
A Proofs

A.1 Proof of invariance with respect to λmax

To prove that Algorithm 1 is invariant with respect to the choice of λmax as long as λmax ≥ λm(t)
for all m ∈ M and t ∈ R+, we only need to prove that

(i) λm(t)P C |X=1,Λ=λm(t) ; do(Λ=λm′ (t))(X) whenever λm(t) < λm′(t)

and
(ii) λm(t) + (λmax − λm(t))P C |X=0,Λ=λm(t) ; do(Λ=λm′ (t))(X) whenever λm(t) ≥ λm′(t)

are invariant to the specific choice of λmax.

To prove that (i) is invariant, we first rewrite the counterfactual probability
P C |X=1,Λ=λm(t) ; do(Λ=λm′ (t)) in terms of uniform random variables, following Section 4.2
in Huijben et al. [55]:
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where U0, U1 ∼ U [0, 1]. Now, for a fixed U0 and U1, the above inequality can be rewritten as follows:
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In the last inequality, the terms containing λmax on the left and right hand side are identical and can
be canceled. This proves that (i) is invariant to the specific choice of λmax.

To prove that (ii) is also invariant, we proceed similarly as in (i) and first rewrite the counterfactual
probability P C |X=0,Λ=λm(t) ; do(Λ=λm′ (t)) in terms of uniform random variables:

P C |X=0,Λ=λm(t) ; do(Λ=λm′ (t))(X = 1) =
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where U0, U1 ∼ U [0, 1]. Now, for a fixed U0 and U1, the above inequality can be rewritten as follows:
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Now, using the fact that − log(U0) and − log(U1) are distributed as exponential random variables
with rate λ = 1 and the CDF of the ratio X = log(U0)/ log(U1) of two exponential random variables
with rate λ1 is given by P[X ≤ x] = 1/(1/x+ 1), we have that:

P C |X=0,Λ=λm(t) ; do(Λ=λm′ (t))(X = 1) = PU0,U1
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Then, it readily follows that

(λmax − λm(t))
λm′(t)− λm(t)

λmax − λm(t)
= λm′(t)− λm(t).

This proves that (ii) is invariant to the specific choice of λmax.
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A.2 Proof of Proposition 1

If λm(ti) ≥ λm′(ti), then we have:
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Now, by Eq. 5, the last inequality is equivalent to:

P C ; do(Λ=λm′ (ti))(X = 0)

P C ; do(Λ=λm(ti))(X = 0)
≥ P C ; do(Λ=λm′ (ti))(X = 1)

P C ; do(Λ=λm(ti))(X = 1)
, (7)

which is exactly the counterfactual stability property. Finally, by Theorem 2 in [21], we know that
the Gumbel-Max SCM satisfies the counterfactual stability property. As a result, Eq. 7 implies that

P C |X=0,Λ=λm(ti) ; do(Λ=λm′ (ti))(X = 1) = 0,

as desired. The proof for the second case is exactly the same.
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B Algorithms

B.1 Lewis’ thinning algorithm

Within Algorithm 4, lines 4–6 sample an event from a Poisson process with constant intensity λmax
using inversion sampling and lines 11–14 accept/reject the event according to the ratio between the
intensity of interest and λmax at the time of the event.

Algorithm 4 Lewis’ thinning algorithm
1: Input: λ(t), λmax, T.
2: Initialize: s = 0,H = ∅.

3: function LEWIS(λ(t), λmax, T )
4: while true do
5: u1 ∼ Uniform(0, 1)
6: w ← − lnu/λmax
7: s← s+ w
8: if s > T then
9: break

10: end if
11: Hmax ← Hmax ∪ {s}
12: p← λ(s)/λmax
13: u2 ∼ Uniform(0, 1)
14: if u2 ≤ p then
15: H ← H∪ {s}
16: end if
17: end while

18: returnH,Hmax\H
19: end function

B.2 Thinning algorithm for Hawkes processes

Algorithm 5 samples a sequence of events from a linear Hawkes process using its branching process
interpretation [49], where LEWIS(·) samples a sequence of events using Algorithm 4, γ0(t) = µ and
γi(t) = αg(t− ti).

Algorithm 5 It samples a sequence of events from a linear Hawkes process using its branching
process interpretation.
1: Input: µ, α, g(t), λmax, T .
2: Initialize: H = ∅.

3: function SAMPLEHAWKES(λ(t), λmax, T )
4: H ← LEWIS(γ0(t), λmax, T )

5: H′ ← H
6: while |H′| > 0 do
7: ti ← mint∈H′ t
8: Hi, ← LEWIS(γi(t), λmax, T )
9: H′ ← Hi ∪H′\{ti}

10: H ← H∪Hi

11: end while

12: returnH
13: end function

B.3 Sampling from the Gumbel noise posterior

Algorithm 6 draws a sample from the noise posterior P C |Xi=xi,Λi=λm(ti) ; do(Λi=λm′ (ti))(Ui,x) using
the idea of A* sampling [48]. In the noise posterior, the maximum value and the argmax of the
shifted Gumbel variables are independent, and the maximum value has a standard Gumbel distribution.
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Therefore, one can sample the maximum value and then sample the remaining values from the shifted
Gumbel distributions truncated at this maximum value, which we denote as TRUNCGUMBEL(·).

Algorithm 6 It draws a sample from the posterior of a Gumbel noise variable using A* sampling [48].
1: Input: Hm,Hmax\Hm, λm(t), λm′(t), λmax.
2: Initialize: G ∼ GUMBEL(0, 1), α1 = λm(t)/λmax, α0 = 1− α1.

3: if ti ∈ Hm then
4: P C |X=1,Λ=λm(t) ; do(Λi=λm′ (t))(U0) = TRUNCGUMBEL(log(α0), G)− log(α0)

5: P C |X=1,Λ=λm(t) ; do(Λi=λm′ (t))(U1) = G− log(α1)
6: else
7: P C |X=0,Λ=λm(t) ; do(Λi=λm′ (t))(U0) = G− log(α0)

8: P C |X=0,Λ=λm(t) ; do(Λi=λm′ (t))(U1) = TRUNCGUMBEL(log(α1), G)− log(α1)
9: end if

B.4 Sampling Counterfactual Events in a SIR Epidemic Model

As discussed in Section 6, the SIR model defined by Eq. 6 can be viewed as a (networked) mul-
tidimensional Hawkes process with stochastic triggering kernels defined by step functions. More
specifically, let ti and τi = ti +∆i be the infection and recovery times of each node i ∈ G. Then, the
intensity E[dYi(t) |H(t)] can be (re-)written as:

E[dYi(t) |H(t)] = β
∑

j∈G(i)

gi(t− tj)

where G(i) denotes the set of neighborhood of node i, gi(t) = [1 − Yi(t)][u(t) − u(t −∆)] with
∆ ∼ Exp(δ) can be viewed as a stochastic triggering kernel, and u(·) is the step function. As a result,
we can adapt Algorithm 3, originally developed for unidimensional linear Hawkes processes, to
sample counterfactual realizations of the SIR model. Algorithm 7 summarizes the resulting algorithm.
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Algorithm 7 It samples a counterfactual sequence of infections given a sequence of observed
infections from the SIR process defined by Eq. 6.
1: Input: βm, δ, βm′ , G = (V, E), G′ = (V ′, E ′), T .
2: Initialize: queue = PriorityQueue({i | i ∈ V and is_seed(i)}), βmax = max(βm, βm′), processed =
{}, infector = {}.

3: for i ∈ G do
4: processed[i] = False
5: if is_seed(i) then
6: ti = 0
7: τi = ti + exp(δ)
8: else
9: ti =∞

10: end if
11: end for

12: while ¬ queue.isEmpty() do
13: i = queue.pop()
14: if ¬ processed[i] then
15: processed[i] = True
16: for j ∈ G′(i) do
17: γm′(t) = βm′u(t− ti)− βm′u(t− τi)
18: if infector[j] == i then
19: t = tj
20: γm(t) = βmu(t− ti)− βmu(t−min(τi, t))
21: Hm′ = CF(γm(t), γm′(t), {t}, βmax, T )
22: ifHm′ ̸= ∅ then
23: t = mint′∈Hm′ t

′

24: else
25: t =∞
26: end if
27: else
28: H, _ = LEWIS(γm′(t), βmax, T )
29: t = mint′∈H t′

30: end if
31: if t < tj then
32: tj = t
33: τj = tj + exp(δ)
34: infector[j] = i
35: queue.add(j, priority = tj)
36: end if
37: end for
38: end if
39: end while
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C Additional Results on Synthetic Data

Figure 7 shows the Hawkes intensities and event times corresponding to specific realizations of the
original process and the counterfactual processes.
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Figure 7: Effect of interventions in Hawkes processes (continued). Panels show the Hawkes intensities
and event times corresponding to specific realizations of the original process and the counterfactual
processes. Crosses (dots) denote events of the original (counterfactual) processes and the color
pattern indicates which type of process generated each event (be it µm′ or gm′ due to a counterfactual
event that also existed (did not exist) in the original realization). The parameters of the original and
intervened process are the same as in Figure 2.

Figure 8 shows the estimated counterfactual thinning probability for five different events of the same
inhomogeneous Poisson process considered in the main paper against the number of samples from
the Gumbel noise distribution. The results show that, as the number of noise sample increases, the
variance of the counterfactual thinning probability quickly decreases.
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Figure 8: Sensitivity analysis of the Monte-Carlo approximation of the counterfactual thinning
probability used in Algorithm 1.
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D Additional Details about the Experiments on Real Data

To set the β and δ, we resort to well-known epidemiological quantities whose values have been
estimated by the World Health Organization (WHO) for the Ebola outbreak we study [56]. More
specifically, the average generation time, i.e., the time between the infection of a primary case and
one of its secondary cases [57], is 1/β ≈ 15.3 days and the mean time from the onset of symptoms
to death or discharge from the hospital is 1/δ ≈ 11.4 days.

To generate the contact network G which underpins our model, we use a stochastic block model
network whose parameters are informed by estimates of the reproduction numbers for each of the
countries (Guinea, Liberia, and Sierra Leone) affected by the Ebola outbreak. For computational
reasons, for each of the 55 districts where infection cases were identified, we create a set of nodes Vi

proportional to the population in the district, as estimated by the WorldPop project [58], and assume
∪iVi = V with |V| =

∑
i |Vi| = 8,000 individuals. Moreover, we add an edge between each pair of

nodes (u, v) nodes independently at random with probability p(u, v) = 10−2 if (u, v) are in the same
district, p(u, v) = 2.15 · 10−3 if they are in two contiguous districts in Guinea, p(u, v) = 3 · 10−3 if
they are in two continuous districts in Liberia, p(u, v) = 3.15 · 10−3 if they are in two continuous
districts in Sierra Leona, and p(u, v) = 1.9 · 10−3 if they are in two continuous districts in different
countries.

In the above, we found contiguous districts using publicly available district-level shapefiles11 and
set the values of the between-district probabilities using grid-search so that, at a country level, the
basic reproduction number of the simulated outbreaks matches that estimated from real data (refer to
Table 1).

Country R0 (WHO) R0 (simulated)
Guinea (GN) 1.71 (1.44 – 2.01) 1.71 (1.66 – 1.76)
Liberia (LB) 1.83 (1.72 – 1.94) 1.83 (1.74 – 1.91)

Sierra Leone (SL) 2.02 (1.79 – 2.26) 2.02 (1.95 – 2.10)

Table 1: Reproduction numbers (R0) for each of the three countries affected by the Ebola outbreak
estimated from real cases by WHO [56] and estimated from simulated cases. In each cell, the first
number is the average and the numbers in parentheses are the 95% confidence interval.
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Figure 9: Geographical distribution of infections in a realistic Ebola outbreak in West Africa. Panel
(a) shows the seed infections in each district, where each red star represents an infection. Panels (b)
shows the overall cumulative number of infections per district. Darker red (green) corresponds to
high (low) number of cumulative infections.

11https://data.humdata.org/
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