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A Extended Background

A.1 Soft Actor-Critic

Soft Actor-Critic (SAC) [9] is an off-policy actor-critic algorithm, which is based on the maximum
entropy RL framework where the standard return maximization objective is augmented with an
entropy maximization term [32]. SAC has a soft Q-function Q and a policy π. The soft Q-function is
learned by minimizing the soft Bellman error:

J (Q) = Etr∼D[(Q(st,at)− (rt + γV̄ (st+1))
2], (1)

where tr = (st,at, rt, st+1) is a tuple with current state st, action at, successor st+1 and reward rt,
D is the replay buffer and V̄ is the target value function. V̄ has the following expectation:

V̄ (st) = Eat∼π[Q̄(st,at)− α log π(at|st)], (2)
where Q̄ is the target Q-function whose parameters are updated by an exponential moving average of
the parameters of the Q-function Q, and the temperature α is used to balance the return maximization
and the entropy maximization. The policy π is represented by using the reparameterization trick and
optimized by minimizing the following objective:

J(π) = Est∼D,ϵt∼N [α log π(fπ(ϵt; st)|st)−Q(st, fπ(ϵt; st))], (3)

where ϵt is the input noise vector sampled from Gaussian distributionN (0, I), and fπ(ϵt; st) denotes
actions sampled stochastically from the policy π, i.e., fπ(ϵt; st) ∼ tanh(µπ(st)+σπ(st)⊙ ϵt). SAC
is shown to have a remarkable performance in continuous control [9].

A.2 Deep Q-network and Rainbow

Deep Q-network (DQN) [17] trains a neural network Qθ with parameters θ to approximate the
Q-function. DQN introduces a target Q-network Qθ′ for stable training. The target Q-network Qθ′

has the same architecture as the Q-network Qθ, and the parameters θ′ are updated with θ every certain
number of iterations. The objective of DQN is to minimize the squared error between the predictions
of Qθ and the target values provided by Qθ′ :

J (Qθ) = (Qθ(st, at)− (rt + γmax
a

Qθ′(st+1, a)))
2 (4)

Rainbow [12] integrates a number of improvements on the basis of the vanilla DQN [17] including:
(i) employing modified target Q-value sampling in Double DQN [24]; (ii) adopting Prioritized
Experience Replay [18] strategy; (iii) decoupling the value function of state and the advantage
function of action from Q-function like Dueling DQN [27]; (iv) introducing distributional RL and
predicting value distribution as C51 [4]; (v) adding parametric noise into the network parameters
like NoisyNet [6]; and (vi) using multi-step return [21]. Rainbow is typically regarded as a strong
model-free baseline for discrete control.

∗Equal contribution.
†This work was done when Tao Yu was an intern at Microsoft Research Asia.
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Figure 1: An illustration of the framework of BYOL [7].

A.3 BYOL-style Auxiliary Objective

BYOL [7] is a strong self-supervised representation learning method by enforcing the similarity of
the representations of the same image across diverse data augmentation. The pipeline is shown in
Figure 1. BYOL has an online branch and a momentum branch. The momentum branch is used
for computing a stable target for learning representations [11, 22]. BYOL is composed of an online
encoder f , a momentum encoder f̄ , an online projection head g, a momentum projection head ḡ and
an prediction head q. The momentum encoder and projection head have the same architectures as
the corresponding online networks and are updated by an exponential moving average (EMA) of
the online weights (see Equation 1 in the main manuscript). The prediction head is only used in the
online branch, making BYOL’s architecture asymmetric. Given an image x, BYOL first produces two
views v and v′ from x through images augmentations. The online branch outputs a representation
y = f(v) and a projection z = g(y), and the momentum branch outputs y′ = f̄(v′) and a target
projection z′ = ḡ(y′). BYOL then use a prediction head q to regress z′ from z, i.e., q(z) → z′.
BYOL minimizes the similarity loss between q(z) and a stop-gradient3 target sg(z′).

LBY OL = ∥q(z)− sg(z′)∥22 = 2− 2
q(z)

∥q(z)∥2
sg(z′)

∥sg(z′)∥2
. (5)

Inspired by the success of BYOL in learning visual representations, recent works introduce BYOL-
style learning objectives to vision-based RL for learning effective state representations and show
promising performance [20, 31, 28, 10, 8]. The BYOL-style learning is often integrated into auxiliary
objectives in RL such as future state prediction [20, 8], cycle-consistent dynamics prediction [31],
prototypical representation learning [28] and invariant representation learning [10]. These works also
show that it is more effective to supervise/regularize the predicted representations in the BYOL’s
projected latent space than in the representation or pixel space. Besides, the BYOL-style auxiliary
objectives are commonly trained with data augmentation since it can conveniently produce two BYOL
views. For example, SPR [20] and PlayVirtual [31] apply random crop and random intensity to
input observations in Atari games. The proposed MLR auxiliary objective can be categorized into
BYOL-style auxiliary objectives.

B Implementation Detail

B.1 Network Architecture

Our model has two parts: the basic networks and the auxiliary networks. The basic networks are
composed of a representation network (i.e., encoder) f parameterized by θf and the policy learning
networks ω (e.g., SAC [9] or Rainbow [12]) parameterized by θω .

We follow CURL [16] to build the architecture of the basic networks on the DMControl [23]
benchmarks. The encoder is composed of four convolutional layers (with a rectified linear units
(ReLU) activation after each), a fully connected (FC) layer, and a layer normalization (LN) [2] layer.
Furthermore, the policy learning networks are built by multilayer perceptrons (MLPs). For the basic
networks on Atari [3], we also follow CURL to adopt the original architecture of Rainbow [12]

3Stop gradient operation stops the gradients from passing through, avoiding trivial solutions [11].
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where the encoder consists of three convolutional layers (with a ReLU activation after each), and the
Q-learning heads are MLPs.

Our auxiliary networks have online networks and momentum (or target) networks. The online
networks consist of an encoder f , a predictive latent decoder (PLD) ϕ, a projection head g and a
prediction head q, parameterized by θf , θϕ, θg and θq , respectively. Notably, the encoders in the basic
networks and the auxiliary networks are shared. As shown in Figure 1 in our main manuscript, there
are a momentum encoder f̄ and a momentum projection head ḡ for computing the self-supervised
targets. The momentum networks have the same architectures as the corresponding online networks.
Our PLD is a transformer encoder [26] and has two standard attention layers (with a single attention
head). We use an FC layer as the action embedding head to transform the original action into
an embedding which has the same dimension as the state representation (i.e., state token). The
transformer encoder treats each input token as independent of the other. Thus, positional embeddings,
which encode the positional information of tokens in a sequence, are added to the input tokens of
PLD to maintain their relative temporal positional information (i.e., the order of the state/action
sequences). We use sine and cosine functions to build the positional embeddings following [26]:

p(pos,2j) = sin(pos/100002j/d), (6)

p(pos,2j+1) = cos(pos/100002j/d), (7)
where pos is the position, j is the dimension and d is the embedding size (equal to the state
representation size). We follow PlayVirtual [31] in the architecture design of the projection and the
prediction heads, built by MLPs and FC layers.

B.2 Training Detail

Optimization and training. The training algorithm of our method is presented in Algorithm 1.
We use Adam optimizer [14] to optimize all trainable parameters in our model, with (β1, β2) =
(0.9, 0.999) (except for (0.5, 0.999) for SAC temperature α). Modest data augmentation such
as crop/shift is shown to be effective for improving RL agent performance in vision-based RL
[29, 15, 20, 31]. Following [31, 20, 16], we use random crop and random intensity in training the
auxiliary objective, i.e., Lmlr. Besides, we warmup the learning rate of our MLR objective on
DMControl by

lr = lr0 ·min(step_num−0.5, step_num · warmup_step−1.5), (8)

where the lr and lr0 denote the current learning rate and the initial learning rate, respectively,
and step_num and warmup_step denote the current step and the warmup step, respectively. We
empirically find that the warmup schedule bring improvements on DMControl.

Hyperparameters. We present all hyperparameters used for the DMControl benchmarks [23] in
Table 8 and the Atari-100k benchmark in Table 9. We follow prior work [31, 20, 16] for the policy
learning hyperparameters (i.e., SAC and Rainbow hyperparameters). The hyperparameters specific to
our MLR auxiliary objective, including MLR loss weight λ, mask ratio η, the length of the sampled
sequence K, cube shape k × h× w and the depth of the decoder L, are shown in the bottom of the
tables. By default, we set λ to 1, η to 50%, L to 2, k to 8, and h× w to 10× 10 on DMControl and
12× 12 on Atari. We exceptionally set k to 4 in Cartpole-swingup and Reacher-easy on DMControl
due to their large motion range, and λ to 5 in Pong and Up N Down on Atari as their MLR losses are
relatively smaller than the rest 24 Atari games.

Baseline and data augmentation. Our baseline models (Baseline) are equivalent to CURL [16]
without the auxiliary loss except for the slight differences on the applied data augmentation strategies.
CURL adopts random crop for data augmentation. We follow the prior work SPR [20] and PlayVirtual
[31] to adopt random crop and random intensity for both our Baseline and MLR.

GPU and wall-clock time. In our experiment, we run MLR with a single GPU ( NVIDIA Tesla
V100 or GeForce RTX 3090) for each environment. MLR has the same inference time complexity
as Baseline since both use only the encoder and policy learning head during testing. On Atari, the
average wall-clock training time is 6.0, 10.9, 4.0, and 8.2 hours for SPR, PlayVirtual, Baseline and
MLR, respectively. On DMControl, the training time is 4.3, 5.2, 3.8, 6.5 hours for SPR, PlayVirtual,
Baseline and MLR, respectively. We will leave the optimization of our training strategy as future
work to speed up the training, e.g., reducing the frequency of using masked-latent reconstruction.
The evaluation is based on a single GeForce RTX 3090 GPU.
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Algorithm 1 Training Algorithm for MLR

Require: An online encoder f , a momentum encoder f̄ , a predictive latent decoder ϕ, an online
projection head g, a momentum projection head ḡ, a prediction head q and policy learning
networks ω, parameterized by θf , θ̄f , θϕ, θg, θ̄g, θq and θω, respectively; a stochastic cube
masking function Mask(·); a stochastic image augmentation function Aug(·); an optimizer
Optimize(·, ·).

1: Determine auxiliary loss weight λ, sequence length K, mask ratio η, cube size k × h× w and
EMA coefficient m.

2: Initialize a replay buffer D.
3: Initialize Mask(·) with η and k × h× w.
4: Initialize all network parameters.
5: while train do
6: Interact with the environment based on the policy
7: Collect the transition: D ← D ∪ (o,a,onext, r)
8: Sample a trajectory of K timesteps {ot,at,ot+1,at+1, · · · ,ot+K−1,at+K−1} from D
9: Initialize losses: Lmlr ← 0; Lrl ← 0

10: Randomly mask the observation sequence:
{õt, õt+1, · · · , õt+K−1} ←Mask({ot,ot+1, · · · ,ot+K−1})

11: Perform augmentation and encoding:
{s̃t, s̃t+1, · · · , s̃t+K−1} ← {f(Aug(õt)), f(Aug(õt+1)), · · · , f(Aug(õt+K−1)}

12: Perform decoding:
{ŝt, ŝt+1, · · · , ŝt+K−1} ← ϕ({s̃t, s̃t+1, · · · , s̃t+K−1}; {at,at+1, · · · ,at+K−1})

13: Perform projection and prediction:
{ŷt, ŷt+1, · · · , ŷt+K−1} ← {q(g(̂st)), q(g(̂st+1)), · · · , q(g(̂st+K−1))}

14: Calculate targets:
{ȳt, ȳt+1, · · · , ȳt+K−1} ← {ḡ(f̄(Aug(ot))), ḡ(f̄(Aug(ot+1))),

· · · , ḡ(f̄(Aug(ot+K−1)))}
15: Calculate MLR loss: Lmlr ← 1− 1

K

∑K−1
i=0

ŷt+i

∥ŷt+i∥2

ȳt+i

∥ȳt+i∥2

16: Calculate RL loss Lrl based on a given base RL algorithm (e.g., SAC)
17: Calculate total loss: Ltotal ← Lrl + λLmlr

18: Update online parameters: (θf , θϕ, θg, θq, θω)← Optimize((θf , θϕ, θg, θq, θω),Ltotal)
19: Update momentum parameters: (θ̄f , θ̄g)← m(θ̄f , θ̄g) + (1−m)(θf , θg)
20: end while

B.3 Environment and Code

DMControl [23] and Atari [3] are widely used environment suites in RL community, which are
public and do not involve personally identifiable information or offensive contents. We use the
two environment suites to evaluate model performance. The implementation of MLR is based on
the open-source PlayVirtual [31] codebase 4. The statistical tools on Atari are obtained from the
open-source library rliable 5[1].

C More Experimental Results and Analysis

C.1 More Atari-100k Results

We present the comparison results across all 26 games on the Atari-100k benchmark in Table 1. Our
MLR reaches the highest scores on 11 out of 26 games and outperforms the compared methods on
the aggregate metrics, i.e., interquartile-mean (IQM) and optimality gap (OG) with 95% confidence
intervals (CIs). Notably, MLR improve the Baseline performance by 47.9% on IQM, which shows
the effectiveness of our proposed auxiliary objective. We also present the performance profiles6 using

4Link: https://github.com/microsoft/Playvirtual, licensed under the MIT License.
5Link: https://github.com/google-research/rliable, licensed under the Apache License 2.0.
6Performance profiles [5] show the tail distribution of scores on combined runs across tasks [1]. Performance

profiles of a distribution X is calculated by F̂X(τ) = 1
M

∑M
m=1

1
N

∑N
n=1 1 [xm,n > τ ], indicating the fraction

of runs above a score τ across N tasks and M seeds.
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Figure 2: Performance profiles on the Atari-100k benchmark based on human-normalized score
distributions. Shaded regions indicates 95% confidence bands. The score distribution of MLR is
clearly superior to previous methods and Baseline.

human-normalized scores (HNS) with 95% CIs in Figure 2. The performance profiles confirm the
superiority and effectiveness of our MLR. The results of DER [25], OTR [13], CURL [16], DrQ
[29] and SPR [20] are from rliable [1], based on 100 random seeds. The results of PlayVirtual [31]
are based on 15 random seeds, and the results of Baseline and MLR are averaged over 3 random
seeds and each run is evaluated with 100 episodes. We report the standard deviations across runs of
Baseline and MLR in Table 2.

Table 1: Comparison on the Atari-100k benchmark. Our method reaches the highest scores on 11
out of 26 games and the best performance concerning the aggregate metrics, i.e., interquartile-mean
(IQM) and optimality gap (OG) with 95% confidence intervals. Our method augments Baseline with
the MLR objective and achieves a 47.9% relative improvement on IQM.

Game Human Random DER OTR CURL DrQ SPR PlayVirtual Baseline MLR

Alien 7127.7 227.8 802.3 570.8 711.0 734.1 841.9 947.8 678.5 990.1
Amidar 1719.5 5.8 125.9 77.7 113.7 94.2 179.7 165.3 132.8 227.7
Assault 742.0 222.4 561.5 330.9 500.9 479.5 565.6 702.3 493.3 643.7
Asterix 8503.3 210.0 535.4 334.7 567.2 535.6 962.5 933.3 1021.3 883.7
Bank Heist 753.1 14.2 185.5 55.0 65.3 153.4 345.4 245.9 288.2 180.3
Battle Zone 37187.5 2360.0 8977.0 5139.4 8997.8 10563.6 14834.1 13260.0 13076.7 16080.0
Boxing 12.1 0.1 -0.3 1.6 0.9 6.6 35.7 38.3 14.3 26.4
Breakout 30.5 1.7 9.2 8.1 2.6 15.4 19.6 20.6 16.7 16.8
Chopper Cmd 7387.8 811.0 925.9 813.3 783.5 792.4 946.3 922.4 878.7 910.7
Crazy Climber 35829.4 10780.5 34508.6 14999.3 9154.4 21991.6 36700.5 23176.7 28235.7 24633.3
Demon Attack 1971.0 152.1 627.6 681.6 646.5 1142.4 517.6 1131.7 310.5 854.6
Freeway 29.6 0.0 20.9 11.5 28.3 17.8 19.3 16.1 30.9 30.2
Frostbite 4334.7 65.2 871.0 224.9 1226.5 508.1 1170.7 1984.7 994.3 2381.1
Gopher 2412.5 257.6 467.0 539.4 400.9 618.0 660.6 684.3 650.9 822.3
Hero 30826.4 1027.0 6226.0 5956.5 4987.7 3722.6 5858.6 8597.5 4661.2 7919.3
Jamesbond 302.8 29.0 275.7 88.0 331.0 251.8 366.5 394.7 270.0 423.2
Kangaroo 3035.0 52.0 581.7 348.5 740.2 974.5 3617.4 2384.7 5036.0 8516.0
Krull 2665.5 1598.0 3256.9 3655.9 3049.2 4131.4 3681.6 3880.7 3571.3 3923.1
Kung Fu Master 22736.3 258.5 6580.1 6659.6 8155.6 7154.5 14783.2 14259.0 10517.3 10652.0
Ms Pacman 6951.6 307.3 1187.4 908.0 1064.0 1002.9 1318.4 1335.4 1320.9 1481.3
Pong 14.6 -20.7 -9.7 -2.5 -18.5 -14.3 -5.4 -3.0 -3.1 4.9
Private Eye 69571.3 24.9 72.8 59.6 81.9 24.8 86.0 93.9 93.3 100.0
Qbert 13455.0 163.9 1773.5 552.5 727.0 934.2 866.3 3620.1 553.8 3410.4
Road Runner 7845.0 11.5 11843.4 2606.4 5006.1 8724.7 12213.1 13429.4 12337.0 12049.7
Seaquest 42054.7 68.4 304.6 272.9 315.2 310.5 558.1 532.9 471.9 628.3
Up N Down 11693.2 533.4 3075.0 2331.7 2646.4 3619.1 10859.2 10225.2 4112.8 6675.7

Interquartile Mean 1.000 0.000 0.183 0.117 0.113 0.224 0.337 0.374 0.292 0.432
Optimality Gap 0.000 1.000 0.698 0.819 0.768 0.692 0.577 0.558 0.614 0.522
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Table 2: Standard deviations (STDs) of Baseline and MLR on Atari-100k. The STDs are calculated
based on 3 random seeds.

Game Baseline MLR Game Baseline MLR Game Baseline MLR
Alien 61.2 79.2 Crazy Climber 12980.1 2334.5 Kung Fu Master 5026.9 971.8
Amidar 70.7 48.0 Demon Attack 89.8 149.7 Ms Pacman 124.3 249.4
Assault 4.3 28.0 Freeway 0.3 1.0 Pong 11.5 3.1
Asterix 32.1 43.3 Frostbite 1295.3 607.3 Private Eye 11.5 0.0
Bank Heist 39.2 49.7 Gopher 7.9 266.0 Qbert 346.6 96.3
Battle Zone 2070.2 1139.6 Hero 2562.3 692.0 Road Runner 4632.6 669.1
Boxing 7.3 7.4 Jamesbond 108.2 20.8 Seaquest 107.1 92.2
Breakout 1.8 1.4 Kangaroo 3801.2 3025.9 Up N Down 919.3 531.5
Chopper Command 119.9 242.1 Krull 605.9 792.0
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Figure 3: Test performance during the training period (500k environment steps). Lines denote the
mean scores over 10 random seeds, and the shadows are the corresponding standard deviations.
In most environments on DMControl, our results (blue lines) are consistently better than Baseline
(orange lines).

C.2 Extended Ablation Study

We give more details of the ablation study. Again, unless otherwise specified, we conduct the ablations
on DMControl-100k with 5 random seeds.

Effectiveness evaluation. Besides the numerical results in Table 1 in the main manuscript, we present
the test score curves during the training process in Figure 3. Each curve is drawn based on 10 random
seeds. The curves demonstrate the effectiveness of the proposed MLR objective. Besides, we observe
that MLR achieves more significant gains on the relatively challenging tasks (e.g., Walker-walk and
Cheetah-run with six control dimensions) than on the easy tasks (e.g., Cartpole-swingup with a
single control dimension). This is because solving challenging tasks often needs more effective
representation learning, leaving more room for MLR to play its role.

Similarity loss. MLR performs the prediction in the latent space where the value range of the features
is unbounded. Using cosine similarity enables the optimization to be conducted in a normalized
space, which is more robust to outliers. We compare MLR models using mean squared error (MSE)
loss and cosine similarity loss in Table 3. We find that using MSE loss is worse than using cosine
similarity loss. Similar observations are found in SPR [20] and BYOL [7].
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Table 3: Ablation study of similarity loss (SimLoss), projection (Proj.) and prediction (Pred.) heads.

Model SimLoss Proj. Pred. Mean Median
Baseline - - - 613.7 613.0

MLR

Cosine 722.5 770.0
Cosine ✓ 750.3 819.5
Cosine ✓ ✓ 767.3 833.0
MSE ✓ ✓ 704.8 721.0
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Figure 4: Ablation studies of (a) cube depth k and (b) cube spatial size h & w. The result of each
model is averaged over 3 random seeds.

Projection and prediction heads. MLR adopt the projection and prediction heads following the
widely used design in prior works [7, 20]. We study the impact of the heads in Table 3. The results
show that using both projection and prediction heads performs best, which is consistent with the
observations in the aforementioned prior works.

Sequence length. Table 4 shows the results of the observation sequence length K at {8, 16, 24}. A
large K (e.g., 24) does not bring further performance improvement as the network can reconstruct
the missing content in a trivial way like copying and pasting the missing content from other states. In
contrast, a small K like 8 may not be sufficient for learning rich context information. A sequence
length of 16 is a good trade-off in our experiment.

Table 4: Ablation study of sequence length K.

Env. Baseline K=8 K=16 K=24
Finger, spin 822 ± 146 816 ± 129 907 ± 69 875 ± 63
Cartpole, swingup 782 ± 74 857 ± 3 791 ± 50 781 ± 58
Reacher, easy 557 ± 137 779 ± 116 875 ± 92 736 ± 247
Cheetah, run 438 ± 33 469 ± 51 495 ± 13 454 ± 41
Walker, walk 414 ± 310 473 ± 264 597 ± 102 533 ± 98
Ball in cup, catch 669 ± 310 910 ± 58 939 ± 9 944 ± 22

Mean 613.7 717.3 767.3 720.5
Median 613.0 797.5 833.0 758.5

Cube size. Our space-time cube can be flexibly designed. We investigate the influence of temporal
depth k and the spatial size (h and w, h = w by default). The results based on 3 random seeds are
shown in Figure 4. In general, a proper cube size leads to good results. The spatial size has a large
influence on the final performance. A moderate spatial size (e.g., 10× 10) is good for MLR . The
performance generally has an upward tendency when increasing the cube depth k. However, a cube
mask with too large k possibly masks some necessary contents for the reconstruction and hinders the
training.
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Table 5: Comparison of non-pretraining Baseline (i.e., Baseline), MLR-pretrained Baseline (denoted
as MLR-Pretraining) and our joint learning MLR (denoted as MLR-Auxiliary) on DMControl-100k.

DMControl-100k Cheetah, run Reacher, easy
Baseline 438 ± 33 557 ± 137

MLR-Pretraining 468 ± 27 862 ± 180
MLR-Auxiliary 495 ± 13 875 ± 92

Table 6: Cosine similarities of the learned representations from the masked observations and those
from the original observations in Baseline and MLR.

Cosine Similarity Cheetah, run Reacher, easy
Baseline 0.366 0.254

MLR 0.930 0.868

C.3 Discussion

More analysis on MLR-S, MLR-T and MLR. MLR-S masks spatial patches for each frame
independently while MLR-T performs masking of entire frames. MLR-S and MLR-T enable a model
to capture rich spatial and temporal contexts, respectively. We find that some tasks (e.g., Finger-
spin and Walker-walk) have more complicated spatial contents than other tasks on the DMControl
benchmarks, requiring stronger spatial modeling capacity. Therefore, MLR-S performs better than
MLR-T on these tasks. While for tasks like Cartpole-swingup and Ball-in-cup-catch, where objects
have large motion dynamics, temporal contexts are more important, and MLR-T performs better.
MLR using space-time masking harnesses both advantages in most cases. But it is slightly inferior to
MLR-S/-T in Finger-spin and Cartpole-swingup respectively, due to the sacrifice of full use of spatial
or temporal context as in MLR-S or MLR-T.

Evaluation on learned representations. We evaluate the learned representations from two aspects:
(i) Pretraining evaluation. We conduct pretraining experiments to test the effectiveness of the learned
representation. Data collection: We use a 100k-steps pretrained Baseline model to collect 100k
transitions. MLR pretraining: We use the collected data to pretrain MLR without policy learning (i.e.,
only with MLR objective). Representation testing: We compare two models on DMControl-100k,
Baseline with the encoder initialized by the MLR-pretrained encoder (denoted as MLR-Pretraining)
and Baseline without pretraining (i.e., Baseline). The results in Table 5 show that MLR-Pretraining
outperforms Baseline which is without pretraining but still underperforms MLR which jointly learns
the RL objective and the MLR auxiliary objective (also denoted as MLR-Auxiliary). This validates
the importance of the learned state representations more directly, but is not the best practice to take
the natural of RL into account for getting the most out of MLR. This is because that RL agents learn
from interactions with environments, where the experienced states vary as the policy network is
updated. (ii) Regression accuracy test. We compute the cosine similarities between the learned
representations from the masked observations and those from the corresponding original observations
(i.e., observations without masking). The results in Table 6 show that there are high cosine similarity
scores of the two representations in MLR while low scores in Baseline. This indicates that the learned
representations of MLR are more predictive and informative.

Performance on more challenging control tasks. We further investigate the effectiveness of MLR
on more challenging control tasks such as Reacher-hard and Walker-run. We show the test scores
based on 3 random seeds at 100k and 500k steps in Table 7. Our MLR still significantly outperforms
Baseline.

The relationship between PlayVirtual and our MLR. The two works have a consistent purpose,
i.e., improving RL sample efficiency, but address this from two different perspectives. PlayVirtual
focuses on how to generate more trajectories for enhancing representation learning. In contrast, our
MLR focuses on how to exploit the data more efficiently by promoting the model to be predictive
of the spatial and temporal context through masking for learning good representations. They are
compatible and have their own specialities, while our MLR outperforms PlayVirtual on average.
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Table 7: Comparison of Baseline and MLR on more challenging DMControl tasks.

Steps Model Reacher, hard Walker, run

100k Baseline 341 ± 275 105 ± 47
MLR 624 ± 220 181 ± 19

500k Baseline 669 ± 290 466 ± 39
MLR 844 ± 129 576 ± 25

Application and limitation. While we adopt the proposed MLR objective to two strong baseline
algorithms (i.e., SAC and Rainbow) in this work, MLR is a general approach for improving sample
efficiency in vision-based RL and can be applied to most existing vision-based RL algorithms (e.g.,
EfficientZero 7 [30]). We leave more applications of MLR in future work. We have shown the
effectiveness of the proposed MLR on multiple continuous and discrete benchmarks. Nevertheless,
there are still some limitations to MLR. When we take a closer look at the performance of MLR and
Baseline on different kinds of Atari games, we find that MLR brings more significant performance
improvement on games with backgrounds and viewpoints that do not change drastically (such as
Qbert and Frostbite) than on games with drastically changing backgrounds/viewpoints or vigorously
moving objects (such as Crazy Climber and Freeway). This may be because there are low correlations
between adjacent regions in spatial and temporal dimensions on the games like Crazy Climber and
Freeway so that it is more difficult to exploit the spatial and temporal contexts by our proposed
mask-based latent reconstruction. Besides, MLR requires several hyperparameters (such as mask
ratio and cube shape) that might need to be adjusted for particular applications.

D Broader Impact

Although the presented mask-based latent reconstruction (MLR) should be categorized as research
in the field of RL, the concept of reconstructing the masked content in the latent space may inspire
new approaches and investigations in not only the RL domain but also the fields of computer vision
and natural language processing. MLR is simple yet effective and can be conveniently applied to
real-world applications such as robotics and gaming AI. However, specific uses may have positive
or negative effects (i.e., the dual-use problem). We should follow the responsible AI policies and
consider safety and ethical issues in the deployments.

7EfficientZero augments MuZero [19] with an auxiliary self-supervised learning objective similar to SPR
[20] and achieves a strong sample efficiency performance on Atari games. We find that EfficientZero and our
MLR have their skilled games on the Atari-100k benchmark. While EfficientZero wins more games than MLR
(EfficientZero 18 versus MLR 8), the complexity of EfficientZero is much higher than MLR. Our MLR is a
generic auxiliary objective and can be applied to EfficientZero. We leave the application in future work.
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Table 8: Hyperparameters used for DMControl.

Hyperparameter Value
Frame stack 3
Observation rendering (100, 100)
Observation downsampling (84, 84)
Augmentation Random crop and random intensity
Replay buffer size 100000
Initial exploration steps 1000
Action repeat 2 Finger-spin and Walker-walk;

8 Cartpole-swingup;
4 otherwise

Evaluation episodes 10
Optimizer Adam
(β1, β2)→ (θf , θϕ, θg, θq, θω) (0.9, 0.999)
(β1, β2)→ (α) (temperature in SAC) (0.5, 0.999)

Learning rate (θf , θω) 0.0002 Cheetah-run
0.001 otherwise

Learning rate (θf , θϕ, θg, θq) 0.0001 Cheetah-run
0.0005 otherwise

Learning rate warmup (θf , θϕ, θg, θq) 6000 steps
Learning rate (α) 0.0001
Batch size for policy learning 512
Batch size for auxiliary task 128
Q-function EMA m 0.99
Critic target update freq 2
Discount factor 0.99
Initial temperature 0.1
Target network update period 1
Target network EMA m 0.9 Walker-walk

0.95 otherwise
State representation dimension d 50

MLR Specific Hyperparameters
Weight of MLR loss λ 1
Mask ratio η 50%
Sequence length K 16
Cube spatial size h× w 10 × 10
Cube depth k 4 Cartpole-swingup and Reacher-easy

8 otherwise
Decoder depth L (number of attention layers) 2
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Table 9: Hyperparameters used for Atari.

Hyperparameter Value
Gray-scaling True
Frame stack 4
Observation downsampling (84, 84)
Augmentation Random crop and random intensity
Action repeat 4
Training steps 100K
Max frames per episode 108K
Reply buffer size 100K
Minimum replay size for sampling 2000
Mini-batch size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: β1 0.9
Optimizer: β2 0.999
Optimizer: ϵ 0.00015
Max gradient norm 10
Update Distributional Q
Dueling True
Support of Q-distribution 51 bins
Discount factor 0.99
Reward clipping Frame stack [-1, 1]
Priority exponent 0.5
Priority correction 0.4→ 1
Exploration Noisy nets
Noisy nets parameter 0.5
Evaluation trajectories 100
Replay period every 1 step
Updates per step 2
Multi-step return length 10
Q network: channels 32, 64, 64
Q network: filter size 8 × 8, 4 × 4, 3 × 3
Q network: stride 4, 2, 1
Q network: hidden units 256
Target network update period 1
τ (EMA coefficient) 0

MLR Specific Hyperparameters
Weight of MLR loss λ 5 Pong and Up N Down

1 otherwise
Mask ratio η 50%
Sequence length K 16
Cube spatial size h× w 12 × 12
Cube depth k 8
Decoder depth L (number of attention layers) 2
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