ−2

p , σ−1
0 , n,m, d), the

following result holds for t ∈ [0, T ∗]:

∥∇LS(W
(t))∥2F = O

(
max{∥µ∥22, σ2

pd}
)
· LS(W

(t)).

Lemma 5.4 plays a key role in the convergence proof of training loss function. However, note
that our study of benign overfitting requires carefully monitoring the changes of the coefficients
in the signal-noise decomposition, which cannot be directly done by Lemma 5.4. This is quite a
challenging task, due to the complicated interactions among γ

(t)
j,r , ρ(t)j,r,i and ρ(t)

j,r,i
. Note that even

γ
(t)
j,r , which has the simplest formula (5.2), depends on all the quantities γ

(t)
j′,r′ , ρ

(t)
j′,r′,i and ρ

(t)
j′,r′,i

for j′ ∈ {±1}, r′ ∈ [m] and i ∈ [n]. This is because the cross-entropy loss derivative term
ℓ
′(t)
i = ℓ′[yi · f(W(t),xi)] depends on all the neurons of the network. To overcome this challenge,

we introduce in the next subsection a decoupling technique based on a two-stage analysis.

5.2 Decoupling with a Two-Stage Analysis.

We utilize a two-stage analysis to decouple the complicated relation among the coefficients γ
(t)
j,r ,

ρ
(t)
j,r,i and ρ(t)

j,r,i
. Intuitively, the initial neural network weights are small enough so that the neural

network at initialization has constant level cross-entropy loss derivatives on all the training data:
ℓ
′(0)
i = ℓ′[yi · f(W(0),xi)] = Θ(1) for all i ∈ [n]. This is guaranteed under Condition 4.2 and

matches neural network training in practice. Motivated by this, we can consider the first stage of the
training process where ℓ′(t)i = Θ(1), in which case we can show significant scale differences among
γ
(t)
j,r , ρ(t)j,r,i and ρ(t)

j,r,i
. Based on the result in the first stage, we then proceed to the second stage of

the training process where the loss derivatives are no longer at a constant level and show that the
training loss can be optimized to be arbitrarily small and meanwhile, the scale differences shown in
the first learning stage remain the same throughout the training process. In the following, we focus
on explaining the key proof steps for Theorem 4.3. The proof idea for Theorem 4.4 is similar, so we
defer the details to the appendix.

Stage 1. It can be shown that, until some of the coefficients γ(t)
j,r , ρ(t)j,r,i reach Θ(1), we have ℓ

′(t)
i =

ℓ′[yi · f(W(t),xi)] = Θ(1) for all i ∈ [n]. Therefore, we first focus on this first stage of the training
process, where the dynamics of the coefficients in (5.2) - (5.4) can be greatly simplified by replacing
the ℓ

′(t)
i factors by their constant upper and lower bounds. The following lemma summarizes our

main conclusion at stage 1 for signal learning:

Lemma 5.5. Under the same conditions as Theorem 4.3, there exists T1 = Õ(η−1mσ2−q
0 ∥µ∥−q

2 )
such that

1. maxr γ
(T1)
j,r = Ω(1) for j ∈ {±1}.

2. |ρ(t)j,r,i| = O(σ0σp

√
d) for all j ∈ {±1}, r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T1.

Lemmas 5.5 takes advantage of the training period when the loss function derivatives remain a
constant order to show that the CNN can capture the signal. At the end of stage 1 in signal learning,
maxr γj,r reaches Θ(1), and is significantly larger than ρ

(t)
j,r,i. After this, it is no longer guaranteed

that the loss derivatives ℓ′(t)i will remain constant order, and thus starts the training stage 2.

Stage 2. In this stage, we take into full consideration the exact definition ℓ
′(t)
i = ℓ′[yi · f(W(t),xi)]

and show that the training loss function will converge to LS(W
(t)) < ϵ. Thanks to the analysis in

stage 1, we know that some γ(t)
j,r is significantly larger than all ρ(t)j,r,i’s at the end of stage 1. This scale

difference is the key to our analysis in stage 2. Based on this scale difference and the monotonicity
of γ(t)

j,r , ρ(t)j,r,i, ρ
(t)
j,r,i

in the signal-noise decomposition, it can be shown that there exists W∗ such

that yi ·⟨∇f(W(t),xi),W
∗⟩ ≥ q log(2q/ϵ) throughout stage 2. Moreover, since the neural network

8



f(W,x) is q-homogeneous in W, we have ⟨∇f(W(t),x),W(t)⟩ = q · f(W(t),x). Therefore,

⟨∇LS(W
(t)),W(t) −W∗⟩ = 1

n

n∑
i=1

ℓ
′(t)
i · yi · ⟨∇f(W(t),xi),W

(t) −W∗⟩

=
1

n

n∑
i=1

ℓ
′(t)
i · [yi · q · f(W(t),xi)− yi · ⟨∇f(W(t),xi),W

∗⟩]

≥ 1

n

n∑
i=1

ℓ′[yi · f(W(t),xi)] · [yi · q · f(W(t),xi)− q log(2q/ϵ)]

≥ q · 1
n

n∑
i=1

[ℓ(f(W(t),xi))− ℓ(log(2q/ϵ))]

≥ q · LS(W
(t))− ϵ/2,

where the second inequality follows by the convexity of the cross-entropy loss function. With the
above key technique, we can prove the following lemma.
Lemma 5.6. Let T, T1 be defined in Theorem 4.3 and Lemma 5.5 respectively. Then under the same
conditions as Theorem 4.3, for any t ∈ [T1, T ], it holds that |ρ(t)j,r,i| ≤ σ0σp

√
d for all j ∈ {±1},

r ∈ [m] and i ∈ [n]. Moreover, let W∗ be the collection of CNN parameters with convolution filters
w∗

j,r = w
(0)
j,r + 2qm log(2q/ϵ) · j · ∥µ∥−2

2 · µ. Then the following bound holds

1

t− T1 + 1

t∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(t− T1 + 1)
+

ϵ

(2q − 1)

for all t ∈ [T1, T ], where we denote ∥W∥F =
√
∥W+1∥2F + ∥W−1∥2F .

Lemma 5.6 states two main results on signal learning. First of all, during this training period, it
is guaranteed that the coefficients of noise vectors ρ

(t)
j,r,i in the signal-noise decomposition remain

sufficiently small. Moreover, it also gives an optimization type result that the best iterate in [T1, T ]
is small as long as T is large enough. Clearly, the convergence of the training loss stated in Theo-
rems 4.3 directly follows by choosing T to be sufficiently large in Lemmas 5.6. The lemma below
further gives an upper bound on the test loss.
Lemma 5.7. Let T be defined in Theorem 4.3. Under the same conditions as Theorem 4.3, for any
t ≤ T with LS(W

(t)) ≤ 1, it holds that LD(W
(t)) ≤ 6 · LS(W

(t)) + exp(−n2).

Below we finalize the proof of Theorem 4.3. The proofs of other results are in the appendix.

Proof of Theorem 4.3. The first part of Theorem 4.3 follows by Lemma 5.5 and the monotonicity of
γ
(t)
j,r . The second part of Theorem 4.3 follows by Lemma 5.6. For the third part, let W∗ be defined

in Lemma 5.6. Then by the definition of W∗, we have

∥W(T1) −W∗∥F ≤ ∥W(T1) −W(0)∥F + ∥W(0) −W∗∥F

≤
∑
j,r

γ
(T1)
j,r ∥µ∥−1

2 +
∑
j,r,i

ρ
(T1)
j,r,i

∥ξi∥2
+
∑
j,r,i

ρ(T1)
j,r,i

∥ξi∥2
+Θ(m3/2 log(1/ϵ))∥µ∥−1

2

= Õ(m3/2∥µ∥−1
2 ),

where the first inequality is by triangle inequality, the second inequality is by the signal-noise de-
composition of W(T1) and the definition of W∗, and the last equality is by Proposition 5.3 and
Lemma 5.5. Therefore, choosing T = Θ̃(η−1T1 + η−1ϵ−1m3∥µ∥−2

2 ) = Θ̃(η−1σ
−(q−2)
0 ∥µ∥−q

2 +
η−1ϵ−1m3∥µ∥−2

2 ) in Lemma 5.6 ensures that

1

T − T1 + 1

T∑
t=T1

LS(W
(t)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(T − T1 + 1)
+

ϵ

2q − 1
≤ Õ(m3∥µ∥−2

2 )

(2q − 1)η(T − T1 + 1)
+

ϵ

2q − 1
≤ ϵ,
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and there exists t ∈ [T1, T ] such that LS(W
(t)) ≤ ϵ. This completes the proof of the third part of

Theorem 4.3. Finally, combining this bound with Lemma 5.7 gives

LD(W
(t)) ≤ 6 · LS(W

(t)) + exp(−n2) ≤ 6ϵ+ exp(−n2),

which proves the last part of Theorem 4.3.

6 Conclusion and Future Work

This paper utilizes a signal-noise decomposition to study the signal learning and noise memorization
process in the training of a two-layer CNN. We precisely give the conditions under which the CNN
will mainly focus on learning signals or memorizing noises, and reveals a phase transition of the
population loss with respect to the sample size, signal strength, noise level, and dimension. Our
result theoretically demonstrates that benign overfitting can happen in neural network training. An
important future work direction is to study the benign overfitting phenomenon of neural networks
in learning other data models. Moreover, it is also important to generalize our analysis to deep
convolutional neural networks.

Acknowledgments and Disclosure of Funding

We would like to thank Spencer Frei for valuable comment and discussion on the earlier version of
this paper, and pointing out a related work. ZC and QG are supported in part by the National Science
Foundation CAREER Award 1906169, IIS-2008981 and the Sloan Research Fellowship. MB is
grateful for the support from the National Science Foundation (NSF) and the Simons Foundation for
the Collaboration on the Theoretical Foundations of Deep Learning† through awards DMS-2031883
and #814639 as well as NSF IIS-1815697 and the TILOS institute (NSF CCF-2112665).

References
ADLAM, B. and PENNINGTON, J. (2020). The neural tangent kernel in high dimensions: Triple

descent and a multi-scale theory of generalization. In International Conference on Machine Learn-
ing. PMLR.

ALLEN-ZHU, Z. and LI, Y. (2020a). Feature purification: How adversarial training performs robust
deep learning. arXiv preprint arXiv:2005.10190 .

ALLEN-ZHU, Z. and LI, Y. (2020b). Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816 .

ALLEN-ZHU, Z., LI, Y. and LIANG, Y. (2019a). Learning and generalization in overparameter-
ized neural networks, going beyond two layers. In Advances in Neural Information Processing
Systems.

ALLEN-ZHU, Z., LI, Y. and SONG, Z. (2019b). A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning.

ARORA, S., DU, S., HU, W., LI, Z. and WANG, R. (2019a). Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks. In International Conference
on Machine Learning.

ARORA, S., DU, S. S., HU, W., LI, Z., SALAKHUTDINOV, R. and WANG, R. (2019b). On exact
computation with an infinitely wide neural net. In Advances in Neural Information Processing
Systems.

ARORA, S., GE, R., NEYSHABUR, B. and ZHANG, Y. (2018). Stronger generalization bounds for
deep nets via a compression approach. In International Conference on Machine Learning.

BARTLETT, P. L., FOSTER, D. J. and TELGARSKY, M. J. (2017). Spectrally-normalized margin
bounds for neural networks. In Advances in Neural Information Processing Systems.
†https://deepfoundations.ai/

10

https://deepfoundations.ai/


BARTLETT, P. L., LONG, P. M., LUGOSI, G. and TSIGLER, A. (2020). Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences .

BELKIN, M., HSU, D., MA, S. and MANDAL, S. (2019a). Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sci-
ences 116 15849–15854.

BELKIN, M., HSU, D. and XU, J. (2019b). Two models of double descent for weak features. arXiv
preprint arXiv:1903.07571 .

BELKIN, M., MA, S. and MANDAL, S. (2018). To understand deep learning we need to understand
kernel learning. In International Conference on Machine Learning.

BOUSQUET, O. and ELISSEEFF, A. (2002). Stability and generalization. Journal of machine learn-
ing research 2 499–526.

BRUTZKUS, A., GLOBERSON, A., MALACH, E. and SHALEV-SHWARTZ, S. (2018). Sgd learns
over-parameterized networks that provably generalize on linearly separable data. In International
Conference on Learning Representations.

CAO, Y. and GU, Q. (2019a). Generalization bounds of stochastic gradient descent for wide and
deep neural networks. In Advances in Neural Information Processing Systems.

CAO, Y. and GU, Q. (2019b). Tight sample complexity of learning one-hidden-layer convolutional
neural networks. In Advances in Neural Information Processing Systems.

CAO, Y., GU, Q. and BELKIN, M. (2021). Risk bounds for over-parameterized maximum margin
classification on sub-gaussian mixtures. Advances in Neural Information Processing Systems 34.

CHATTERJI, N. S. and LONG, P. M. (2020). Finite-sample analysis of interpolating linear classifiers
in the overparameterized regime. arXiv preprint arXiv:2004.12019 .

CHEN, Y., JIN, C. and YU, B. (2018). Stability and convergence trade-off of iterative optimization
algorithms. arXiv preprint arXiv:1804.01619 .

CHEN, Z., CAO, Y., ZOU, D. and GU, Q. (2019). How much over-parameterization is sufficient to
learn deep relu networks? arXiv preprint arXiv:1911.12360 .

DENG, L. (2012). The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine 29 141–142.

DU, S., LEE, J., LI, H., WANG, L. and ZHAI, X. (2019a). Gradient descent finds global minima
of deep neural networks. In International Conference on Machine Learning.

DU, S. S., LEE, J. D. and TIAN, Y. (2018a). When is a convolutional filter easy to learn? In
International Conference on Learning Representations.

DU, S. S., LEE, J. D., TIAN, Y., SINGH, A. and POCZOS, B. (2018b). Gradient descent learns
one-hidden-layer CNN: Dont be afraid of spurious local minima. In International Conference on
Machine Learning.

DU, S. S., ZHAI, X., POCZOS, B. and SINGH, A. (2019b). Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations.

FREI, S., CAO, Y. and GU, Q. (2021). Provable generalization of sgd-trained neural networks of
any width in the presence of adversarial label noise. In International Conference on Machine
Learning. PMLR.

FREI, S., CHATTERJI, N. S. and BARTLETT, P. L. (2022). Benign overfitting without linear-
ity: Neural network classifiers trained by gradient descent for noisy linear data. arXiv preprint
arXiv:2202.05928 .

GOLOWICH, N., RAKHLIN, A. and SHAMIR, O. (2018). Size-independent sample complexity of
neural networks. In Conference On Learning Theory.

11



HARDT, M., RECHT, B. and SINGER, Y. (2016). Train faster, generalize better: stability of stochas-
tic gradient descent. In Proceedings of the 33rd International Conference on International Con-
ference on Machine Learning-Volume 48. JMLR. org.

HASTIE, T., MONTANARI, A., ROSSET, S. and TIBSHIRANI, R. J. (2019). Surprises in high-
dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560 .

JACOT, A., GABRIEL, F. and HONGLER, C. (2018). Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems.

JI, Z. and TELGARSKY, M. (2020). Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. In International Conference on Learning
Representations.

LEE, J., XIAO, L., SCHOENHOLZ, S. S., BAHRI, Y., SOHL-DICKSTEIN, J. and PENNINGTON, J.
(2019). Wide neural networks of any depth evolve as linear models under gradient descent. In
Advances in Neural Information Processing Systems.

LI, Y. and LIANG, Y. (2018). Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems.

LI, Y., WEI, C. and MA, T. (2019). Towards explaining the regularization effect of initial large
learning rate in training neural networks. In Advances in Neural Information Processing Systems.

LI, Y. and YUAN, Y. (2017). Convergence analysis of two-layer neural networks with relu activation.
In Advances in Neural Information Processing Systems.

LI, Z., ZHOU, Z.-H. and GRETTON, A. (2021). Towards an understanding of benign overfitting in
neural networks. arXiv preprint arXiv:2106.03212 .

LIANG, T. and RAKHLIN, A. (2020). Just interpolate: Kernel ridgeless regression can generalize.
The Annals of Statistics 48 1329–1347.

LIAO, Z., COUILLET, R. and MAHONEY, M. (2020). A random matrix analysis of random fourier
features: beyond the gaussian kernel, a precise phase transition, and the corresponding double
descent. In 34th Conference on Neural Information Processing Systems (NeurIPS 2020).

LIN, M., CHEN, Q. and YAN, S. (2013). Network in network. arXiv preprint arXiv:1312.4400 .

LYU, K. and LI, J. (2019). Gradient descent maximizes the margin of homogeneous neural net-
works. arXiv preprint arXiv:1906.05890 .

MEI, S. and MONTANARI, A. (2019). The generalization error of random features regression:
Precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355 .

MONTANARI, A. and ZHONG, Y. (2020). The interpolation phase transition in neural networks:
Memorization and generalization under lazy training. arXiv preprint arXiv:2007.12826 .

MOU, W., WANG, L., ZHAI, X. and ZHENG, K. (2017). Generalization bounds of sgld for non-
convex learning: Two theoretical viewpoints. arXiv preprint arXiv:1707.05947 .

NEYSHABUR, B., BHOJANAPALLI, S., MCALLESTER, D. and SREBRO, N. (2018). A pac-
bayesian approach to spectrally-normalized margin bounds for neural networks. In International
Conference on Learning Representation.

NEYSHABUR, B., LI, Z., BHOJANAPALLI, S., LECUN, Y. and SREBRO, N. (2019). Towards un-
derstanding the role of over-parametrization in generalization of neural networks. In International
Conference on Learning Representations.

NEYSHABUR, B., TOMIOKA, R. and SREBRO, N. (2015). Norm-based capacity control in neural
networks. In Conference on Learning Theory.

SHAMIR, O. (2022). The implicit bias of benign overfitting. arXiv preprint arXiv:2201.11489 .

12



SOLTANOLKOTABI, M. (2017). Learning ReLUs via gradient descent. In Advances in Neural
Information Processing Systems.

SOUDRY, D., HOFFER, E., NACSON, M. S., GUNASEKAR, S. and SREBRO, N. (2018). The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Research
19 2822–2878.

WU, D. and XU, J. (2020). On the optimal weighted ℓ2 regularization in overparameterized linear
regression. Advances in Neural Information Processing Systems 33.

ZHANG, C., BENGIO, S., HARDT, M., RECHT, B. and VINYALS, O. (2017). Understanding deep
learning requires rethinking generalization. In International Conference on Learning Representa-
tions.

ZHANG, X., YU, Y., WANG, L. and GU, Q. (2019). Learning one-hidden-layer ReLU networks via
gradient descent. In The 22nd International Conference on Artificial Intelligence and Statistics.

ZHONG, K., SONG, Z., JAIN, P., BARTLETT, P. L. and DHILLON, I. S. (2017). Recovery guaran-
tees for one-hidden-layer neural networks. In International Conference on Machine Learning.

ZOU, D., CAO, Y., LI, Y. and GU, Q. (2021a). Understanding the generalization of adam in
learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371 .

ZOU, D., CAO, Y., ZHOU, D. and GU, Q. (2019). Gradient descent optimizes over-parameterized
deep ReLU networks. Machine Learning .

ZOU, D., WU, J., BRAVERMAN, V., GU, Q. and KAKADE, S. (2021b). Benign overfitting of
constant-stepsize sgd for linear regression. In Conference on Learning Theory. PMLR.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] This is the first work that precisely characterizes the
conditions under which benign overfitting can occur in training convolutional neural
networks

(b) Did you describe the limitations of your work? [Yes] As we have discussed in the
conclusion, we only analysis two-layer CNNs. It’s important to generalize our analysis
to deep convolutional neural networks.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This
paper focuses on theoretical analyses of neural network training, and does not have
any direct negative social impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Please check the

appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] The purpose of experiments in this paper is to back up
our theoretical findings. The error bars are not required to verify our theory.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] The purpose of experiments in
this paper is to back up our theoretical findings. Information about the computation
resources are irrelevant to our purpose.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

13



(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


	Introduction
	Related Work
	Problem Setup
	Main Results
	Overview of Proof Technique
	Iterative Analysis of the Signal-Noise Decomposition
	Decoupling with a Two-Stage Analysis.

	Conclusion and Future Work

