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A MAPPO Details

MAPPO trains two separate neural networks: an actor network with parameters θ, and a value
function network (referred to as a critic) with parameters ϕ. These networks can be shared amongst
all agents if the agents are homogeneous, but each agent can also have its own pair of actor and critic
networks. We assume here that all agents share critic and actor networks, for notational convenience.
Specifically, the critic network, denoted as Vϕ, performs the following mapping: S → R. The global
state can be agent-specific or agent-agnostic.

The actor network, denoted as πθ, maps agent observations o(a)t to a categorical distribution over
actions in discrete action spaces, or to the mean and standard deviation vectors of a Multivariate
Gaussian Distribution, from which an action is sampled, in continuous action spaces.

The actor network is trained to maximize the objective
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The critic network is trained to minimize the loss function
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where R̂i is the discounted reward-to-go.

In the loss functions above, B refers to the batch size and n refers to the number of agents.

If the critic and actor networks are RNNs, then the loss functions additionally sum over time, and the
networks are trained via Backpropagation Through Time (BPTT). Pseudocode for recurrent-MAPPO
is shown in Alg. 1.

B Testing domains

Multi-agent Particle-World Environment (MPE) was introduced in (Lowe et al., 2017). MPE
consist of various multi-agent games in a 2D world with small particles navigating within a square
box. We consider the 3 fully cooperative tasks from the original set shown in Fig. 1(a): Spread,
Comm, and Reference. Note that since the two agents in speaker-listener have different observation
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Algorithm 1 Recurrent-MAPPO

Initialize θ, the parameters for policy π and ϕ, the parameters for critic V , using Orthogonal
initialization (Hu et al., 2020)
Set learning rate α
while step ≤ stepmax do

set data buffer D = {}
for i = 1 to batch_size do
τ = [] empty list
initialize h

(1)
0,π, . . . h

(n)
0,π actor RNN states

initialize h
(1)
0,V , . . . h

(n)
0,V critic RNN states

for t = 1 to T do
for all agents a do
p
(a)
t , h

(a)
t,π = π(o

(a)
t , h

(a)
t−1,π; θ)

u
(a)
t ∼ p

(a)
t

v
(a)
t , h

(a)
t,V = V (s

(a)
t , h

(a)
t−1,V ;ϕ)

end for
Execute actions ut, observe rt, st+1,ot+1

τ += [st,ot,ht,π,ht,V ,ut, rt, st+1,ot+1]
end for
Compute advantage estimate Â via GAE on τ , using PopArt
Compute reward-to-go R̂ on τ and normalize with PopArt
Split trajectory τ into chunks of length L
for l = 0, 1, .., T//L do

D = D ∪ (τ [l : l + T, Â[l : l + L], R̂[l : l + L])
end for

end for
for mini-batch k = 1, . . . ,K do

b← random mini-batch from D with all agent data
for each data chunk c in the mini-batch b do

update RNN hidden states for π and V from first hidden state in data chunk
end for

end for
Adam update θ on L(θ) with data b
Adam update ϕ on L(ϕ) with data b

end while

and action spaces, this is the only setting in this paper where we do not share parameters but train
separate policies for each agent.

StarCraftII Micromanagement Challenge (SMAC) tasks were introduced in (Rashid et al., 2019).
In these tasks, decentralized agents must cooperate to defeat adversarial bots in various scenarios
with a wide range of agent numbers (from 2 to 27). We use a global game state to train our centralized
critics or Q-functions. Fig. 1(c) and 1(d) show two example StarCraftII environments.

As described in Sec. 5.2, we utilize an agent-specific global state as input to the global state. This
agent-specific global state augments the original global state provided by the SMAC environment by
adding relevant agent-specific features.

Specifically, the original global state of SMAC contains information about all agents and enemies -
this includes information such as the distance from each agent/enemy to the map center, the health
of each agent/enemy, the shield status of each agent/enemy, and the weapon cooldown state of each
agent. However, when compared to the local observation of each agent, the global state does not
contain agent-specific information including agent id, agent movement options, agent attack options,
relative distance to allies/enemies. Note that the local observation contains information only about
allies/enemies within a sight radius of the agent. To address the lack of critical local information in
the environment provided global state, we create several other global inputs which are specific to
each agent, and combine local and global features. The first, which we call agent-specific (AS), uses
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(a) MPE scenarios (b) 4-player Hanabi-Full

(c) SMAC corridor (d) SMAC 2c_vs_64zg (e) GRF academy 3 vs 1 with keeper

Figure 1: Task visualizations. (a) The MPE domain. Spread (left): agents need to cover all the
landmarks and do not have a color preference for the landmark they navigate to; Comm (middle):
the listener needs to navigate to a specific landmarks following the instruction from the speaker;
Reference (right): both agents only know the other’s goal landmark and needs to communicate to
ensure both agents move to the desired target. (b) The Hanabi domain: 4-player Hanabi-Full - figure
obtained from (Bard et al., 2020). (c) The corridor map in the SMAC domain. (d) The 2c vs. 64zg
map in the SMAC domain. (e) The academy 3 vs 1 with keeper scenario in the GRF domain.

the concatenation of the environment provided global state and agent i’s observation, oi, as the global
input to MAPPO’s critic during gradient updates for agent i. However, since the global state and local
agent observations have overlapping features, we additionally create a feature-pruned global state
(FP) which removes the overlapping features in the AS global state.

Hanabi is a turn-based card game, introduced as a MARL challenge in (Bard et al., 2020) , where
each agent observes other players’ cards except their own cards. A visualization of the game is shown
in Fig. 1(b). The goal of the game is to send information tokens to others and cooperatively take
actions to stack as many cards as possible in ascending order to collect points.

The turn-based nature of Hanabi presents a challenge when computing the reward for an agent during
it’s turn. We utilize the forward accumulated reward as one turn reward Ri; specifically, if there
are 4 players and players 0, 1, 2, and 3 execute their respective actions at timesteps k, k+1, k+2,
k+3 respectively, resulting in rewards of r(0)k , r

(1)
k+1, r

(2)
k+2, r

(3)
k+3, then the reward assigned to player

0 will be R0 = r
(0)
k + r

(1)
k+1 + r

(2)
k+2 + r

(3)
k+3 and similarly, the reward assigned to player 1 will be

R1 = r
(1)
k+1 + r

(2)
k+2 + r

(3)
k+3 + r

(0)
k+4. Here, rit denotes the reward received at timestep t when agent i

is executes a move.

Google Research Football (GRF), introduced in [3], contains a set of cooperative multi-agent
challenges in which a team of agents play a team of bots in various football scenarios. In the scenarios
we consider, the goal of the agents is to score a goal against the opposing team. Fig. 1(e) shows the
example academy scenario.

The agents’ local observations contain a complete description of the environment state at any given
time; hence, both the policy and value-function take as input the same observation. At each step,
agents share the same reward Rt, which is computed as the sum of per-agent rewards r

(i)
t which

represents the progress made by agent i.

C Training details

C.1 Implementation

All algorithms utilize parameter sharing - i.e., all agents share the same networks - in all environments
except for the Comm scenario in the MPE. Furthermore, we tune the architecture and hyperparameters
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Map MAPPO MAPPO-Ind

1c3s5z 100.0(0.0) 99.1(0.7)
2s3z 100.0(0.7) 99.1(0.9)

3s_vs_5z 100.0(0.6) 93.8(1.8)
3s5z 96.9(0.7) 80.4(3.3)

3s5z_vs_3s6z 84.4(34.0) 37.8(5.6)
5m_vs_6m 89.1(2.5) 44.4(2.9)
6h_vs_8z 88.3(3.7) 11.4(2.5)

10m_vs_11m 96.9(4.8) 78.4(2.7)
corridor 100.0(1.2) 82.2(1.8)
MMM2 90.6(2.8) 13.0(3.7)

Table 1: Median evaluation win rate (standard deviation) on selected SMAC maps over 6 random
seeds.

of MADDPG and QMix, and thus use different hyperparameters than the original implementations.
However, we ensure that the performance of the algorithms in the baselines matches or exceeds the
results reported in their original papers.

For each algorithm, certain hyperparameters are kept constant across all environments; these are listed
in Tables 4 and 5 for MAPPO, QMix, and MADDPG, respectively. These values are obtained either
from the PPO baselines implementation in the case of MAPPO, or from the original implementations
for QMix and MADDPG. Note that since we use parameter sharing and combine all agents’ data, the
actual batch-sizes will be larger with more agents.

In these tables, “recurrent data chunk length” refers to the length of chunks that a trajectory is split
into before being used for training via BPTT (only applicable for RNN policies). “Max clipped value
loss” refers to the value-clipping term in the value loss. “Gamma” refers to the discount factor, and
“huber delta” specifies the delta parameter in the Huber loss function. “Epsilon” describes the starting
and ending value of ϵ for ϵ-greedy exploration, and “epsilon anneal time” refers to the number of
environment steps over which ϵ will be annealed from the starting to the ending value, in a linear
manner. “Use feature normalization” refers to whether the feature normalization is applied to the
network input.

C.2 Parameter Sharing

In the main results which are presented, we utilize parameter sharing - a technique which has been
shown to be beneficial in a variety of state-of-the-art methods [1, 4] in all algorithms for a fair
comparison. Specifically, both the policy and value network parameters are shared across all agents.
In this appendix section, we include results which demonstrate the benefit of parameter sharing.
Table 1 shows median evaluation win rate (with standard deviation in parantheses) on selected SMAC
maps over 6 random seeds. MAPPO-Ind is MAPPO denotes MAPPO without parameter sharing -
e.g., each agent has a separate policy and value function network. We observe that MAPPO with
parameter sharing outperforms MAPPO without parameter sharing by a clear margin, supporting our
decision to adopt parameter sharing in all PPO experiments and all baselines used in our results. A
more theoretical analysis of the effect of parameter sharing can be found in [2].

C.3 Death Masking

Figure 2: The effect of death mask on MAPPO’s performance in SMAC.
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In SMAC, it is possible through the course of an episode for certain agents to become inactive, or “die”
while other agents remain active in the environment. In this setting, while the local observation for a
dead agent becomes all zeros except for the agent’s ID, the value-state still contains other nonzero
features about the environment. When computing the GAE for an agent during training, it is unclear
how to handle timesteps in which the agent is dead. We consider four options: (1) in which we
replace the value state for a dead agent with a zero state containing the agent ID (similar to it’s local
observation). We refer to this as “death masking”; (2) MAPPO without death masking, i.e., still using
the nonzero global state as value input; (3) completely drop the transition samples after an agent
dies (note that we still need to accumulate rewards after the agent dies to correctly estimate episode
returns); and (4) replacing the global state with a pure zero-state which does not include the agent ID.
Fig. 2 demonstrates that variant (1) significantly outperforms variants (2) and (3), and consistently
achieves overall strong performance. Including the agent id in the death mask, as is done in variant
(1), is particularly important in maps which agents may take on different roles, as demonstrated by
the superior performance of variant (1) compared to variant (4), which does not contain the agent ID
in the death-mask zero-state, in the 3s5z vs. 3s6z map.

Justification of Death Masking Let 0a be a zero vector with agent a’s agent ID appended to the end.
The use of agent ID leads to an agent-specific value function depending on an agent’s type or role.
It has been empirically justified that such an agent-specific feature is particularly helpful when the
environment contains heterogeneous agents.

We now provide some intuition as to why using 0a as the critic input when agents are dead appears to
be a better alternative to using the usual agent-specific global state as the input to the value function.
Note that our global state to the value network has agent-specific information, such as available
actions and relative distances to other agents. When an agent dies, these agent-specific features
become zero, while the remaining agent-agnostic features remain nonzero - this leads to a drastic
distribution shift in the critic input compared to states in which the agent is alive. In most SMAC
maps, an agent is dead in only a small fraction of the timesteps in a batch (about 20%); due to their
relative infrequency in the training data the states in which an agent is dead will likely have large
value prediction error. Moreover, it is also possible that training on these out of distribution inputs
harms the feature representation of the value network.

Although replacing the states at which an agent is dead with a fixed vector 0a also results in a
distribution shift, the replacement results in there being only 1 vector which captures the state at
which an agent is dead - thus, the critic is more likely to be able to fit the average post-death reward
for agent a to the input 0a. Our ablation on the value function fitting error provide some weight to
this hypothesis.

Another possible mechanism of handling agent deaths is to completely skip value learning in states in
which an agent is dead, by essentially terminating an agent’s episode when it dies. Suppose the game
episode is T and the agent dies at timestep d. If we are not learning on dead state then, in order to
correctly accumulate the episode return, we need to replace the reward rd at timestep d by the total
return Rd at time d, i.e., rd ← Rd =

∑T
t=d γ

t−drt. We would then need to compute the GAE only
on those states in which the agent is alive. While this approach is theoretically correct (we are simply
treating the state where the agent died as a terminal state and assigning the accumulated discounted
reward as a terminal reward), it can have negative ramifications in the policy learning process, as
outlined below.

The GAE is an exponentially weighted average of k-step returns intended to trade off between bias
and variance. Large k values result in a low bias, but high variance return estimate, whereas small
k values result in a high bias, low variance return estimate. However, since the entire post death
return Rd replaces the single timestep reward rd at timestep d, computing the 1-step return estimate
at timestep d essentially becomes a (T − d)-step estimate, eliminating potential benefits of value
function truncation of the trajectory and potentially leading to higher variance. This potentially
dampens the benefit that could come from using the GAE at the timesteps in which an agent is dead.

We analyze the impact of the death masking by comparing different ways of handling dead agents,
including: (1) our death masking, (2) using global states without death masking and (3) ignoring
dead states in value learning and in the GAE computation. We first examine the median win rate with
these different options in Fig. 11 and 13. It is evident that our method of death masking, which uses
0a as the input to the critic when an agent is dead, results in superior performance compared to other
options.
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Fig. 14 also demonstrates that using the death mask results in a lower values loss in the vast majority
of SMAC maps, demonstrating that the accuracy of the value predictions improve when using the
death mask. While the arguments here are intuitive the clear experimental benefits suggest that
theoretically characterizing the effect of this method would be valuable.

C.4 Hyperparameters

Tables 4-16 describe the common hyperparameters, hyperparameter grid search values, and chosen
hyperparmeters for MAPPO, QMix, and MADDPG in all testing domains. Tables 6, 7, 8, and 9
describe common hyperparameters for different algorithms in each domain. Tables 10, 11, and 12
describe the hyperparameter grid search procedure for the MAPPO, QMix, and MADDPG algorithms,
respectively. Lastly, Tables 13, 14, 15 and 16 describe the final chosen hyperparameters among
fine-tuned parameters for different algorithms in MPE, SMAC, Hanabi, and GRF, respectively.

For MAPPO, “Batch Size” refers to the number of environment steps collected before updating the
policy via gradient descent. Since agents do not share a policy only in the MPE speaker-listener,
the batch size does not depend on the number of agents in the speaker-listener environment. “Mini-
batch” refers to the number of mini-batches a batch of data is split into, “gain” refers to the weight
initialization gain of the last network layer for the actor network. “Entropy coef” is the entropy
coefficient σ in the policy loss. “Tau” corresponds to the rate of the polyak average technique used to
update the target networks, and if the target networks are not updated in a “soft” manner, the “hard
interval” hyperparameter specifies the number of gradient updates which must elapse before the
target network parameters are updated to equal the live network parameters. “Clip” refers to the ϵ
hyperparameter in the policy objective and value loss which controls the extent to which large policy
and value function changes are penalized.

MLP network architectures are as follows: all MLP networks use “num fc” linear layers, whose
dimensions are specified by the “fc layer dim” hyperparameter. When using MLP networks, “stacked
frames” refers to the number of previous observations which are concatenated to form the network
input: for instance, if “stacked frames” equals 1, then only the current observation is used as input,
and if “stacked frames” is 2, then the current and previous observations are concatenated to form
the input. For RNN networks, the network architecture is “num fc” fully connected linear layers of
dimension “fc layer dim”, followed by “num GRU layers” GRU layers, finally followed by “num fc
after” linear layers.

D Additional Results

D.1 Additional SMAC Results

Results of all algorithms in all SMAC maps can be found in Tab. 2 and 3.

As MAPPO does not converge within 10M environment steps in the 3s5z vs. 3s6z map, Fig. 3
shows the performance of MAPPO in 3s5z vs. 3s6z when run until convergence. Fig. 4 presents
the evaluation win of MAPPO with different value inputs (FP and AS), decentralized PPO (IPPO),
QMix, and QMix with a modified global state input to the mixer network, which we call QMix (MG).
Specifically, QMix(MG) uses a concatenation of the default environment global state, as well as all
agents’ local observations, as the mixer network input.

Fig. 5 compares the results of MAPPO(FP) to various off-policy baselines, including QMix(MG),
RODE, QPLEX, CWQMix, and AIQMix, in many SMAC maps. Both QMIX and RODE utilize both
the agent-agnostic global state and agent-specific local observations as input. Specifically, for agent
i, the local Q-network (which computes actions at execution) takes in only the local agent-specific
observation oi as input while the global mixer network takes in the agent-agnostic global state s as
input. This is also the case for the other value-decomposition methods presented in Appendix Table 1
(QPLEX, CWQMix, and AIQMix).

D.2 Additional GRF Results

Fig. 6 compares the results of MAPPO to various baselines, including QMix, CDS, and TiKick, in 6
academy scenarios.
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Figure 3: Median win rate of 3s5z vs. 3s6z map after 40M environment steps.

E Ablation Studies

We present the learning curves for all ablation studies performed. Fig. 7 demonstrates the impact of
value normalization on MAPPO’s performance. Fig. 8 shows the effect of global state information
on MAPPO’s performance in SMAC. Fig. 9 studies the influence of training epochs on MAPPO’s
performance. Fig. 10 studies the influence of clipping term on MAPPO’s performance. Fig. 11 and
Fig. 12 illustrates the influence of the death mask on MAPPO(FP)’s and MAPPO(AS)’s performance.
Similarly, Fig. 13 compares the performance of MAPPO when ignoring states in which an agent is
dead when computing GAE to using the death mask when computing the GAE. Fig. 14 illustrates
the effect of death mask on MAPPO’s value loss in the SMAC domain. Lastly, Fig. 15 shows the
influence of including the agent-id in the agent-specific global state.

References
[1] Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, and Stefano V. Albrecht. Scaling

multi-agent reinforcement learning with selective parameter sharing, 2021.

[2] Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices in
cooperative multi-agent reinforcement learning, 2022.

[3] Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain Gelly.
Google research football: A novel reinforcement learning environment. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages
4501–4510. AAAI Press, 2020.

[4] J. K. Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin Black. Revisiting
parameter sharing in multi-agent deep reinforcement learning, 2021.

7



Figure 4: Median evaluation win rate of 23 maps in the SMAC domain.
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Figure 5: Median evaluation win rate of MAPPO(FP), QMix(MG), RODE, QPlEX, CWQMix and
AIQMix in the SMAC domain.

Figure 6: Mean evaluation win rate of MAPPO, QMix, CDS, TiKick in the GRF domain.
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common hyperparameters value

recurrent data chunk length 10
gradient clip norm 10.0

gae lamda 0.95
gamma 0.99

value loss huber loss
huber delta 10.0
batch size num envs × buffer length × num agents

mini batch size batch size / mini-batch
optimizer Adam

optimizer epsilon 1e-5
weight decay 0

network initialization Orthogonal
use reward normalization True
use feature normalization True

Table 4: Common hyperparameters used in MAPPO across all domains.

common hyperparameters value

gradient clip norm 10.0
random episodes 5

epsilon 1.0→ 0.05
epsilon anneal time 50000 timesteps

train interval 1 episode
gamma 0.99

critic loss mse loss
buffer size 5000 episodes
batch size 32 episodes
optimizer Adam

optimizer eps 1e-5
weight decay 0

network initialization Orthogonal
use reward normalization True
use feature normalization True

Table 5: Common hyperparameters used in QMix and MADDPG across all domains.

hyperparameters value

num envs MAPPO: 128
buffer length MAPPO: 25

num GRU layers 1
RNN hidden state dim 64

fc layer dim 64
num fc 2

num fc after 1

Table 6: Common hyperparameters used in the MPE domain for MAPPO, MADDPG, and QMix.
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hyperparameters value

num envs MAPPO:8
buffer length MAPPO: 400

num GRU layers 1
RNN hidden state dim 64

fc layer dim 64
num fc 2

num fc after 1

Table 7: Common hyperparameters used in the SMAC domain for MAPPO and QMix.

hyperparameters value

num envs 1000
buffer length 100
fc layer dim 512

num fc 2

Table 8: Common hyperparameters used in the Hanabi domain for MAPPO.

hyperparameters value

parallel envs MAPPO: 50
QMix: 1

horizon length 199
num GRU layers 1

RNN hidden state dim 64
fc layer dim 64

num fc 2
num fc after 1

Table 9: Common hyperparameters used in the GRF domain for MAPPO and QMix.

Domains lr epoch mini-batch activation clip gain entropy coef network

MPE [1e-4,5e-4,7e-4,1e-3] [5,10,15,20] [1,2,4] [ReLU,Tanh] [0.05,0.1,0.15,0.2,0.3,0.5] [0.01,1] / [mlp,rnn]
SMAC [1e-4,5e-4,7e-4,1e-3] [5,10,15] [1,2,4] [ReLU,Tanh] [0.05,0.1,0.15,0.2,0.3,0.5] [0.01,1] / [mlp,rnn]
Hanabi [1e-4,5e-4,7e-4,1e-3] [5,10,15] [1,2,4] [ReLU,Tanh] [0.05,0.1,0.15,0.2,0.3,0.5] [0.01,1] [0.01, 0.015] [mlp,rnn]
Football [1e-4,5e-4,7e-4,1e-3] [5,10,15] [1,2,4] [ReLU,Tanh] [0.01,1] [0.01, 0.015] [mlp,rnn]

Table 10: Sweeping procedure of MAPPO cross all domains.

Domains lr tau hard interval activation gain

MPE [1e-4,5e-4,7e-4,1e-3] [0.001,0.005,0.01] [100,200,500] [ReLU,Tanh] [0.01,1]
SMAC [1e-4,5e-4,7e-4,1e-3] [0.001,0.005,0.01] [100,200,500] [ReLU,Tanh] [0.01,1]

Table 11: Sweeping procedure of QMix in the MPE and SMAC domains.

Domains lr tau activation gain network

MPE [1e-4,5e-4,7e-4,1e-3] [0.001,0.005,0.01] [ReLU,Tanh] [0.01,1] [mlp,rnn]

Table 12: Sweeping procedure of MADDPG in the MPE domain.
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Scenarios lr gain network MAPPO MADDPG QMix

epoch mini-batch activation tau activation tau hard interval activation

Spread 7e-4 0.01 rnn 10 1 Tanh 0.005 ReLU / 100 ReLU
Reference 7e-4 0.01 rnn 15 1 ReLU 0.005 ReLU 0.005 / ReLU

Comm 7e-4 0.01 rnn 15 1 Tanh 0.005 ReLU 0.005 / ReLU

Table 13: Adopted hyperparameters used for MAPPO, MADDPG and QMix in the MPE domain.

Maps lr activation MAPPO QMix

epoch mini-batch clip gain network stacked frames hard interval gain

2m vs. 1z 5e-4 ReLU 15 1 0.2 0.01 rnn 1 200 0.01
3m 5e-4 ReLU 15 1 0.2 0.01 rnn 1 200 0.01

2s vs. 1sc 5e-4 ReLU 15 1 0.2 0.01 rnn 1 200 0.01
3s vs. 3z 5e-4 ReLU 15 1 0.2 0.01 rnn 1 200 0.01
3s vs. 4z 5e-4 ReLU 15 1 0.2 0.01 mlp 4 200 0.01
3s vs. 5z 5e-4 ReLU 15 1 0.05 0.01 mlp 4 200 0.01

2c vs. 64zg 5e-4 ReLU 5 1 0.2 0.01 rnn 1 200 0.01
so many baneling 5e-4 ReLU 15 1 0.2 0.01 rnn 1 200 0.01

8m 5e-4 ReLU 15 1 0.2 0.01 rnn 1 200 0.01
MMM 5e-4 ReLU 15 1 0.2 0.01 rnn 1 200 0.01
1c3s5z 5e-4 ReLU 15 1 0.2 0.01 rnn 1 200 0.01

8m vs. 9m 5e-4 ReLU 15 1 0.05 0.01 rnn 1 200 0.01
bane vs. bane 5e-4 ReLU 15 1 0.2 0.01 rnn 1 200 0.01

25m 5e-4 ReLU 10 1 0.2 0.01 rnn 1 200 0.01
5m vs. 6m 5e-4 ReLU 10 1 0.05 0.01 rnn 1 200 0.01

3s5z 5e-4 ReLU 5 1 0.2 0.01 rnn 1 200 0.01
MMM2 5e-4 ReLU 5 2 0.2 1 rnn 1 200 0.01

10m vs. 11m 5e-4 ReLU 10 1 0.2 0.01 rnn 1 200 0.01
3s5z vs. 3s6z 5e-4 ReLU 5 1 0.2 0.01 rnn 1 200 1
27m vs. 30m 5e-4 ReLU 5 1 0.2 0.01 rnn 1 200 1

6h vs. 8z 5e-4 ReLU 5 1 0.2 0.01 mlp 1 200 1
corridor 5e-4 ReLU 5 1 0.2 0.01 mlp 1 200 1

Table 14: Adopted hyperparameters used for MAPPO and QMix in the SMAC domain.

Tasks MAPPO

lr epoch mini-batch activation gain entropy coef network

2-player actor:7e-4
critic:1e-3 15 1 ReLU 0.01 0.015 mlp

Table 15: Adopted hyperparameters used for MAPPO in the Hanabi domain.

Scenarios lr activation buffer length MAPPO QMix

epoch mini-batch gain network hard interval gain

3v.1 5e-4 ReLU 200 15 2 0.01 rnn 200 0.01
Corner 5e-4 ReLU 1000 15 2 0.01 rnn 200 0.01

CA(easy) 5e-4 ReLU 200 15 2 0.01 rnn 200 0.01
CA(hard) 5e-4 ReLU 1000 15 2 0.01 rnn 200 0.01

PS 5e-4 ReLU 200 15 2 0.01 rnn 200 0.01
RPS 5e-4 ReLU 200 15 2 0.01 rnn 200 0.01

Table 16: Adopted hyperparameters used for MAPPO and QMix in the Football domain.
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Figure 7: Ablation studies demonstrating the effect of Value Normalization(VN) on MAPPO’s
performance in the MPE, SMAC, and GRF domains.

Figure 8: Ablation studies demonstrating the effect of different global state on MAPPO’s
performance in the SMAC domain.
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Figure 9: Ablation studies demonstrating the effect of training epochs on MAPPO’s performance in
the MPE, SMAC, and GRF domains.
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Figure 10: Ablation studies demonstrating the effect of clip term on MAPPO’s performance in the
SMAC and GRF domain.

Figure 11: Ablation studies demonstrating the effect of death mask on MAPPO(FP)’s performance in
the SMAC doamin.
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Figure 12: Ablation studies demonstrating the effect of death mask on MAPPO(AS)’s performance
in the SMAC domain.

Figure 13: Ablation studies demonstrating the effect of death mask on MAPPO’s performance in the
SMAC domain.
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Figure 14: Effect of death mask on MAPPO’s value loss in the SMAC domain.

Figure 15: Ablation studies demonstrating the effect of agent id on MAPPO’s performance in the
SMAC domain.
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