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Abstract

A common approach to solving prediction tasks on large networks, such as node
classification or link prediction, begins by learning a Euclidean embedding of the
nodes of the network, from which traditional machine learning methods can then
be applied. This includes methods such as DeepWalk and node2vec, which learn
embeddings by optimizing stochastic losses formed over subsamples of the graph
at each iteration of stochastic gradient descent. In this paper, we study the effects of
adding an ℓ2 penalty of the embedding vectors to the training loss of these types of
methods. We prove that, under some exchangeability assumptions on the graph, this
asymptotically leads to learning a graphon with a nuclear-norm-type penalty, and
give guarantees for the asymptotic distribution of the learned embedding vectors.
In particular, the exact form of the penalty depends on the choice of subsampling
method used as part of stochastic gradient descent. We also illustrate empirically
that concatenating node covariates to ℓ2 regularized node2vec embeddings leads to
comparable, when not superior, performance to methods which incorporate node
covariates and the network structure in a non-linear manner.

1 Introduction

Network embedding methods [see e.g 6, 24–27, 48, 58, 64] aim to find a latent representation of the
nodes of the network within Euclidean space, in order to facilitate the solution of tasks such as node
classification and link prediction, by using the produced embeddings as features for machine learning
algorithms designed for Euclidean data. For example, they can be used for recommender systems in
social networks, or to predict whether two proteins should be linked in a protein-protein interaction
graph. Generally, such methods obtain state-of-the-art performance on these type of tasks.

A classical approach to representation learning is to use the principal components of the Laplacian of
the network [6]; however, this approach is computationally prohibitive for large datasets. In order
to scale to large datasets, methods such as DeepWalk [48] and node2vec [25] learn embeddings
via optimizing a loss formed over stochastic subsamples of the graph. Letting G = (V, E) denote
an undirected graph, and writing ωu ∈ Rd for the embedding of a vertex u ∈ V with embedding
dimension d such that d ≪ |V|, these methods learn embeddings by iterating over the following
process: we take a random walk (ui)i≤k over the graph, form a loss

L = −
k∑

i=1

∑
j : |j−i|≤W

log(σ⟨ωui
, ωuj
⟩)−

k∑
i=1

L∑
l=1

Evl∼N (·|ui)

[
log(1− σ(⟨ωui

, ωvl⟩))
]
, (1)

and then perform gradient updates of the form ωu ← ωu − η∇ωu
L for some step size η > 0.

Here ⟨·, ·⟩ denotes the Euclidean inner product, W is a window size, N (·|v) a negative sampling
distribution for vertex v and σ(y) := (1 + e−y)−1 the sigmoid function.
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Other methods take variations on this approach - for example, LINE [58] replaces the random walk
by sampling edges uniformly from the edge set of the graph. One can generalize (1) to capture both
these cases, by considering embeddings learned via stochastic updates

ωu ← ωu − η∇ωu
L where L =

∑
(i,j)∈P

ℓP(⟨ωi, ωj⟩) +
∑

(i,j)∈N

ℓN (⟨ωi, ωj⟩), (2)

P,N ⊆ V ×V are random subsamples of the graph called positive and negative samples respectively
[see e.g 32], and ℓP(·) and ℓN (·) are chosen to force the embeddings of vertex pairs appearing in
P close together, and those in N far away. Usually one takes ℓP(y) = − log σ(y) and ℓN (y) =
− log σ(−y). For example, in node2vec P is formed by taking concurrent edges in a random walk,
and in LINE, P is formed by uniform edge sampling; in both methods N is taken to be the same
negative sampling distribution N (u|v) ∝ deg(v)3/4 [46]. The scheme in (2) attempts to minimize

R :=
∑
i,j

{
P
(
(i, j) ∈ P)ℓP(⟨ωi, ωj⟩) + P

(
(i, j) ∈ N )ℓN (⟨ωi, ωj⟩)

}
(3)

obtained by averaging over the random process used to create P and N at each iteration of stochastic
gradient descent [55, 63]; see Appendix B.1 for a detailed derivation.

In the case where ℓP(y) = − log σ(y) and ℓN (y) = − log σ(−y), with P and N being random
subsets of E and (V × V) \ E (such as in LINE, or node2vec with a window length of 1), then we can
view (3) as the function obtained via trying to minimize the negative log-likelihood (equivalent to
maximizing the log-likelihood) of a probabilistic model

auv |ωu, ωv ∼ Bernoulli(σ(⟨ωu, ωv⟩)) independently for u < v, (4)

(auv = 1 indicating (u, v) is an edge) using the stochastic gradient descent scheme specified in (2)
(see Appendix B.2). If it is assumed that the embedding vectors are drawn i.i.d from some latent
distribution, then this corresponds to implicitly fitting an exchangeable model to the graph [44] - see
Appendix A for a brief discussion on these models. Here the distribution of the adjacency matrix
(auv)u,v is invariant to joint permutations of the vertices of the network, or equivalently (by the
Aldous-Hoover theorem [1]) arise from a probabilistic model

λu ∼ Unif([0, 1]) independently, auv |λu, λv ∼ Bernoulli(W (λu, λv)) independently, (5)

for some symmetric measurable function W : [0, 1]2 → [0, 1] called a graphon. We highlight that the
model in (4) is implicitly fitting a dense graph model to the data, even when the observed graph data
are sparse, as is the case with real world networks. One way of partially addressing this issue is to
consider a sparsified exchangeable graph with W → ρnW for some sparsifying sequence ρn → 0.

A natural example of a prior distribution on embedding vectors is ωi ∼ Normal(0, (2ξ)−1/2Id) for
some constant ξ > 0, so that the contribution to the negative log-likelihood of each embedding is
ξ∥ωi∥22. The full negative log-likelihood of (4) with such a prior distribution is then given by

−
∑
i,j

{aij log σ(⟨ωi, ωj⟩) + (1− aij) log σ(−⟨ωi, ωj⟩)}+ ξ
∑
i

∥ωi∥22, (6)

which depends only on the matrix Gij = ⟨ωi, ωj⟩; this loss can also arise by considering a weight
decay optimization scheme [see e.g 38]. In either case, letting Ω ∈ Rn×d be the matrix whose rows
are the ωi, so G = ΩΩT , we get that

n∑
i=1

∥ωi∥22 =

n∑
i=1

d∑
j=1

ω2
ij =

n∑
i=1

d∑
j=1

ωijωji =

n∑
i=1

(ΩΩT )ii = tr(ΩΩT ) = tr(G) = ∥G∥∗ (7)

where ∥G∥∗ is the nuclear norm, which equals the sum of the singular values of G.

As a result, we can view (6) as a regularized matrix factorization problem, where the nuclear-norm
penalty on the matrix G is well known to shrink the singular values of G exactly towards zero, and
to make G low rank [see e.g 4, 19, 37, 54]. This consequently lowers the effective dimension of
the embeddings. From a computation perspective, this is advantageous compared to treating the
embedding dimension as a tunable hyperparameter, as warm-start procedures can be used to efficiently
tune the regularization weight ξ (and consequently the effective embedding dimension). Tuning
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the dimension optimality is also desirable, as generally networks have exact lower-dimensional
factorizations than the embedding dimensions usually chosen in embedding models [16].

In this paper, our interest is in studying the effects of such a regularizer in the scenario where
embeddings are learned via subsampling, in which case the corresponding version of (3) becomes∑

i,j

{
P
(
(i, j) ∈ P)ℓP(⟨ωi, ωj⟩)+P

(
(i, j) ∈ N )ℓN (⟨ωi, ωj⟩)

}
+
∑
i

P
(
i ∈ V(P∪N )

)
∥ωi∥22, (8)

where V(P ∪ N ) is the set of vertices which appear either in P or N (see Appendix B.3). The
first part of the likelihood can still be thought of as corresponding to a matrix factorization term -
see e.g [50]. However, we note that for certain sampling schemes (e.g random walk samplers), the
probability a vertex is sampled is not equiprobable across vertices, and so the regularizer will not
be the same form as in (7). Despite this, we still want to analyze the extent to which nuclear norm
type regularization (and hence effective dimension reduction) may still arise. To do so, we study
minimizers (ω̂1, . . . , ω̂n) of (8) assuming the graph arises from a sparsified exchangeable graph, and
obtain guarantees of the form

1

n2

∑
i,j

(
⟨ω̂i, ω̂j⟩ −K(λi, λj)

)2
= op(1) and min

Q∈O(d)

1

n

∑
i

∥∥ω̂i − ψ(λi)Q
∥∥2
2
= op(1) (9)

for some functions K : [0, 1]2 → R and ψ : [0, 1]→ Rd obtained through the process of minimizing
the population objective (Section 3). Our results allow us to recover the motivation above that
the regularization acts to reduce the effective dimension of the learned embedding vectors. We
also illustrate experimentally that using such regularization can give performance competitive to
architectures such as GraphSAGE (Section 4). We note that our theoretical results apply in the regime
d≪ n, reflecting chosen embedding dimensions in practice. This means that (8) is non-convex in
the matrix Gij = ⟨ωi, ωj⟩ due to rank constraints, which complicates the theoretical analysis (as
compared to e.g [50].)

1.1 Related works

Guarantees for embedding methods: We highlight that there is an extensive literature on the
embeddings formed by the eigenvectors of the adjacency or Laplacian matrices of a network [e.g 3,
40–42, 56, 59]. Under various latent space models for the network, these works give guarantees on
quantities of the form maxi ∥ω̂i −Qψi∥22 for some orthogonal matrix Q and vectors ψi, to discuss
recovery of latent variables and/or obtain exact recovery in a community detection task. Stronger
bounds are obtained in this setting as they are able to directly apply matrix eigenvector perturbation
methods to study the embeddings, which we cannot with our approach; as a tradeoff, our approach
allows us to study embeddings learned via a variety of subsampling schemes, which these works do
not. We highlight that the second bound in (9) can still be used to give guarantees for weak recovery
of community detection [41]. There are a few works discussing random walk methods like node2vec,
albeit circumventing the non-convexity in the problem; [50] discusses the unconstrained minima of
the loss (1) when d = n, with [68] then examining the best rank r approximation to this matrix when
the generating model is a stochastic block model with k communities and r ≤ k. [21] covers the
non-convex regime d≪ n in the case where ξn = 0, i.e without regularization.

Nuclear norm penalties and ℓ2 regularized embeddings: In the context of matrix factorization (so
the matrix factors are embedding matrices), the effects of Frobenius norm penalties inducing nuclear
norm penalties are well known [e.g 53, 61]; generally, there is an extensive literature on the effects
of nuclear norm penalization in the finite-dimensional setting [e.g 4, 19, 37, 54]. In [67], it is also
shown that ℓ2 regularized node2vec gives an improvement in performance on downstream tasks.

Graphon estimation: We mention that our guarantees on the gram matrix formed by the learned
embeddings are similar to those obtained in the graphon estimation literature [see e.g 8, 9, 18, 22,
35, 39, 65, 66]. Depending on the choice of sampling scheme and loss, it is possible for the limiting
matrix K(λi, λj) to be an invertible transformation of W (λi, λj), and so we compare our rates of
convergence in such a scenario (see Remark 6 in Appendix D).
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2 Framework and assumptions of analysis

Given a sequence of graphs Gn = (Vn, En), and writing ωn = (ω1, . . . , ωn) with ωu ∈ Rd denoting
the d-dimensional embedding of vertex u, we study the regularized empirical risk function

Rn(ωn) + ξnRreg
n (ωn) where Rn(ωn) :=

∑
i,j∈[n]
i ̸=j

P
(
(i, j) ∈ S(Gn) | Gn

)
ℓ(⟨ωi, ωj⟩, aij),

Rreg
n (ωn) :=

∑
i∈[n]

P
(
i ∈ V(S(Gn)) | Gn

)
∥ωi∥22,

(10)

for ξn ≥ 0. Here, we define a subsample S(G) of a graph G as a collection of vertices V(S(G)) and
a symmetric subset of V(S(G)) × V(S(G)). The sampling probabilities are conditional on Gn as
we will soon assume that the Gn also arise from a probabilistic model. We note (10) arises from (8)
whenever P and N are random subsets of En and V × V \ En respectively (see Appendix B.4).

Throughout, ℓ(y, x) is either the cross-entropy loss ℓσ(y, x) := −x log σ(y)− (1− x) log σ(−y) or
the squared loss ℓ2(y, x) := (y − x)2. We now discuss our assumptions on the generative model
of the graph. Recall in the introduction we argued embedding methods are implicitly fitting an
exchangeable graph model; consequently, as a first step to analysis, we will assume that the graph
arises from a sparsified graphon (to account for the sparsity in graphs observed in the real world).
Assumption 1. We assume that the sequence of graphs (Gn)n≥1 have vertex sets Vn = [n] and arise
from a graphon process with generating graphon Wn = ρnW with ρn ≫ log(n)/n, so that

λi
i.i.d∼ Unif[0, 1] for i ∈ [n], aij |λi, λj

indep.∼ Bernoulli(ρnW (λi, λj)) for i < j.

We moreover suppose that W ∈ [c, 1− c] for some c > 0, and either a) W is piecewise constant on a
partition Q×Q where Q is a partition of [0, 1] of size κ (so the model is a stochastic block model),
or b) W is Hölder([0, 1]2, βW , LW ) for some exponents and constants βW ∈ (0, 1] and LW <∞.

We provide an introduction to graphon models in Appendix A.
Remark 1. Here we use the canonical choice of uniform latent variables for the graphon as
guaranteed by the Aldous-Hoover theorem for vertex exchangeable graphs [1]; in principle, our
results can extend to graphons on higher dimensional latent spaces by the same style of arguments [see
e.g 21]. We highlight that our assumptions are somewhat restrictive with regards to the boundedness
and and sparsity conditions; while it is common to allow ρn ≫ log(n)/n [e.g 47, 65] - in which
case the degree structure is regular, not necessarily realistic of real world networks - it is also
common to work in the regime where ρn = Θ(log(n)/n) or smaller [e.g 9, 66]. We highlight that in
general graphons, regardless of the sparsity factor, tend to not give rise to graphs with power-law or
heavy-tailed type degree structures, which is frequent with real world networks [15, 69].

For subsampling schemes used in practice (such as random walk and uniform edge samplers), the
sampling probability of vertices and edges depends only on local features of the graph. Following
[21], we can formalize this as follows:
Assumption 2. There exist sequences of measurable functions (fn)n≥1 and (g̃n)n≥1 and a sequence
sn = o(1), such that

max
i,j∈[n]
i ̸=j

∣∣∣n2P((i, j) ∈ S(Gn) | Gn)
fn(λi, λj , aij)

− 1
∣∣∣ = Op(sn), max

i∈[n]

∣∣∣nP(i ∈ V(S(Gn)) | Gn)
g̃n(λi)

− 1
∣∣∣ = Op(sn),

and moreover E[fn(λ1, λ2, a12)] = O(1), E[fn(λ1, λ2, a12)2] = O(ρ−1
n ), E[g̃n(λ1)] = Op(1).

This assumption allows us to replace the sampling probabilities in the empirical risk by functions
which depend on the latent variables and edge assignments in the model, from which the exchange-
ability in the model can be used to allow for a large sample analysis. Examples of sampling schemes
satisfying this condition are given in Section 3.2. We additionally impose some regularity conditions
on the "averaged" versions of the above functions defined by

f̃n(l, l
′, 1) := fn(l, l

′, 1)Wn(l, l
′), f̃n(l, l

′, 0) := fn(l, l
′, 0)(1−Wn(l, l

′)). (11)
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Assumption 3. We assume the the functions f̃n(l, l′, 1), f̃n(l, l′, 0) and g̃n(l) are uniformly bounded
above byM and away from zero byM−1 for some constantM ∈ (0,∞). We also suppose that either
a) there exists a partition Q of [0, 1] into κ parts such that f̃n(l, l′, 1) and f̃n(l, l′, 0) are piecewise
constant on Q×Q, and g̃n(l) is piecewise constant on Q; or b) the f̃n(l, l′, 1) and f̃n(l, l′, 0) are
Hölder([0, 1]2, β, L), and that the g̃n(l) are Hölder([0, 1], β, L).

Assumption 3 will follow as a consequence of Assumptions 1 and 2 for the sampling schemes
discussed in Section 3.2, with β depending on βW and the hyper-parameters of the sampling scheme.

3 Theoretical results

Our theoretical results take the following flavour: we identify the correct population versions (in
reference to an infinite graphon on a vertex set N) of Rn(ωn) and Rreg

n (ωn) in the large sample
limit n → ∞ to give a regularized population risk, and then use this to give guarantees about any
minimizers of Rn(ωn) + ξnRreg

n (ωn) being close (in some sense) to the unique minimizer of the
regularized population risk. As network embedding methods are used on very large networks, such a
large sample statistical analysis is appropriate.

We introduce the population versions ofRn(ωn) andRreg
n (ωn) respectively as

In[K] :=

∫
[0,1]2

∑
x∈{0,1}

f̃n(l, l
′, x)ℓ(K(l, l′), x) dldl′, I reg

n [K] :=

∫ 1

0

K(l, l)g̃n(l) dl, (12)

defined over functions K : [0, 1]2 → R. In[K] was first introduced in [21]. The formula given for
I reg
n [K] holds only for K whose diagonal is well defined; in general, if K admits a decomposition

K(l, l′) =

∞∑
i=1

µi(K)ψi(l)ψi(l
′) where

∫ 1

0

ψi(l)ψj(l)g̃n(l) dl =

{
1 if i = j,

0 otherwise,
(13)

and µi(K) ≥ 0 for all i (understood as a limit in L2([0, 1]2)), then we can extend the definition of
the regularizer to be I reg

n [K] :=
∑∞

i=1 µi(K). Consequently, the penalty corresponds to the trace
of K, when viewed as the kernel of a Hilbert-Schmidt operator. This means that I reg

n [K] should be
viewed as a nuclear-norm penalty on the kernel K, which encourages the µi(K) to be shrunk exactly
towards zero, similar to the finite dimensional scenario; also see e.g. Theorem 5.

3.1 Guarantees on the learned embedding vectors

We begin with a result which guarantees that In[K] + ξnI reg
n [K], once restricted to an appropriate

domain, is the correct population version ofRn(ωn) + ξnRreg
n (ωn).

Theorem 1. Suppose that Assumptions 2 and 3 hold, and that ξn = O(1). Define

Z≥0
d (A) :=

{
K : K(l, l′) = ⟨η(l), η(l′)⟩, η : [0, 1]→ [−A,A]d

}
for d ∈ N, A > 0.

Then we have that∣∣∣ min
ωn∈([−A,A]d)n

{
Rn(ωn) + ξnRreg

n (ωn)
}
− min

K∈Z≥0
d (A)

{
In[K] + ξnIreg

n [K]
}∣∣∣ = Op(rn)

where rn = sn + (dp/nρn)
1/2 + tn, with tn = (log κ/n)1/2 under Assumption 3a), tn =

(log(n)/n2β/(1+2β))1/2 under Assumption 3b), p = 3 for the cross-entropy loss and p = 5 for
the squared loss.

See Appendix C for the proof and a discussion of the rates given; we note that it is necessary that
d≪ n in order for rn → 0. The rates can be improved to give p = 1, under additional restrictions on
the parameter space (Remark 3). The interpretation of the setZ≥0

d (A) is as follows: if ωu ∈ [−A,A]d
is the embedding of vertex u, in the population limit η(λu) ∈ [−A,A]d should give the embedding
of a vertex with latent feature λu. As (10) is parameterized through terms of the form ⟨ωu, ωv⟩, the
population version of (10) should be parameterized through functions K(λu, λv) = ⟨η(λu), η(λv)⟩.
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Remark 2. We note that the assumption that the embedding vectors belong to a hypercube [−A,A]d
is not restrictive; for example, in practice embedding vectors are usually initialized randomly and
uniformly over [−1, 1]d. Moreover, our results allow for A to grow logarithmically with n, and only
change the bound by a poly-log factor. We highlight that if ξn →∞ as n→∞, then the embedding
vectors will shrink towards 0 as n→∞ (as seen in Figure 1). This is because the proof of Theorem 1
shows that any minimizer must satisfy n−1

∑n
i=1 ∥ωi∥22 = Op(ξ

−1
n ) = op(1) in such a regime.

We now give convergence guarantees for any sequence of embedding vectors minimizing (10).

Theorem 2. Suppose that Assumptions 2 and 3 hold and that ξn = O(1). Then for each n, there
exists a unique minimizer to the optimization problem

K∗
n = argmin

K∈Z≥0

{
In[K] + ξnIreg

n [K]
}

where Z≥0 := cl
( ⋃

d≥1

Z≥0
d (A)

)
is free of A > 0 (see Proposition 2 for details). Moreover, under some regularity conditions on the
K∗

n (see Theorem 7 in Appendix D), there exists A′ < ∞ free of n and a sequence of embedding
dimensions d = d(n)≪ n such that, for any sequence of minimizers

ω̂n ∈ argmin
ωn∈([−A1,A1]d)n

{
Rn(ωn) + ξnRreg

n (ωn)
}

satisfying max
i,j
|⟨ω̂i, ω̂j⟩| ≤ A2

with A1, A2 ≥ A′, we have that

1

n2

∑
i,j∈[n]

(
⟨ω̂i, ω̂j⟩ −K∗

n(λi, λj)
)2

= op(1).

Moreover, when Assumption 3a) holds, K∗
n can be computed via a finite dimensional convex program,

and is of rank r ≤ κ, in that an expansion of the form (13) holds with µi(K
∗
n) = 0 for i > r.

The case where ξn = 0 is proven in [21], which also verifies the convergence on simulated data. A
proof is given in Appendix D. Under certain circumstances, this allows us to give guarantees about
the distribution of the embedding vectors themselves.

Theorem 3. Suppose that K∗
n is regular in the sense of Theorem 2, with the conclusions of the

theorem holding. Moreover suppose that K∗
n is a kernel of rank r <∞, has a decomposition of the

form K∗
n(l, l

′) =
∑r

i=1 ϕn,i(l)ϕn,i(l
′) for some functions ϕn,i : [0, 1]→ R, and the dimension d of

the embedding vectors is chosen to be equal to r. Writing ϕn(l) = (ϕn,i(l))
r
i=1, we have

min
Q∈O(r)

1

n

n∑
i=1

∥∥ω̂i −Qϕn(λi)
∥∥2
2
= op(1). (14)

The assumption that d = r in Theorem 3 is a restrictive one, given that embedding dimensions in
practice are usually chosen to be one of either 128, 256 or 512. This can be alleviated by instead
giving a guarantee for the optimal r dimensional projection of the embedding vectors.

Theorem 4. If instead d > r in Theorem 3, let G̃ ∈ Rn×n denote the best rank r approximation to the
matrix Gij := (⟨ω̂i, ω̂j⟩)ij , and write G̃ = Ω̃Ω̃T for some Ω̃ ∈ Rn×r. Then n−2∥G̃−G∥2F = op(1),
and writing ω̃i for the rows of Ω̃, the guarantee in (14) holds with ω̃i replacing the ω̂i.

Informally, this says that the embedding vectors approximately lie on a r-dimensional subspace
which contains some latent information about the network, depending on the minimizing kernel K∗

n.
We now highlight that the assumption that K∗

n is of finite rank r <∞ is not restrictive even when W
is not a SBM; this is a consequence of the effect of the regularization penalty I reg

n [K].

Theorem 5. Let ℓ(y, x) be the squared loss, and suppose that ρn = 1, f̃n(l, l′, 1) = f̃n(l, l
′, 0) = c1

and g̃n(l) = c2 for some constants c1, c2 > 0 (see e.g. Algorithm 1 in Section 3.2). Then if W is
Hölder([0, 1]2, β, L), the minima of In[K] + ξnIreg

n [K] over Z≥0 is of finite rank for any ξn > 0,
and is also Hölder continuous of exponent β.

We highlight that this result also shows that the regularizer acts to shrink the singular values of a mini-
mizer of In[K]+ ξnI reg

n [K] exactly towards zero. See Appendix E for proofs of Theorems 3, 4 and 5.
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3.2 Sampling schemes satisfying Assumption 2

We now discuss some examples of frequently used sampling schemes which satisfy Assumption 2.
Proofs of the results in this section can be found in Appendix F. We introduce the notation

W (λ, ·) :=
∫ 1

0

W (λ, y) dy, EW (α) :=

∫ 1

0

W (λ, ·)α dλ, EW := EW (1). (15)

Algorithm 1 (Uniform vertex sampling). Given a graph Gn and number of samples k, we select k
vertices from Gn uniformly and without replacement, and then return S(Gn) as the induced subgraph
using these sampled vertices.

Lemma 1. For Algorithm 1, Assumption 2 holds with fn(λi, λj , aij) = k(k − 1), g̃n(λi) = k and
sn = 1/n.

Algorithm 2 (Uniform edge sampling [58]). Given a graph Gn, number of edges to sample k, and
number of negative samples l per positive sample,

i) We form a sample S0(Gn) by sampling k edges from Gn uniformly and without replacement;

ii) We form a sample set of negative samples Sns(Gn) by drawing, for each u ∈ V(S0(Gn)), l
vertices v1, . . . , vl i.i.d according to the unigram distribution

Ugα
(
v | Gn

)
∝ P

(
v ∈ V(S0(Gn)) | Gn)α

and then adjoining (u, vi)→ Sns(Gn) if auvi = 0.

We then return S(Gn) as the union of S0(Gn) and Sns(Gn).

Lemma 2. For Algorithm 2, Assumption 2 holds with sn = (log(n)/nρn)
−1/2,

fn(λi, λj , 1) =
2k

EW ρn
, fn(λi, λj , 0) =

2kl

EWEW (α)

{
W (λi, ·)W (λj , ·)α +W (λi, ·)αW (λj , ·)

}
,

g̃n(λi) =
2kW (λi, ·)
EW

+
2klW (λi, ·)α

EWEW (α)
·
∫ 1

0

(1− ρnW (λi, y))W (y, ·) dy.

Algorithm 3 (Random walk sampling [25, 48]). Given a graph Gn, a walk length k, number of
negative samples l per positively sampled vertex and unigram parameter α, we

i) Perform a simple random walk on Gn of length k, beginning from its stationary distribution, to
form a path (ṽi)i≤k+1, and report (ṽi, ṽi+1) for i ≤ k as part of S0(Gn);

ii) For each vertex ṽi, we select l vertices (ηj)j≤l independently and identically according to the
unigram distribution

Ugα(v | Gn) ∝ P
(
ṽi = v for some i ≤ k | Gn

)α
and then form Sns(Gn) as the collection of vertex pairs (ṽi, ηj) which are not an edge in Gn.

We then return S(Gn) as the union of S0(Gn) and Sns(Gn).

Lemma 3. For Algorithm 3, Assumption 2 holds with sn = (log(n)/nρn)
1/2,

fn(λi, λj , 1) =
2k

EW ρn
, fn(λi, λj , 0) =

l(k + 1)

EWEW (α)

{
W (λi, ·)W (λj , ·)α +W (λi, ·)αW (λj , ·)

}
,

g̃n(λi) =
kW (λi, ·)
EW

+
(k + 1)lW (λi, ·)α

EW (α)EW
·
∫ 1

0

(1− ρnW (λi, y))W (y, ·) dy.

Examining the formula for g̃n(λ) above, we see that for random walk samplers the shrinkage provided
to the learned kernel will be greater for vertices with larger degrees. Indeed, as K(λ, λ) = ∥η(λ)∥22
for K ∈ Z≥0

d (A), the larger g̃n(λ) is, ∥η(λ)∥22 will be forced closer towards zero.
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(a) ξ = 0 (b) ξ = 5× 10−7 (c) ξ = 10−6 (d) ξ = 10−3

Figure 1: TSNE visualizations of Cora network embeddings, learnt using node2vec for different
regularization penalties ξ, with different colors representing different classes. As ξ increases, the

classes begin to cluster together and separate, and then eventually collapse towards the origin.

3.2.1 An illustrating example

We now give a brief illustration of our theoretical results under a simple graphon model. To do
so, we consider a sparsified SBM with κ communities, each equiprobable, and with probabilities
ρnp and ρnq (p > q) denoting the within-community and between-community edge probabilities.
Writing Ai = [(i− 1)/κ, i/κ) for i ∈ [κ], this can be represented as a graphon model with graphon
Wn = ρnW , where W (u, v) = p if (u, v) ∈

∏κ
i=1Ai ×Ai and W (u, v) = q otherwise.

Theorem 6. Suppose that the graph arises from the model discussed above, we use a cross-entropy
loss and the random walk sampling scheme as described in Algorithm 3. Then Theorem 2 holds such
that, for any minimizer ωn = (ω̂1, . . . , ω̂n) satisfying (2) of Theorem 2, we have that

1

n2

∑
i,j

(
⟨ω̂i, ω̂j⟩ −Kn(λi, λj)

)2
= op(1) where Kn(u, v) = (K̃n)i,j if (u, v) ∈ Ai ×Aj ,

and K̃n ∈ Rκ×κ is defined as the unique positive semi-definite minimizer of the function

− 1

κ2

∑
i,j

{
2kc1 · (pδij + q(1− δij)) log σ(K̃ij) + 2l(k + 1) log σ(−K̃ij)

}
+ ξc2∥K̃∥∗

where we write c1 := ((p+ (κ− 1)q)/κ)−1 and c2 := k + l(k + 1)(1− ρnc−1
1 ). In particular, for

the above example we see that the form of the regularizer is exactly the nuclear norm of K̃, and so as
ξ increases, the singular values of the minimizer will be shrunk towards zero.

4 Experiments

We now examine the performance in using regularized node2vec embeddings for link prediction
and node classification tasks, and illustrate comparable, when not superior, performance to more
complicated encoders for network embeddings. We perform experiments on the Cora, CiteSeer and
PubMedDiabetes citation network datasets (see Appendix G for more details), which we use as they
are commonly used benchmark datasets - see e.g [26, 28, 34, 64].

4.1 Methods used for comparison

For our experiments, we consider 128 dimensional node2vec embeddings learned with either no
regularization, or a ℓ2 penalty on the embedding vectors with weight ξ ∈ {1, 5} × 10−{3,4,5,6,7,8};
and with or without the node features concatenated. We compare these against methods which
incorporate the network and covariate structure together in a non-linear fashion. We consider three
methods - a two layer GCN [33] with 256 dimensional output embeddings trained in an unsupervised
fashion through the node2vec loss, a two layer GraphSAGE architecture [26] with 256 dimensional
output embeddings trained through the node2vec loss, and a single layer 256 dimensional GCN
trained using Deep Graph Infomax (DGI) [64]. We highlight that the GCN, GraphSAGE and DGI
always have access to the nodal features during training. All of our experiments used the Stellargraph
[20] implementations for each method. Further experimental details are given in Appendix G.
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Table 1: PR AUC scores for link prediction experiments, and macro F1 scores for node classification
experiments. "n2v" stands for node2vec without regularization; "rn2v" stands for regularized

node2vec with the best score over the specified grid of penalty values; "NF" indicates that node
features were concatenated to the learned node embeddings.

Methods PR AUC (link prediction) Macro F1 (node classification)

Cora CiteSeer PubMed Cora CiteSeer PubMed

n2v 0.84 ± 0.01 0.80 ± 0.02 0.86 ± 0.01 0.67 ± 0.04 0.48 ± 0.03 0.76 ± 0.00
rn2v 0.90 ± 0.01 0.88 ± 0.02 0.91 ± 0.00 0.73 ± 0.03 0.55 ± 0.04 0.77 ± 0.00

n2v+NF 0.88 ± 0.01 0.90 ± 0.01 0.92 ± 0.00 0.70 ± 0.03 0.54 ± 0.03 0.79 ± 0.01
rn2v+NF 0.92 ± 0.01 0.93 ± 0.01 0.95 ± 0.00 0.74 ± 0.03 0.58 ± 0.04 0.84 ± 0.00

GCN 0.90 ± 0.01 0.87 ± 0.02 0.94 ± 0.00 0.67 ± 0.04 0.48 ± 0.04 0.80 ± 0.01
GSAGE 0.90 ± 0.01 0.90 ± 0.01 0.88 ± 0.01 0.74 ± 0.04 0.56 ± 0.03 0.79 ± 0.00

DGI 0.91 ± 0.01 0.93 ± 0.01 0.95 ± 0.00 0.76 ± 0.03 0.60 ± 0.02 0.84 ± 0.00

4.2 Link prediction experiments

For the link prediction experiments, we create a training graph by removing 10% of both the edges
and non-edges within the network, and use this to learn an embedding of the network. We then
form link embeddings by taking the entry-wise product of the corresponding node embeddings, use
10% of the held-out edges to build a logistic classifier for the link categories, and then evaluate the
performance on the remaining edges, repeating this process 50 times.

The PR AUC scores are given in Table 1 and visualized in Figure 2. Provided the regularization
parameter is chosen optimally, we see an improvement in performance compared to using no
regularization, with the jump in performance slightly greater when nodal features are not incorporated
into the embedding. The optimally regularized version of node2vec, even without including the node
features, is competitive with the GCN and GraphSAGE (being equal or outperforming at least one of
them across the three datasets), and that the version with concatenated node features is as good as the
GCN trained using DGI. For all the datasets, we observe a sharp decrease in performance after the
optimal weight, suggesting that it needs to be chosen carefully to avoid removing the informative
network structure. As seen in Figure 1, this occurs as the learned embeddings become randomly
distributed at the origin once the regularization weight is too large.

4.3 Node classification experiments

To evaluate performance for the node classification task, we learn a network embedding without
access to the node labels, and then learn/evaluate a one-versus-rest multinomial node classifier using
5%/95% stratified training/test splits of the node labels. We repeat this over 25 training runs of the
embeddings, and a further 25 training/test splits for the node classifiers per embedding. Table 1 and
Figure 2 show the average macro F1 scores and their standard deviation for each method and dataset.
Similar to the link prediction experiments, we see that the optimally regularized node2vec methods
are competitive, if not outperforming, the GCN and GraphSAGE trained through the node2vec loss,
and is outperformed by the GCN learned using DGI by no more than two percentage points. In
these experiments, the standard deviations correspond partially to the randomness induced by the
training/test splits of the node labels, and suggest that the regularized version of node2vec is no less
robust to particular choices of training/test splits than the other methods.

Interestingly, we note that the optimal performance on PubMed is given by the regularized node2vec
with node features. However, as the highest level of performance is performed when the regularization
weight is so large that the learnt embeddings are uninformative (as illustrated by the massive decrease
in performance of the regularized method without node features), this suggests that the nodes can be
classified using only the covariate information, and that the network features are not needed. As the
dataset only has three distinct classes corresponding to the academic field, and the node features are
TF-IDF embeddings of the academic papers, this is not too surprising.
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(a) PR AUC scores on Cora (b) PR AUC scores on CiteSeer (c) PR AUC scores on PubMed

(d) Macro F1 scores on Cora (e) Macro F1 scores on CiteSeer (f) Macro F1 scores on PubMed

Figure 2: Plots of average PR AUC scores for link prediction and macro F1 scores for node
classification (bands representing plus/minus one standard deviation), against the regularization

penalty used for node2vec with (purple) and without (blue) concatenated node features. The results
from GCN, GraphSAGE and DGI are given as horizontal bars in yellow, green and red respectively.

5 Conclusion

In this paper we have theoretically described the effects of performing ℓ2 regularization on network
embedding vectors learned by schemes such as node2vec, describing the asymptotic distribution of
the embedding vectors learned through such schemes, and showed that the regularization helps to
reduce the effective dimensionality of the learned embeddings by penalizing the singular values of
the limiting distribution of the embeddings towards zero. We do so in the non-convex regime d≪ n,
reflecting how embedding dimensions are chosen in the real world. We moreover highlight empirically
that using ℓ2 regularization with node2vec leads to competitive performance on downstream tasks,
when compared to embeddings produced from more recent encoding and training architectures.

We end with a brief discussion of some limitations of our works, and directions for future work.
Generally, graphons are not realistic models for graphs; we suggest that our work could be extended
to frameworks such as graphexes [10, 11, 62] which can produce more realistic degree distributions
for networks, but have enough underlying latent exchangeability for our arguments to go through.
We ignore aspects of optimization, i.e whether the minima of (10) are obtained in practice, which
we believe would be an interesting area of future research. As for our experimental results, we note
that methods such as GraphSAGE are better than node2vec in that they provide embeddings for data
unobserved during training, and also scale better to larger networks. Consequently, we believe our
experiments should be used primarily as motivation to investigate better methods for incorporating
nodal covariates into network embedding models, and how to regularize embeddings produced by
encoder methods such as GCNs or GraphSAGE.
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