
Supplementary Material1

Section A provides additional details for the method. The experiment details are described in Section2

B, including experimental setup and results. We also present more qualitative results in Section C.3

A Method details4

A.1 Cross-modal Interaction5

Trajectory Encoder. The trajectory encoder aims to learn the human motion representation via6

a transformer structure. The observed trajectory of person p is Xp with the size of Tpas × 2 (e.g.,7

Tpas = 10 in PAV). We obtain the human motion with the size of 10 × 4 × 512 using Ntra = 48

self-attention layers, where 512 is the embed dimension. We reshape the motion features from size9

10× 4× 512 to 10× 2048 and project it from dimension 10× 2048 to 10× 512. Thus, we obtain10

the human motion representation Xtra on PAV dataset with the size of 10× 512.11

Scene Encoder. The scene encoder is to extract the environment information. The scene semantic12

features are with the size of 150× 56× 56, where 150 is the number of semantic classes. We reshape13

the semantic features from size (150× 56× 56) to (150× 3, 136), and project them from dimension14

(150 × 3, 136) to (150 × 512) through a Multi-Layer Perception layer. As a result, we obtain the15

scene representation Xsce with the size of 150× 512.16

Cross-modal Transformer. The cross-modal transformer with Ncro = 6 layers aims to learn17

the interaction between human motion and environment information. We obtain the inter-modal18

representation (X̂tra, X̂sce) via the cross-modal transformer. The size of X̂tra and X̂sce are 10× 51219

and 150 × 512, respectively. We take the last element (LE) htra ∈ R512 of X̂tra and the output20

hsce ∈ R512 of X̂sce after the global pooling layer (GPL), and get the offsets Op ∈ R50×221

(Tfut = 50 in PAV) through a Multi-Layer Perception layer.22

A.2 Training23

We use the curve smoothing (CS) regression loss Lcs to reduce the impact of randomness and24

subjectivity. The quadratic Bézier curve is adopted to smooth the trajectory, which can be formulated25

as follows:26

CS(Zp, t) = (1− t)2z−Tpas+1
p + 2(1− t)tzT

′

p + t2z
Tfut
p , 0 ≤ t ≤ 1 (1)

where z
−Tpas+1
p is the starting point of the trajectory, and z

Tfut
p is the destination of the trajectory.27

zT
′

p is the control point of this trajectory, which can be calculated as follows:28

zT
′

p = (1− t)z−Tpas+1
p + tz

Tfut
p (2)

Then we divide the time period t ∈ [0, 1] equidistantly, and get the smoothed trajectory Zp =29

[Xp;Y p] = {ztp}
Tfut

t=−Tpas+1.30

B Experiments31

B.1 Experimental Setup32

Dataset Details. ETH/UCY datasets are the benchmark commonly used for human trajectory33

prediction. The benchmark contains videos from 5 scenes, including ETH, HOTEL, UNIV, ZARA1,34

and ZARA2. Following [19], we sample the frames at 2.5 HZ and predict future nfut = 12 frames35

given the observed npas = 8 frames. We use the preprocessed data provided by YNet [19], which36

converts the raw data from word coordinate into image pixel space. We use the leave-one-scene-out37

strategy with 4 scenes for training and the remaining scene for testing. PAV is a more challenging38

dataset with diverse movement patterns, which includes 3 videos PETS, ADL, and VENICE. We39

divide the videos into training (80%) and testing (20%) sets, and PETS/ADL/VENICE contain40
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2,370/2,935/4,200 training sequences and 664/306/650 testing sequences, respectively. We use41

observed npas = 10 frames to predict future nfut = 50 frames.42

Evaluation Metrics. For ETH and UCY datasets, we adopt the standard metrics (i.e., ADE and FDE).43

Due to the limitations discussed in Section 4.1, we introudce curve smoothing (CS) into current44

metrics on PAV dataset, and thus we propose CS-ADE and CS-FDE. The curve smoothing function45

is defined as the same as Equation 1.46

B.2 Experimental Results47

PAV without CS. We conduct experiments on PAV using the traditional ADE/FDE metrics. Table 148

shows the quantitative result of our method and previous human trajectory prediction methods. Com-49

pared to the state-of-the-art results of YNet, the proposed SHENet achieves 5.1%/4.0% improvement50

over ADE/FDE on average. In particular, our method improves the FDE by 13.6% on PETS.51

Table 1: Comparison with SOTA methods on PAV dataset.

Method Evaluation metrics: ADE ↓ / FDE ↓ (in pixels)

PETS ADL VENICE AVG

SS-LSTM [35] 57.75 / 120.23 24.84 / 57.03 116.77/ 36.37 33.12 / 71.21
Social-STGCN [22] 63.76 / 159.30 31.29 / 73.09 19.38 / 43.13 38.14 / 91.84

Next [16] 51.78 / 109.58 24.14 / 60.06 12.38 / 25.96 29.43 / 65.20
MANTRA [20] 49.87 / 110.14 25.78 / 58.12 16.79 / 39.50 30.81 / 69.25

YNet [19] 53.46 / 117.81 21.95 / 45.88 12.29 / 26.61 29.23 / 63.43

SHENet (Ours) 46.31 / 101.74 22.46 / 50.71 14.43 / 30.21 27.73 / 60.89

ETH/UCY without Video Data. We also conduct the experiments on ETH/UCY without using the52

video data, shown in Table 2. Since MANTRA didn’t conduct experiments on ETH/UCY, we use the53

results of MANTRA reported in the work [31].54

Table 2: Comparison of state-of-the-art (SOTA) methods on ETH/UCY datasets. The best-of-20 is
adopted for evaluation.

Method Evaluation metrics: ADE ↓ / FDE ↓ (in meters)

ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social-STGCNN [22] 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75
MANTRA [20] 0.48 / 0.88 0.17 / 0.33 0.37 / 0.81 0.27 / 0.58 0.30 / 0.67 0.32 / 0.65

YNet [19] 0.28 / 0.33 0.10 / 0.14 0.24 / 0.41 0.17 / 0.27 0.13 / 0.22 0.18 / 0.27
MemoNet [32] 0.40 / 0.61 0.11 / 0.17 0.24 / 0.43 0.18 / 0.32 0.14 / 0.24 0.21 / 0.35
SHENet (Ours) 0.37 / 0.58 0.17 / 0.28 0.26 / 0.43 0.21 / 0.34 0.18 / 0.30 0.24 / 0.39

From Table 2, we can note that our method achieves the comparable performance without using the55

video data.56

SDD. We also report the performance of different methods on SDD in Table 3. It shows that our57

model performs a little bit worse than the results of YNet [19] and MemoNet [32]. Nevertheless, our58

Table 3: Comparison of state-of-the-art (SOTA) methods on SDD dataset. The best-of-20 is adopted
for evaluation.

Method MANTRA [20] PECNet [18] YNet [19] MemoNet [32] SHENet (Ours)

ADE 8.96 9.96 7.85 8.56 9.01
FDE 17.76 15.88 11.85 12.66 13.24

method performs better than previous baselines (such as PECNet [18], MANTRA [20]). Consequently,59

our method can achieve reasonable performance in bird-eye-view scenario.60
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B.3 Analysis61

Distance Threshold θ. θ is used to determine the update of trajectory bank. The typical value of θ is62

set according to the trajectory length. When
the ground truth trajectory is longer in terms
of pixel, the absolute value of prediction er-
ror is usually larger. However, their relative
errors are comparable. Thus, the θ is set to
be 75% of the training error when the error
converges. In our experiments, we set θ = 25
in PETS, and θ = 6 in ADL. The "75% of the

Table 4: Comparison between different parameter
θ on PAV dataset. Results are the average of the
three scenarios.

θ 25% 50% 75% 100%

ADE 22.82 20.48 18.89 20.78
FDE 58.28 51.67 45.13 54.52

training error" is obtained from the experimental result, shown in Table 4.63

Different K in K-medoids. We study the
effect of setting different number of initial
clusters K, shown in Table 5 . We can note
that the initial number of clusters is not sen-
sitive to the prediction results, especially
when the initial number of clusters is 24-
36. Therefore, we can set K to 32 in our
experiments.

Table 5: Comparison between the initial number of
clusters K on PAV dataset.

K 24 28 32 36

ADE 19.28 19.23 18.89 19.17
FDE 45.48 45.59 45.13 45.62

Analysis for Bank Complexity. The time complexity of the searching and updating are O(N)64

and O(1). Their space complexity is O(N). The group trajectory number N ≤ 1000. The time65

complexity of the clustering process is O(β2 +MKβ), and the space complexity is O(β2 +Mβ).66

β is the number of trajectories for clustering. K is the number of clusters, and M is the number of67

iterations for clustering methods.68

C Qualitative Results69

Figure 1 presents the visualization of clustered trajectories. We can see that similar trajectories are70

clustered into the same group. Each group trajectory represents a moving pattern of a group of people.71

Figure 2 illustrates the qualitative results of SHENet and other methods. Our method is superior to72

others when it comes to human crossing intersections (e.g., the first row in Figure 2) or turning (e.g.,73

the second row in Figure 2). Figure 3 includes the qualitative results of our SHENet without/with74

curve smoothing (CS). The first row presents the results of using MSE loss Ltra. We can note that75

our SHENet can not provide a correct path from scene history, since there exists some noise (e.g.,76

abrupt and sharp turns) in past trajectories. Thus to reduce the impact of noise, we use the CS loss77

Lcs to train our model. In contrast, the qualitative results of using Lcs are shown in the second row78

of Figure 3. We can see that the proposed CS significantly reduces the impact of randomness and79

subjectivity, and produces reasonable predictions by our method.80

Figure 1: Visualization of clustered trajectories (12 clusters). Each group trajectory is the average of
the trajectories belonging to the same cluster.
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Figure 2: Qualitative visualization of our method and state-of-the-art methods. The blue line is the
observed trajectory. The red and green lines show the predicted and ground truth trajectories.

(a) Results of using Ltra.

(b) Results of using Lcs.

Figure 3: Qualitative visualization of our SHENet without/with CS. The results of using Ltra give a
wrong destination, while the results of using Lcs produce reasonable predictions.
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