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Abstract

The surprising discovery of the BYOL method shows the negative samples can be
replaced by adding a prediction head to the neural network. It is mysterious why
even when there exist trivial collapsed global optimal solutions, neural networks
trained by (stochastic) gradient descent can still learn competitive representations.
In this work, we present our empirical and theoretical discoveries on non-contrastive
self-supervised learning. Empirically, we find that when the prediction head is
initialized as an identity matrix with only its off-diagonal entries being trainable, the
network can learn competitive representations even though the trivial optima still
exist in the training objective. Theoretically, we characterized the substitution effect
and acceleration effect of the trainable, but identity-initialized prediction head. The
substitution effect happens when learning the stronger features in some neurons
can substitute for learning these features in other neurons through updating the
prediction head. And the acceleration effect happens when the substituted features
can accelerate the learning of other weaker features to prevent them from being
ignored. These two effects enable the neural networks to learn diversified features
rather than focus only on learning the strongest features, which is likely the cause
of the dimensional collapse phenomenon. To the best of our knowledge, this is
also the first end-to-end optimization guarantee for non-contrastive methods using
nonlinear neural networks with a trainable prediction head and normalization.

1 Introduction

Self-supervised learning is about learning representations of real-world vision or language data
without human supervision, and contrastive learning [62, 43, 41, 24, 20, 34] is one of the most
successful self-supervised learning approaches. It has been known that the behavior of contrastive
learning depends critically on the minimization of the negative term, which corresponds to contrasting
the representations of negative pairs, i.e., pairs of different data points. However, the surprising
finding of the Bootstrap Your Own Latent (BYOL) method by Grill et al. [37] initiated the research of
non-contrastive self-supervised learning, which refers to contrastive learning methods without using
the negative pairs. BYOL achieved state-of-the-art results in various computer vision benchmarks and
there are plenty of follow-up works [39, 26, 21, 17, 33, 87, 44, 61] in this direction.

On a high level, in non-contrastive self-supervised learning, one wishes to learn a network φ such that
φ(x) aligns in direction with φ(x′), where x and x′ are called the positive pair, generated by random
augmentations from the same sample. Without the negative samples, collapsed global optima exist in
the training objectives. The complete collapse is when φ(·) is a constant vector whose variance is
zero. Another trivial solutions called dimensional collapse by [44] is when all the coordinates φi(·)
are exactly aligned. Nevertheless, adding a trainable prediction head on top of (one branch of) φ(x)
magically avoids learning such solutions, even though the prediction head can possibly learn the
identity mapping and render itself useless. A more formal introduction will be given in Section 2.
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Since the proposition of BYOL, there have been lots of empirical studies trying to understand non-
contrastive learning. The SimSiam method by Chen and He [26] shows the exponential moving
average (EMA) is not necessary for avoiding collapsed solutions while stop-gradient is necessary.
[68] empirically disproved using batch normalization (BN) is the reason why BYOL can avoid collapse.
[21, 88] further explored other similar approaches. If one wishes to work without both asymmetry
and the negative pairs, one must add extra diversity-enforcing structures as in Barlow Twins [87]
or [33, 44, 17]. Although these previous papers provided some empirical insights, in theory, the
question of how the prediction head helps in learning those diverse features is still unanswered.

Despite the great empirical progress, there is very little theoretical progress towards explaining
them. Most of existing theories focus on contrastive learning, especially from the statistical learning
perspective [79, 81, 14, 80, 40, 82, 13, 15, 47, 45, 59]. However, due to the existence of trivial
collapsed global optimal solutions (even with the prediction head) of the non-contrastive methods, to
the best of our knowledge, there is no well-established statistical framework for those methods yet.
To explain the non-contrastive learning, it is inevitable to study how the solutions are chosen during
the optimization. Therefore, our research questions are:

Our theoretical questions: the role of prediction head
Why do most non-contrastive self-supervised methods learn collapsed solutions when the so-called
prediction head is absent in the network architecture? How does the trainable prediction head
help optimizing the neural network to learn more diversified representations in non-contrastive
self-supervised learning?

Due to the existence of trivial collapsed optimal solutions of the non-contrastive learning objective,
we need to understand the implicit bias in optimization posed by the prediction head. However, to
the best of our knowledge, all of the previous implicit biases theories focus only on the supervised
learning tasks, and thus cannot be applied to our question. On a high level, the results in this paper
are summarized as follows:
Our empirical contributions. In non-contrastive self-supervised learning, we obtain the following
experimental results:

• We discover empirically that even when the prediction head is linear and initialized as an
identity matrix with only off-diagonal entries being trainable, the performance of learned
representation is comparable to using the usual non-linear two-layer MLP or randomly
initialized (trainable) linear prediction head. See Figure 1.

• We empirically verified that even when the prediction head is an identity-initialized matrix
(with fixed diagonal entries), its off-diagonal entries display a rise-and-fall pattern, and it
does not always converge to a symmetric matrix. See Figure 3.

Our theoretical contributions. We based our theory on a very simple setting, where the data
consist of two features: the strong feature and the weak feature. Intuitively, the strong features in
a dataset are the ones that show up more frequently or with large magnitude, and weak features as
those that show up rarely or with small magnitude. We consider learning with a two-layer non-linear
neural network with output normalization using (stochastic) gradient descent. Under this setting:

• We prove that without a prediction head, even with BN on the output to avoid complete
collapse, the networks will still converge to dimensional collapsed solutions, which provides
a theoretical explanation to the dimensional collapse phenomenon observed in [44].

• We prove that the trainable prediction head, combined with suitable output normalization
and stop-gradient operation, can learn diversified features to avoid the dimensional collapse
problem. We characterize two effects leveraged by the prediction head: the substitution
effect and the acceleration effect, as intuitively described below:

The effects of the trainable prediction head
In our setting, we prove that the trainable prediction head can help to learn diversed features by
leveraging two effects: the substitution effect and the acceleration effect. The substitution effect
happens when by learning the prediction head, the learned stronger features in some neurons can
substitute for learning the same features in other neurons. The acceleration effect happens when
the substituted features from the prediction head further accelerate learning the weaker features
in those substituted neurons.

Besides the above effects, we also explain in our setting, how the two common components in
non-contrastive learning: stop-gradient operation and output normalization, can assist the prediction
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(a) CIFAR-10 Accuracy (b) CIFAR-100 Accuracy (c) STL-10 Accuracy

(d) CIFAR-10 Loss (e) CIFAR-100 Loss (f) STL-10 Loss

Figure 1: Performances of using different prediction heads. Here in CIFAR-10, CIFAR-100 and STL-10,
identity-initialized linear prediction head can achieve good accuracies comparable to commonly used two-layer
non-linear MLP or randomly-initialized linear head. All the prediction heads are trainable, while for identity-init
prediction head only the off-diagonals are trainable. Here BN or L2norm represents the output normalization,
and EMA represents using exponential moving average to update the target network as in BYOL [39].

head in creating those effects during training, which will be further discussed in Section 5.3. There are
already some theoretical papers [78, 83, 63] that try to address similar questions. Our results provide
a completely different perspective compared to them: We explain why training the prediction head
can encourage the network to learn diversified features and avoid dimensional collapses, even
when the trivial collapsed optima still exist in the training objective, which is not covered by the prior
works, as shall be discussed below.

1.1 Comparison to Similar Studies

In this section, we will clarify the differences between our results and some similar studies. We point
out that all the claims below are derived only in our theoretical setting and are partially verified in
experiments over datasets such as CIFAR-10, CIFAR-100, and STL-10.

Can eigenspace alignment explain the effects of training the prediction head? The paper [78]
presented a theoretical statement that (symmetric) linear prediction head will converge to a matrix
that commutes with the covariance matrix of linear representations at the end of training, and they
provided experiments to support their theory. However, our theory suggests that the intermediate
stage of training the prediction head matters more to the feature learning of the encoder network
than the convergence. Indeed, as shown in Figure 3, in many cases, the trainable projection head will
converge back to identity after training, which commutes with any covariance matrix. Moreover,
the experiments in Figure 3a shows the training trajectory of the prediction head displays a clear
two-stage separation, which demonstrates that the convergence result (e.g., the eigenspace alignment
result in [78]) is not sufficient to understand the trainable prediction head.

Can the symmetric prediction head explain the trainable prediction head? In the paper [78],
experiments over the STL-10 dataset showed that the linear prediction head converges to a symmetric
matrix during training. And the follow-up paper [83] established a theory under the symmetric
prediction head (which is not trained but manually set at each iteration). Specifically, under their
linear network setting, where W is the weight matrix of the base encoder, they manually set the
prediction head Wp at iteration t to be W (t)

p ← W (t)Ex1x1x
>
1 (W (t))> and the outputs of both

online and target network are not normalized. Under this manual update rule of the prediction head,
they proved a subspace learning result over spherical gaussian data. Nevertheless, our experiments in
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(a) Average of off-diag entries (b) F-norm of off-diag matrix (c) Maximum of off-diag entries

Figure 2: Trajectories of the identity-initialized prediction head with a (min,max) confidence band, average
over 3 runs. In all three datasets, we observe a consistent rise and fall trajectory pattern.

Figure 1 and Figure 3b show that even if we initialize the prediction head using a symmetric matrix
(identity), the trainable prediction head can be very asymmetric at the early training stage when
the encoder network learn most of its features. Actually, in the presence of feature imbalance (e.g.,
Ex1x1x

>
1 has huge eigen-gap), the symmetric prediction head is also likely to learn a rank-one matrix

where W focus on learning the largest eigenvector of Ex1x1x
>
1 .

The role of stop-gradient and output-normalization. It is discussed in the theory of Tian et al.
[78] that without the stop-gradient, the linear network will learn the zero (constant) solution. [83]
also incorporated the stop-gradient into their theory, but did not explain why it is necessary for their
setting. As a comparison, we proved in our setting that the stop-gradient and output-normalization
together can turn the features substituted via the prediction head into a factor in the gradient of the
slower learning neurons, thereby creating the acceleration effect. In contrast, analyses in [78, 83]
did not incorporate the output normalization, even though their experiments have used certain forms
of normalizations. To the best of our knowledge, our paper is the first to explain the effects of
output-normalization in optimizing nonlinear neural networks in self-supervised learning.

2 Preliminaries on Non-contrastive Learning

In this section, we formally define what is non-contrastive self-supervised learning. To do this, we
first introduce contrastive learning following [24, 85] as background. We use [N ] as a shorthand for
the index set {1, . . . , N}.

Background on contrastive learning. Letting φW (·) be the neural networks, contrastive learning
aims to learn good representations φW via contrasting representations of similar data samples to
those of dissimilar ones. Usually we are given a batch of data points {Xi}i∈[N ], and we construct for
each i ∈ [N ] a positive pair (X

(1)
i , X

(2)
i ) by applying random data augmentations to Xi, and collect

negative pairs (X
(1)
i , X

(2)
j ) for i 6= j ∈ [N ]. Now given zi = φW (X

(1)
i ), z′i = φW (X

(2)
i ), i ∈ [N ],

we train the network φW to minimize the contrastive loss:

Lcontrastive(φW ) :=
1

N

∑
i∈[N ]

−sim(zi, z
′
i)/τ︸ ︷︷ ︸

positive term

+ log

∑
j∈[N ]

exp
(
sim(zi, z

′
j)/τ

)
︸ ︷︷ ︸

negative term

(2.1)

where sim(·, ·) is the similarity metric, often defined as the cosine similarity, and τ is the so-called
temperature hyper-parameter. Intuitively, minimizing the contrastive loss can be roughly viewed as
trying to classify the representation zi as z′i instead of z′j , j 6= i. It is a common belief that in order
for the network φW to be able to “distinguish” data points Xi from Xj , j 6= i, merely minimizing
the positive term of contrastive loss is not sufficient.

Non-contrastive self-supervised learning. We choose the SimSiam method [26] as our primary
framework, whose differerence with BYOL is a EMA component that is proven inessential in [26].
Following the same notations as above, except that z′i = StopGrad[φW (X

(2)
i )] is detached from
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(a) ‖off-diag(E(t))‖F and ‖E(t) − (E(t))>‖F (b) ‖E(t) − (E(t))>‖F /‖off-diag(E(t))‖F

Figure 3: Trajectories of the identity-initialized prediction head. off-diag(E) is obtained by setting the diagonal
of E to be zero. In (a), we discover that the Frobenius norm of our identity-initialized prediction head’s
off-diagonal matrix clearly display a two stage separation, more precisely, a rise and fall pattern; In (b), The
off-diagonal matrix of the prediction head is not symmetric in CIFAR-10 and CIFAR-100.

gradient computation, the loss objective become: (the symmetric network version)

L′SimSiam(φW ) = 1
N

∑
i∈[N ]−sim(zi, z

′
i) (2.2)

which is just the positive term in contrastive loss (2.1) (not divided by τ ). Clearly there exist plenty
trivial global optimal solutions for this objective. For example, the complete collapse refers to when
φW (·) learns some constant vector. Another solution called dimensional collapse [44] is when all
the coordinates [φW (·)]i has correlation ±1. The dimensional collapsed solution can minimize the
objective (2.2) even when φW (·) is BN-normalized to avoid learning a constant vector [44, 88].

However, by adding a trainable prediction head on top of zi, the training miraculously succeeds and
outputs a state-of-the-art feature extractor. Let g(·) be a shallow feed-forward network (often one or
two-layer, or even simply linear), we train g and φW simultaneously on the following objective:

LSimSiam(φW , g) = 1
N

∑
i∈[N ]−sim(g(zi), z

′
i) (2.3)

where z′i is still detached from gradient computation. The g(zi) = g◦φW (X
(1)
i ) and the detached part

z′i = StopGrad[φW (X
(2)
i )] are often called the online network and the target network respectively

following [39], known as two branches of non-contrastive learning. Note that the trainable prediction
head can represent identity function, so the objective (2.3) still has the collapsed optima.

3 Problem Setup
In this section, we present the setting of our theoretical results. We first define the data distribution.

Notations. We use O,Ω,Θ notations to hide universal constants with respect to d and Õ, Ω̃, Θ̃
notations to hide polynomial factors of log d. We denote a = o(1) if a→ 0 when d→∞. We use
the notations poly(d), polylog(d) to represent large constant degree polynomials of d or log d. We
useN (µ,Σ) to denote standard normal distribution in with mean µ and covariance matrix Σ. We use
the bracket 〈·, ·〉 to denote the inner product and ‖ · ‖2 the `2-norm in Euclidean space. And for a
subspace V ⊂ Rd, we denote V ⊥ as its orthogonal complement. We use 1B to denote the indicator
function of event B. We use Im to denote the m×m identity matrix.

Following the standard structure of image datasets, we consider data divided into patches, where each
patch can contain either features or noises.

Definition 3.1 (data distribution and features). Let X ∼ D be X = (X1, . . . , XP ) ∈ Rd×P
where each Xi ∈ Rd is a patch. We assume that there are two feature vectors v1, v2 such that
‖v`‖2 = 1, ` = 1, 2 and are orthogonal to each other. To generate a sample X , we uniformly sampled
` ∈ [2] and generate for each p ∈ [P ]:

Xp = zp(X)v` + ξp1zp=0, EX∼D[zp(X)] = 0, ∀p ∈ [P ]
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Figure 4: Illustration of the data distribution and data augmentations. Each data is equipped with a feature,
either v1 or v2, and contains a lot of noise patches. After the data augmentations, the positive pair (X(1), X(2))
is constructed by randomly masking out half of non-overlapping patches for each positive sample. The reason
for constructing positive pair with non-overlapping patches is because of the strong noise assumption we made
in Assumption 3.2 and the feature decoupling principle in [85].

where zp(X) is the latent vector of X , ξp is the noise vector of patch p ∈ [P ] whose assumption
will be given in Assumption 3.2. We denote S(X) = {p : zp(X) 6= 0} ⊆ [P ] as the set of feature
patches, where zp(X) = zp′(X) ∈ {0,±α`},∀p, p′ ∈ [P ], where α` will be picked afterwards. We
assume P = polylog(d), S(X) ≡ P0 = Θ(log d) for every X . A figurative illustration is given in
Figure 4.

Strong and weak features. We pick α1 = 2polyloglog(d) and α2 = α1/polylog(d). Hence v1 is the
strong feature and v2 is the weak feature, and we want the learner network to learn both v1, v2 (but
by different neurons) as their learning goal. This is a simplification of the real scenario. Intuitively,
we can think of the strong features in a dataset are the ones that show up more frequently or with
larger magnitude, and weak features as those that show up rarely or with smaller magnitude.

Assumption 3.2 (noise). Denoting V = span(v1, v2), we assume ξp ∈ V ⊥ is independent for each
p ∈ [P ] \ S(X), where X = (Xp)p∈[P ] ∼ D, and:

(a) For any unit vector u ∈ V ⊥, E[〈ξp, u〉] = 0, and E[〈ξp, u〉6] = σ6 for some σ = Θ(1);

(b) It holds for some % ∈ [0, 1
dΩ(1) ] it holds |E[〈u1, ξp〉3〈u2, ξp〉3]| ≤ % and |E[〈u1, ξp〉5〈u2, ξp〉]| ≤

% for any two vectors u1, u2 ∈ V ⊥ that are orthogonal to each other.

Remark 3.3. A simple example of our noise ξp is the spherical Gaussian noise in V ⊥. Assumption
3.2b ensures that the prediction head cannot be used to cancel the noise correlation between different
neurons. We point out that the features in our data can be learned via clustering, but we emphasize
that we do not intend to compare our algorithm with any clustering method in this setting since our
goal is to study how the prediction head helps in learning the features.

3.1 Learner Network

Following the SimSiam framework, the online and target network share the same encoder network
in our setting, as explained in Section 2. We consider the base encoder network f as a simple
convolutional neural network: Let W = (w1, . . . , wm) ∈ Rd×m be the weight matrix, where
wi ∈ Rd, the encoder network f is defined by

fj(X) :=
∑
p∈[P ] σ(〈wj , Xp〉), ∀j ∈ [m]

Here we use the cubic activation function σ(z) = z3, as polynomial activations are standard in
literatures of deep learning theory [9, 35, 50, 2, 52, 23] and also has comparable performance in
practice [2]. The (identity initialized) prediction head is defined as a matrix E = [Ei,j ](i,j)∈[m]2 with
Ei,i ≡ 1, i ∈ [m], where only the the off-diagonals Ei,j , i 6= j are trainable parameters. The online
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network F̃ is defined by: given j ∈ [m], we let Fj(X) := fj(X) +
∑
r 6=j Ej,rfr(X), and

F̃j(X) := BN (Fj(X)) = BN
[∑

p∈[P ]

(
σ(〈wj , Xp〉) +

∑
r 6=j Ej,rσ(〈wr, Xp〉

)]
where the batch normalization BN1 here is defined as follows: Given a batch of inputs {zi}i∈[N ],

BN(zi) :=
zi − 1

N

∑
i∈[N ] zi√

1
N

∑
i∈[N ] z

2
i −

(
1
N

∑
i∈[N ] zi

)2
(3.1)

And the we define the target network G as G̃j(X) := BN (Gj(X)) = BN (fj(X)) ,∀j ∈ [m].

3.2 Training Algorithm

Data augmentation. We use a very simple data augmentation: for each data X = (Xp)p∈[P ], we
randomly and uniformly sample half of the patches P ⊆ [P ] to generate the positive pair:

X(1) = (Xp1p∈P)p∈[P ], X(2) = (Xp1p/∈P)p∈[P ] (3.2)

Our data augmentation is similar to the common random cropping used in contrastive learning
[22, 76]. It is also analogous to the data augmentations studied in theoretical literatures [85, 47, 58].

Non-contrastive loss function. Now we define the loss function as follows: we sample N
data points {Xi}i∈[N ], Xi

i.i.d.∼ D and apply our data augmentation (3.2) to obtain S =

{X(i,1), X(i,2)}i∈[N ]. Now we define

LS(W,E) :=
1

N

∑
i∈[N ]

∥∥∥F̃ (X(i,1))− StopGrad[G̃(X(i,2)])
∥∥∥2

2
(3.3)

where the StopGrad operator detach gradient computation of the target network G̃(·). This form of
objective (3.3) is first defined in [37] and is equivalent to (2.3) in Chen and He [26] when F̃ and G̃
share the same encoder network f(·) and their outputs are normalized.

Intuitions of the data augmentation and collapse. In Definition 3.1, the features v1, v2 appear
in multiple patches, but the noises are independent across different patches (see Figure 4). As our
data augmentation produces positive pairs with non-overlapping patches, learning to emphasize
noises cannot align the representations of the positive pair, but learning either one of the features
φ(X) =

∑
p σ(〈v1, Xp〉) or φ(X) =

∑
p σ(〈v2, Xp〉) is sufficient. We consider learning the same

feature vi in all the neurons fj in the encoder network f as the dimensional collapsed solution.

Initialization and hyper-parameters. At t = 0, we initialize W and E as W (0)
i,j ∼ N (0, 1

d ) and
E(0) = Im and we only train the off-diagonal entries of E(t). For the simplicity of analysis, we let
m = 2, which suffices to illustrate our main message. For the learning rates, we let η ∈ (0, 1

poly(d) ]

be sufficiently small and ηE ∈ [η/α
O(1)
1 , η/polylog(d)], which is smaller than η2.

Optimization algorithm Given the data augmentation and the loss function, we perform (stochastic)
gradient descent on the training objective (3.3) as follows: at each iteration t = 0, . . . , T − 1, we
sample a new batch of augmented data St = {X(t,i,1), X(t,i,2)}i∈[N ] and update

W (t+1) = W (t) − η∇WLSt(W (t), E(t)), E
(t+1)
i,j = E

(t)
i,j − ηE∇Ei,jLSt(W

(t), E(t)), ∀i 6= j.

If we do not train the prediction head, we just simply keep E(t) ≡ Im.

1We use batch normalization as a output-normalization method, rather than for the supposed implicit negative
term effects as disproved in Richemond et al. [68].

2We conjecture that by modifying certain assumptions for the noise (especially by allowing the noise to span
the feature subspace V ), one can prove a similar result for the case ηE = η.
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4 Statements of Main Results

In this section, we shall present our main theoretical results on the mechanism of learning the
prediction head in non-contrastive learning. To measure the correlation between neurons, we introduce
the following notion: letting Var(ψ(X)) := EX∼D[(ψ(X) − E[ψ(X)])2] be the variance of any
function ψ of X ∼ D, we denote the correlation Corr(ψ(X), ψ′(X)) of any two function ψ,ψ′
over D as

Corr(ψ(X), ψ′(X)) :=
E[(ψ(X)− E[ψ(X)])(ψ′(X)− E[ψ′(X)])]√

Var(ψ(X))
√

Var(ψ′(X))

Now we present the main theorem of training with a prediction head, and set m = 2.

Theorem 4.1 (learning with prediction head and BN, see Theorem F.2). For every d > 2, let
N ≥ poly(d), η ∈ (0, 1

poly(d) ] be sufficiently small, and ηE ∈ [ η

α
O(1)
1

, η
polylog(d) ]. Then with probability

1− o(1), after training for T = poly(d)/η many iterations, we shall have for some ` ∈ [2]:

w
(T )
1 = β1v` + ε1, w

(T )
2 = β2v3−` + ε2 with |β1|, |β2| = Θ(1), ‖ε1‖2, ‖ε2‖2 ≤ Õ(

1√
d

)

Furthermore, the objective converges: ES∼DN [LS(W (T ), E(T ))] ≤ OPT + 1
poly(d) ≤ O( 1

log d ).
Where OPT stands for the global optimum3.

Theorem 4.1 clearly shows the network learn all the desired features, even under huge imbalance
between v1 and v2. This leads to the following corollary.

Corollary 4.2. Under the same hyper-parameter in Theorem 4.1, with probability 1− o(1), after
training for T = poly(d)/η many iterations, then the encoder f avoids dimensional collapse:

|Corr(f1(X), f2(X))| ≤ O(
1√
d

).

In contrast, learning without the prediction head will create strong correlations between any two
neurons. To emphasize that this problem cannot be alleviated by having more neurons, we let the
number of neurons m be any positive integer in the following theorem.

Theorem 4.3 (learning without prediction head but with BN, see Theorem G.1). Let N ≥ poly(d),
η = o(1) and the number of neurons m ≤ o(α1/α2). Suppose we freeze E(t) ≡ Im, then with
probability 1− o(1), after training for T = poly(d)/η many iterations, we shall have:

w
(T )
j = βjv1 + εj with |βj | = Θ(1), ‖εj‖2 ≤ Õ(

1√
d

) for all j ∈ [m]

Furthermore, the objective converges: ES∼DN [LS(W (T ), E(T ))] ≤ OPT+ 1
poly(d) ≤ O( 1

log d ). This
means the collapsed solution also reaches the global minimum of the objective. Again OPT stands
for the global optimum.

Note that since we have used BN as our output normalization, the learner is immune to complete
collapse and must have a certain variance in the outputs. Immediately, we have a corollary.

Corollary 4.4. Under the same hyper-parameter in Theorem 4.3, with probability 1− o(1), after
training with E(t) ≡ Im for T = poly(d)/η many iterations, we shall have dimensional collapse:

|Corr(fi(X), fj(X))| ≥ 1−O(
1√
d

), for all i, j ∈ [m].

In the following section, we shall give some intuitions by digging through the training process and
separately discuss the four phases of the training process.

3Under our setting described in Section 2, the global minimum of our objective (3.3) in population is

OPT = 2− 2
E[|S(X) ∩ P| · |S(X) \ P|]

E[|S(X) ∩ P|2]
= Θ(

1

log d
)
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5 The Four Phases of the Learning Process

We divide the complete training process into four phases: phase I for learning the stronger feature,
phase II for the substitution effect, phase III for the acceleration effect, and the end phase for
convergence. The first three phases explain how the prediction head can help learn the base encoder,
and the last phase explains why the off-diagonal entries often shrink later in training.

5.1 Phase I: Learning the Stronger Feature

At the beginning of training, the stronger feature v1 enjoys a much larger gradient as opposed to the
weaker feature v2, so naturally, v1 will be learned first. Without loss of generality, let us assume at
initialization, the neuron f1 has larger v1 between fj , j ∈ [2], then we can show:

Lemma 5.1 (learning the stronger feature, see Lemma C.13). After some t ≥ T1 = d2+o(1)/η, the
feature v1 in neuron f1 will be learn to 〈w(t)

1 , v1〉 = Ω(1), while all other features 〈w(t)
j , v`〉 = o(1)

for (j, `) 6= (1, 1). And the prediction head ‖E(t) − I2‖2 ≤ d−Ω(1) is still close to the initialization.

In this phase, the prediction head has not come into play. The substitution effect can only happen after
the feature v1 in neuron f1 is learned to a certain degree, and neuron f2 remains largely unlearned.

5.2 Phase II: The Substitution Effect

To illustrate the substitution effect, let us keep assuming that neuron f1 has already learned some
significant amount of the strong feature v1, say w1 = β1v1 + residual with |β1| = Ω(‖residual‖),
then we have: (recall fj(·), j ∈ [2] are the neurons of the encoder network)

Lemma 5.2 (substitution effect, formal statement see Lemma D.8). After |〈w(t)
1 , v1〉| = Ω(1), we

shall have |E(t)
2,1| increasing until |E(t)

2,1f1(X(1))| � |f2(X(1))| when X is equipped with the strong
feature v1, for T2 − T1 = o(T1) iterations.

Intuition of the substitution effect. After the stronger feature is learned in neuron f1, the optimal
way to align two positive representations F2(X(1)) and G2(X(2)) is not learning features in weight
w2, but use the prediction head to “substitute” the features in f1 into F2. This is how the substitution
effect happens when trained with a prediction head.

5.3 Phase III: The Acceleration Effect

After the substitution of v1 in F2, our concern is, w(t)
2 will learn v2 and only v2 eventually, according

to the acceleration effect in the following lemma.

Lemma 5.3 (acceleration effect, formal statement see Lemma E.8). After E(t)
2,1 is learned in Lemma

5.2, learning v2 in w(t)
2 will be much faster than v1, until ‖w(t)

2 − β2v2‖ = o(1) for some β2 = Θ(1).
The acceleration effect is caused by the interactions between the prediction head, the stop gradient
operation, and the normalization method (which in this case is the batch normalization).

What is the role of the stop-gradient? Thanks to the stop-gradient operation, when we compute
the gradient −∇w2

F2(X(1)) · StopGrad[G2(X(2))] to learn f2, this negative gradient will only try
to maximize f2(X(1)) · f2(X(2)), rather than to maximize F2(X(1)) · f2(X(2)). This is because the
stop-gradient is on G not on F : while F2 has a large component of v1 borrowed from f1 using E,
G2 does not have this component. So the gradient of F2 is to align with the features in G2 that does
not contain many v1, while the gradient of G2 is to aligned with F2 that contains a lot of v1.

What is the role of the output normalization? Again due to the StopGrad operation, the gradient
of F̃2 is taken with respect to the ratio f2(X(1))/

√
Var[F2(X(1))]. As gradient descent tries to

maximize this ratio, a direct computation gives

∇w2

f2(X(1))√
Var(F2(X(1)))

∝
∑
`∈[2]

(
[E

(t)
2,1〈w

(t)
1 , v3−`〉3]2 + Var[f2(X(1))]

)
〈∇w2

f2(X(1)), v`〉v`

which borrow the substituted feature v1 from f1(·) to adjust the gradient of v2 in f2(·), via the
prediction head E(t)

2,1. Without the output normalization, the learning of v1 will dominate that of v2

even when we train the prediction head.
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5.4 The End Phase: Convergence

As the weak features are learned, we have already obtained a good encoder network f(·) as shown in
Theorem 4.1. The rest of Theorem F.2 also contains the following result:
Proposition 5.4 (convergence of the prediction head, see Theorem F.2c). After some t ≥ T =
poly(d)/η iterations, we shall have ‖E(t) − I2‖F ≤ 1

poly(d) .

While we admit that only some of our real-world experiments in Figure 3 show the convergence to
zero for the off-diagonal entries of the prediction head, most of the experiments do display a rise and
fall trajectory pattern of off-diagonal entries consistently, which supports our theory to some degree.

6 Additional Related Work
Self-supervised learning Self-supervised learning has created huge success in natural language
processing [30, 86, 18] and established the pretrain-finetune paradigm for deep learning. In vision,
contrastive learning [75, 41, 24, 20, 27, 28, 34, 64, 33] became dominant in many downstream tasks
recently. Another approach is the generative learning [65, 16, 42], which also gives promising results.
Applications such as [64, 66] also illustrate the power of contrastive learning in multiple domains.

Theory of self-supervised learning The theoretical side of self-supervised learning developed
quickly due to the success of contrastive learning. Since [12], plenty of papers have studied the
contrastive learning. [25, 69] discussed many interesting phenomena associated with the negative
term. Saunshi et al. [71] provided evidence that function class agnostic analyses is vacuous. [85]
took a feature learning view, and inspired our analysis in the non-contrastive setting. For generative
learning, [51, 74] provides downstream performance guarantees. [70, 84] studied the natural language
tasks. [58] gave a recovery guarantee for tensors under hidden Markov models. [4] provided an
optimization guarantee for GANs trained by stochastic gradient descent ascent.

Feature learning theory of deep learning Our theoretical results are also inspired by the recent
progress of the feature learning theory of neural networks [55, 56, 5, 3, 49, 90, 46]. [55] initiate
the study of the speed difference in learning different types of features. [1] developed theory for
learning two-layer neural networks beyond the neural tangent kernel (NTK) [7, 8, 6, 32, 11]. [5, 3, 2]
further studied how features are learned in different deep learning tasks. Before this recent progress,
[77, 89, 19, 72, 31, 53, 54] also studied how shallow neural networks can learn on certain simple
data distributions, but all of them focus on the supervised learning. There are also plenty of studies
[73, 38, 10, 60, 48, 67, 29] on the implicit bias of optimization in deep learning, but none of their
techniques are designed for analyzing self-supervised learning.

7 Conclusion
In this paper, we showed how the prediction head can ensure the neural network learns all the features
in non-contrastive learning through theoretical investigation. Our key contribution is that we proved
the prediction head can leverage two effects called substitution effect and acceleration effect during
the training process. We also gave an explanation for the dimensional collapse phenomenon. We
believe our theory, although based on a very simple setup, can provide some insights into the inner
workings of non-contrastive self-supervised learning.
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