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A Extended Background

A.1 Soft Actor-Critic

Soft Actor-Critic (SAC) [9] is an off-policy actor-critic algorithm, which is based on the maximum
entropy RL framework where the standard return maximization objective is augmented with an
entropy maximization term [32]. SAC has a soft Q-function Q and a policy π. The soft Q-function is
learned by minimizing the soft Bellman error:

J (Q) = Etr∼D[(Q(st,at)− (rt + γV̄ (st+1))
2], (1)

where tr = (st,at, rt, st+1) is a tuple with current state st, action at, successor st+1 and reward rt,
D is the replay buffer and V̄ is the target value function. V̄ has the following expectation:

V̄ (st) = Eat∼π[Q̄(st,at)− α log π(at|st)], (2)
where Q̄ is the target Q-function whose parameters are updated by an exponential moving average of
the parameters of the Q-function Q, and the temperature α is used to balance the return maximization
and the entropy maximization. The policy π is represented by using the reparameterization trick and
optimized by minimizing the following objective:

J(π) = Est∼D,ϵt∼N [α log π(fπ(ϵt; st)|st)−Q(st, fπ(ϵt; st))], (3)

where ϵt is the input noise vector sampled from Gaussian distributionN (0, I), and fπ(ϵt; st) denotes
actions sampled stochastically from the policy π, i.e., fπ(ϵt; st) ∼ tanh(µπ(st)+σπ(st)⊙ ϵt). SAC
is shown to have a remarkable performance in continuous control [9].

A.2 Deep Q-network and Rainbow

Deep Q-network (DQN) [17] trains a neural network Qθ with parameters θ to approximate the
Q-function. DQN introduces a target Q-network Qθ′ for stable training. The target Q-network Qθ′

has the same architecture as the Q-network Qθ, and the parameters θ′ are updated with θ every certain
number of iterations. The objective of DQN is to minimize the squared error between the predictions
of Qθ and the target values provided by Qθ′ :

J (Qθ) = (Qθ(st, at)− (rt + γmax
a

Qθ′(st+1, a)))
2 (4)

Rainbow [12] integrates a number of improvements on the basis of the vanilla DQN [17] including:
(i) employing modified target Q-value sampling in Double DQN [24]; (ii) adopting Prioritized
Experience Replay [18] strategy; (iii) decoupling the value function of state and the advantage
function of action from Q-function like Dueling DQN [27]; (iv) introducing distributional RL and
predicting value distribution as C51 [4]; (v) adding parametric noise into the network parameters
like NoisyNet [6]; and (vi) using multi-step return [21]. Rainbow is typically regarded as a strong
model-free baseline for discrete control.
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Figure 1: An illustration of the framework of BYOL [7].

A.3 BYOL-style Auxiliary Objective

BYOL [7] is a strong self-supervised representation learning method by enforcing the similarity of
the representations of the same image across diverse data augmentation. The pipeline is shown in
Figure 1. BYOL has an online branch and a momentum branch. The momentum branch is used
for computing a stable target for learning representations [11, 22]. BYOL is composed of an online
encoder f , a momentum encoder f̄ , an online projection head g, a momentum projection head ḡ and
an prediction head q. The momentum encoder and projection head have the same architectures as
the corresponding online networks and are updated by an exponential moving average (EMA) of
the online weights (see Equation 1 in the main manuscript). The prediction head is only used in the
online branch, making BYOL’s architecture asymmetric. Given an image x, BYOL first produces two
views v and v′ from x through images augmentations. The online branch outputs a representation
y = f(v) and a projection z = g(y), and the momentum branch outputs y′ = f̄(v′) and a target
projection z′ = ḡ(y′). BYOL then use a prediction head q to regress z′ from z, i.e., q(z) → z′.
BYOL minimizes the similarity loss between q(z) and a stop-gradient3 target sg(z′).

LBY OL = ∥q(z)− sg(z′)∥22 = 2− 2
q(z)

∥q(z)∥2
sg(z′)

∥sg(z′)∥2
. (5)

Inspired by the success of BYOL in learning visual representations, recent works introduce BYOL-
style learning objectives to vision-based RL for learning effective state representations and show
promising performance [20, 31, 28, 10, 8]. The BYOL-style learning is often integrated into auxiliary
objectives in RL such as future state prediction [20, 8], cycle-consistent dynamics prediction [31],
prototypical representation learning [28] and invariant representation learning [10]. These works also
show that it is more effective to supervise/regularize the predicted representations in the BYOL’s
projected latent space than in the representation or pixel space. Besides, the BYOL-style auxiliary
objectives are commonly trained with data augmentation since it can conveniently produce two BYOL
views. For example, SPR [20] and PlayVirtual [31] apply random crop and random intensity to
input observations in Atari games. The proposed MLR auxiliary objective can be categorized into
BYOL-style auxiliary objectives.

B Implementation Detail

B.1 Network Architecture

Our model has two parts: the basic networks and the auxiliary networks. The basic networks are
composed of a representation network (i.e., encoder) f parameterized by θf and the policy learning
networks ω (e.g., SAC [9] or Rainbow [12]) parameterized by θω .

We follow CURL [16] to build the architecture of the basic networks on the DMControl [23]
benchmarks. The encoder is composed of four convolutional layers (with a rectified linear units
(ReLU) activation after each), a fully connected (FC) layer, and a layer normalization (LN) [2] layer.
Furthermore, the policy learning networks are built by multilayer perceptrons (MLPs). For the basic
networks on Atari [3], we also follow CURL to adopt the original architecture of Rainbow [12]

3Stop gradient operation stops the gradients from passing through, avoiding trivial solutions [11].
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where the encoder consists of three convolutional layers (with a ReLU activation after each), and the
Q-learning heads are MLPs.

Our auxiliary networks have online networks and momentum (or target) networks. The online
networks consist of an encoderf , a predictive latent decoder (PLD)� , a projection headg and a
prediction headq, parameterized by� f , � � , � g and� q, respectively. Notably, the encoders in the basic
networks and the auxiliary networks areshared. As shown in Figure 1 in our main manuscript, there
are a momentum encoder�f and a momentum projection head�g for computing the self-supervised
targets. The momentum networks have the same architectures as the corresponding online networks.
Our PLD is a transformer encoder [26] and has two standard attention layers (with a single attention
head). We use an FC layer as the action embedding head to transform the original action into
an embedding which has the same dimension as the state representation (i.e., state token). The
transformer encoder treats each input token as independent of the other. Thus, positional embeddings,
which encode the positional information of tokens in a sequence, are added to the input tokens of
PLD to maintain their relative temporal positional information (i.e., the order of the state/action
sequences). We use sine and cosine functions to build the positional embeddings following [26]:

p(pos; 2j ) = sin( pos=100002j=d ); (6)

p(pos; 2j +1) = cos(pos=100002j=d ); (7)
wherepos is the position,j is the dimension andd is the embedding size (equal to the state
representation size). We follow PlayVirtual [31] in the architecture design of the projection and the
prediction heads, built by MLPs and FC layers.

B.2 Training Detail

Optimization and training. The training algorithm of our method is presented in Algorithm 1.
We use Adam optimizer [14] to optimize all trainable parameters in our model, with(� 1; � 2) =
(0:9; 0:999) (except for(0:5; 0:999) for SAC temperature� ). Modest data augmentation such
as crop/shift is shown to be effective for improving RL agent performance in vision-based RL
[29, 15, 20, 31]. Following [31, 20, 16], we use random crop and random intensity in training the
auxiliary objective,i.e., L mlr . Besides, we warmup the learning rate of our MLR objective on
DMControl by

lr = lr 0 � min(step_num � 0:5; step_num � warmup_step� 1:5); (8)

where thelr and lr 0 denote the current learning rate and the initial learning rate, respectively,
andstep_num andwarmup_step denote the current step and the warmup step, respectively. We
empirically �nd that the warmup schedule bring improvements on DMControl.

Hyperparameters. We present all hyperparameters used for the DMControl benchmarks [23] in
Table 8 and the Atari-100k benchmark in Table 9. We follow prior work [31, 20, 16] for the policy
learning hyperparameters (i.e., SAC and Rainbow hyperparameters). The hyperparameters speci�c to
our MLR auxiliary objective, including MLR loss weight� , mask ratio� , the length of the sampled
sequenceK , cube shapek � h � w and the depth of the decoderL , are shown in the bottom of the
tables. By default, we set� to 1, � to 50%, L to 2,k to 8, andh � w to 10� 10on DMControl and
12� 12on Atari. We exceptionally setk to 4 in Cartpole-swingupandReacher-easyon DMControl
due to their large motion range, and� to 5 in PongandUp N Downon Atari as their MLR losses are
relatively smaller than the rest 24 Atari games.

Baseline and data augmentation.Our baseline models (Baseline) are equivalent to CURL [16]
without the auxiliary loss except for the slight differences on the applied data augmentation strategies.
CURL adopts random crop for data augmentation. We follow the prior work SPR [20] and PlayVirtual
[31] to adopt random crop and random intensity for both ourBaselineand MLR.

GPU and wall-clock time. In our experiment, we run MLR with a single GPU ( NVIDIA Tesla
V100 or GeForce RTX 3090) for each environment. MLR has the same inference time complexity
asBaselinesince both use only the encoder and policy learning head during testing. On Atari, the
average wall-clock training time is 6.0, 10.9, 4.0, and 8.2 hours for SPR, PlayVirtual, Baseline and
MLR, respectively. On DMControl, the training time is 4.3, 5.2, 3.8, 6.5 hours for SPR, PlayVirtual,
Baseline and MLR, respectively. We will leave the optimization of our training strategy as future
work to speed up the training,e.g., reducing the frequency of using masked-latent reconstruction.
The evaluation is based on a single GeForce RTX 3090 GPU.
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Algorithm 1 Training Algorithm for MLR

Require: An online encoderf , a momentum encoder�f , a predictive latent decoder� , an online
projection headg, a momentum projection head�g, a prediction headq and policy learning
networks! , parameterized by� f , �� f , � � , � g, �� g, � q and� ! , respectively; a stochastic cube
masking functionMask (�); a stochastic image augmentation functionAug(�); an optimizer
Optimize (�; �).

1: Determine auxiliary loss weight� , sequence lengthK , mask ratio� , cube sizek � h � w and
EMA coef�cient m.

2: Initialize a replay bufferD.
3: Initialize Mask (�) with � andk � h � w.
4: Initialize all network parameters.
5: while train do
6: Interact with the environment based on the policy
7: Collect the transition:D  D [ (o; a; onext ; r )
8: Sample a trajectory ofK timestepsf ot ; at ; ot +1 ; at +1 ; � � � ; ot + K � 1; at + K � 1g from D
9: Initialize losses:L mlr  0; L rl  0

10: Randomly mask the observation sequence:
f ~ot ; ~ot +1 ; � � � ; ~ot + K � 1g  Mask (f ot ; ot +1 ; � � � ; ot + K � 1g)

11: Perform augmentation and encoding:
f ~st ;~st +1 ; � � � ;~st + K � 1g  f f (Aug(~ot )) ; f (Aug(~ot +1 )) ; � � � ; f (Aug(~ot + K � 1)g

12: Perform decoding:
f ŝ t ;ŝ t +1 ; � � � ;ŝ t + K � 1g  � (f ~st ;~st +1 ; � � � ;~st + K � 1g; f at ; at +1 ; � � � ; at + K � 1g)

13: Perform projection and prediction:
f ŷ t ;ŷ t +1 ; � � � ;ŷ t + K � 1g  f q(g(ŝ t )) ; q(g(ŝ t +1 )) ; � � � ; q(g(ŝ t + K � 1))g

14: Calculate targets:
f �y t ; �y t +1 ; � � � ; �y t + K � 1g  f �g( �f (Aug(ot ))) ; �g( �f (Aug(ot +1 ))) ;

� � � ; �g( �f (Aug(ot + K � 1))) g
15: Calculate MLR loss:L mlr  1 � 1

K

P K � 1
i =0

ŷ t + i

kŷ t + i k2

�y t + i

k�y t + i k2

16: Calculate RL lossL rl based on a given base RL algorithm (e.g., SAC)
17: Calculate total loss:L total  L rl + � L mlr
18: Update online parameters:(� f ; � � ; � g; � q; � ! )  Optimize (( � f ; � � ; � g; � q; � ! ); L total )
19: Update momentum parameters:( �� f ; �� g)  m( �� f ; �� g) + (1 � m)( � f ; � g)
20: end while

B.3 Environment and Code

DMControl [23] and Atari [3] are widely used environment suites in RL community, which are
public and do not involve personally identi�able information or offensive contents. We use the
two environment suites to evaluate model performance. The implementation of MLR is based on
the open-source PlayVirtual [31] codebase4. The statistical tools on Atari are obtained from the
open-source libraryrliable 5[1].

C More Experimental Results and Analysis

C.1 More Atari-100k Results

We present the comparison results across all 26 games on the Atari-100k benchmark in Table 1. Our
MLR reaches the highest scores on 11 out of 26 games and outperforms the compared methods on
the aggregate metrics,i.e., interquartile-mean (IQM) and optimality gap (OG) with 95% con�dence
intervals (CIs). Notably, MLR improve theBaselineperformance by 47.9% on IQM, which shows
the effectiveness of our proposed auxiliary objective. We also present theperformance pro�les6 using

4Link: https://github.com/microsoft/Playvirtual, licensed under the MIT License.
5Link: https://github.com/google-research/rliable, licensed under the Apache License 2.0.
6Performance pro�les [5] show the tail distribution of scores on combined runs across tasks [1]. Performance

pro�les of a distributionX is calculated bŷFX (� ) = 1
M

P M
m =1

1
N

P N
n =1 1 [xm;n > � ], indicating the fraction

of runs above a score� acrossN tasks andM seeds.
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Figure 2: Performance pro�les on the Atari-100k benchmark based on human-normalized score
distributions. Shaded regions indicates 95% con�dence bands. The score distribution of MLR is
clearly superior to previous methods andBaseline.

human-normalized scores (HNS) with 95% CIs in Figure 2. The performance pro�les con�rm the
superiority and effectiveness of our MLR. The results of DER [25], OTR [13], CURL [16], DrQ
[29] and SPR [20] are fromrliable [1], based on 100 random seeds. The results of PlayVirtual [31]
are based on 15 random seeds, and the results ofBaselineand MLR are averaged over 3 random
seeds and each run is evaluated with 100 episodes. We report the standard deviations across runs of
Baselineand MLR in Table 2.

Table 1: Comparison on the Atari-100k benchmark. Our method reaches the highest scores on 11
out of 26 games and the best performance concerning the aggregate metrics,i.e., interquartile-mean
(IQM) and optimality gap (OG) with 95% con�dence intervals. Our method augmentsBaselinewith
the MLR objective and achieves a 47.9% relative improvement on IQM.

Game Human Random DER OTR CURL DrQ SPR PlayVirtual Baseline MLR

Alien 7127.7 227.8 802.3 570.8 711.0 734.1 841.9 947.8 678.5 990.1
Amidar 1719.5 5.8 125.9 77.7 113.7 94.2 179.7 165.3 132.8 227.7
Assault 742.0 222.4 561.5 330.9 500.9 479.5 565.6 702.3 493.3 643.7
Asterix 8503.3 210.0 535.4 334.7 567.2 535.6 962.5 933.3 1021.3 883.7
Bank Heist 753.1 14.2 185.5 55.0 65.3 153.4 345.4 245.9 288.2 180.3
Battle Zone 37187.5 2360.0 8977.0 5139.4 8997.8 10563.6 14834.1 13260.0 13076.716080.0
Boxing 12.1 0.1 -0.3 1.6 0.9 6.6 35.7 38.3 14.3 26.4
Breakout 30.5 1.7 9.2 8.1 2.6 15.4 19.6 20.6 16.7 16.8
Chopper Cmd 7387.8 811.0 925.9 813.3 783.5 792.4 946.3 922.4 878.7 910.7
Crazy Climber 35829.4 10780.5 34508.6 14999.3 9154.4 21991.636700.5 23176.7 28235.7 24633.3
Demon Attack 1971.0 152.1 627.6 681.6 646.5 1142.4 517.6 1131.7 310.5 854.6
Freeway 29.6 0.0 20.9 11.5 28.3 17.8 19.3 16.1 30.9 30.2
Frostbite 4334.7 65.2 871.0 224.9 1226.5 508.1 1170.7 1984.7 994.32381.1
Gopher 2412.5 257.6 467.0 539.4 400.9 618.0 660.6 684.3 650.9822.3
Hero 30826.4 1027.0 6226.0 5956.5 4987.7 3722.6 5858.6 8597.5 4661.2 7919.3
Jamesbond 302.8 29.0 275.7 88.0 331.0 251.8 366.5 394.7 270.0423.2
Kangaroo 3035.0 52.0 581.7 348.5 740.2 974.5 3617.4 2384.7 5036.08516.0
Krull 2665.5 1598.0 3256.9 3655.9 3049.2 4131.4 3681.6 3880.7 3571.3 3923.1
Kung Fu Master 22736.3 258.5 6580.1 6659.6 8155.6 7154.514783.2 14259.0 10517.3 10652.0
Ms Pacman 6951.6 307.3 1187.4 908.0 1064.0 1002.9 1318.4 1335.4 1320.91481.3
Pong 14.6 -20.7 -9.7 -2.5 -18.5 -14.3 -5.4 -3.0 -3.1 4.9
Private Eye 69571.3 24.9 72.8 59.6 81.9 24.8 86.0 93.9 93.3 100.0
Qbert 13455.0 163.9 1773.5 552.5 727.0 934.2 866.3 3620.1 553.8 3410.4
Road Runner 7845.0 11.5 11843.4 2606.4 5006.1 8724.7 12213.113429.4 12337.0 12049.7
Seaquest 42054.7 68.4 304.6 272.9 315.2 310.5 558.1 532.9 471.9628.3
Up N Down 11693.2 533.4 3075.0 2331.7 2646.4 3619.110859.2 10225.2 4112.8 6675.7

Interquartile Mean 1.000 0.000 0.183 0.117 0.113 0.224 0.337 0.374 0.2920.432
Optimality Gap 0.000 1.000 0.698 0.819 0.768 0.692 0.577 0.558 0.6140.522
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