
Near-Optimal Regret Bounds for Multi-batch
Reinforcement Learning

Zihan Zhang˚ Yuhang Jiang: Yuan Zhou; Xiangyang Ji §

Abstract

In this paper, we study the episodic reinforcement learning (RL) problem mod-
eled by finite-horizon Markov Decision Processes (MDPs) with constraint on the
number of batches. The multi-batch reinforcement learning framework, where the
agent is required to provide a time schedule to update policy before everything,
which is particularly suitable for the scenarios where the agent suffers extensively
from changing the policy adaptively. Given a finite-horizon MDP with S states,
A actions and planning horizon H , we design a computational efficient algorithm
to achieve near-optimal regret of Õp

a

SAH3K lnp1{δqq5 in K episodes using
O pH ` log2 log2pKqq batches with confidence parameter δ. To our best of knowl-
edge, it is the first Õp

?
SAH3Kq regret bound with OpH ` log2 log2pKqq batch

complexity. Meanwhile, we show that to achieve ÕppolypS,A,Hq
?
Kq regret,

the number of batches is at least Ω pH{ logApKq ` log2 log2pKqq, which matches
our upper bound up to logarithmic terms.
Our technical contribution are two-fold: 1) a near-optimal design scheme to explore
over the unlearned states; 2) an computational efficient algorithm to explore certain
directions with an approximated transition model.

1 Introduction

In reinforcement learning (RL), the learning agent interacts with the environment to maximize the
total reward by making sequential decisions. The agent typically has to achieve two seemingly very
different goals: to try as many actions and reach as many states as possible so as to learn more
information about the environment (a.k.a. exploration) and to follow the policy that collects the
high rewards according to the learned information (a.k.a. exploitation). To address this exploration-
exploitation dilemma and achieve the near-optimal regret bounds, the agent usually needs to adjust
his/her strategies adaptively based on the historical trajectories and make frequent policy changes
[Azar et al., 2017, Zanette and Brunskill, 2019, Zhang et al., 2020].

On the other hand, however, too much adaptivity requirement usually leads to lower level of paral-
lelism, impeding the large-scale deployment of the RL algorithms (which is often in a distributed
manner). Frequent policy updates also suffer the cost of re-deploying policies in many practical
applications. For example, in medical domains, it often requires complete discussion among many
experts to change the treatment plans, which is not affordable in terms of both time and monetary
cost [Lei et al., 2012, Almirall et al., 2012, 2014]; in RL for hardware placement [Mirhoseini et al.,
2017], rewriting the program into the hardware for too many times is strongly discouraged. Similar

˚Department of Automation, Tsinghua University, zihan-zh17@mails.tsinghua.edu.cn
:Department of Automation, Tsinghua University, jiangyh19@mails.tsinghua.edu.cn
;Yau Mathematical Sciences Center & Department of Mathematical Sciences, Tsinghua University,

yuan-zhou@tsinghua.edu.cn
§Department of Automation, Tsinghua University, xyji@tsinghua.edu.cn
5Õp¨q hides logarithmic terms of pS,A,H,Kq

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

challenges also arise in applying RL to personalized recommendation system [Yu et al., 2019] and
database optimization [Krishnan et al., 2018].

In such cases, the learning agent should minimize the number of policy switches while keeping the
regret affordable. Bai et al. [2019] first proposed the provably efficient RL algorithms with low
switching costs under the Q-learning algorithmic framework together with the lazy update techniques.
However, their method needs to actively monitor the data in real time to determine whether a policy
change is to be initiated. In other words, although the number of policy switches by [Bai et al., 2019]
is low, the (usually long) time periods when the same policy is used still cannot be parallelized due to
the policy-change trigger in their algorithms which is intrinsically sequential.

In order to address this problem, we propose and study under the framework of multi-batch RL,
where the learning agent has to determine the number of batches and length of each batch before the
learning process starts,6 and uses as few batches as possible to achieve a low regret. Multi-batch
RL algorithms can be easily deployed in a distributed fashion as the episodes during the same batch
can be easily and fully parallelized. The idea of batch learning is also being widely practiced. For
example, in medical trials, the medical center usually collects the data during a fixed time period
among a batch of patients and then designs the experiment for the next phase based on the learned
information in previous phases [Lei et al., 2012, Almirall et al., 2012, 2014].

Formally, we define multi-batch RL and batch complexity as below.
Definition 1 (Multi-Batch RL with complexity M). The agent determines a group of lengths
ttmuMm“1 such that

řM
m“1 tm “ K before the learning process starts. For m “ 1, 2, . . . ,M , the

agent sets a policy πm and then follows πm for tm episodes.

We highlight that an upper bound for batch complexity implies the same upper bound for global
switching cost, since each policy switch means a new batch. It is also worth noting that the proposed
batch RL framework is fully parallelizable during each batch for the applications where dataset comes
in batch (e.g., clinical trial). Like other RL settings, we have the natural and interesting question:
Question 1. Is it possible to achieve near optimal batch complexity, while keeping the regret
Õp

?
SAH3Kq.

We provide a positive answer for Question 1, which we state as below.
Theorem 1. Let7 ι “ lnp2{δq. For any episodic MDP, with probability 1 ´ δ, under Algorithm 1 the
regret in T episodes is bounded by

RegretpT q ď Õ
´?

SAH3Kι2 ` S
15
4 A

9
8H

17
8 ι

5
8K

3
8 ` S

19
4 A

13
4 H

33
4 ιK

1
4 ` S

11
2 A

9
2H

17
2 ι
¯

,

and the batch complexity is bounded by OpH ` log2 log2pKqq. Moreover, the computational cost of
Algorithm 1 is ÕpS4AHK3 ` S3A2H2K3q.

On the other hand, we show a lower bound of batch complexity as below.

Theorem 2. For any algorithm with OppolypS,A,Hq
?
Kq regret bound, the batch complexity is at

least ΩpH{ logApKq ` log2 log2pKqq.

Compared to the lower bound of Ωplog2 log2pKqq in [Gao et al., 2019] for multi-armed bandit
problem, additional ΩpH{ logApKqq batches are required to explore the structure of the MDP.

Due to space limitation, we defer the full proofs of Theorem 1 and Theorem 2 to Appendix D and
Appendix B respectively.

Our contribution. We propose the framework of multi-batch RL, and first achieve OpH `

log2 log2pKqq sample complexity bound with the near-optimal Õp
?
SAH3Kιq regret bound with

an efficient algorithm. We also prove that for any algorithm with OppolypS,A,Hq
?
Kq regret, the

global switching cost is at least ΩpH{ logApKq ` log2 log2pKqq, which implies a nearly matching
lower bound of ΩpH{ log2pKq ` log2 log2pKqq for the batch complexity. We also note that the
OpH ` log2 log2pKqq batch complexity implies an OpH ` log2 log2pKqq bound for the global
switching cost, which is also a near optimal upper bound.

6In contrast, Bai et al. [2019] can update the policy at any time.
7Throughout the paper we use ι to denote lnp2{δq.

2

2 Related Works

Bandit algorithms with limited adaptivity. Bandit problem with low switching cost is widely
studied in past decades [Cesa-Bianchi et al., 2013, Perchet et al., 2016, Gao et al., 2019, Simchi-
Levi and Xu, 2019]. Cesa-Bianchi et al. [2013] showed an Θ̃pK

2
3 q regret bound under adaptive

adversaries and bounded memories. Perchet et al. [2016] proved a regret bound of Θ̃pK
1

1´21´M q for
the two-armed bandit problem within M batches, and later Gao et al. [2019] extended their result to
the general A-armed case. Besides the setting of classical multi-armed bandit problem, other settings
has also been studied, e.g., multinomial bandit problem [Dong et al., 2020] and linear bandit problem
[Ruan et al., 2020].

Episodic reinforcement learning with low switching cost. For model-based algorithms, by
doubling updates, the global switching cost is OpSAH log2pKqq while keeping the regret
Õp

?
SAKH3qAzar et al. [2017]. For model-free algorithms, Bai et al. [2019] first studied RL with

low switching cost. They proposed a Q-learning algorithm with lazy update to achieve Õp
?
SAKH4q

regret bound and OpSAH3 logpK{Aqq local switching cost. Recently Zhang et al. [2020] estab-
lished a better regret bound of Õp

?
SAKH3q and OpSAH2 logpK{Aqq local switching cost. Be-

sides, Gao et al. [2021] generalized the problem to Linear RL, and established a regret bound of
Õp

?
d3H4Kq with OpdH logpKqq global switching cost. Recent work Qiao et al. [2022] achieved

OpHSA log2 log2pKqq switching cost and ÕppolypS,A,Hq
?
Kq regret with a computational inef-

ficient algorithm.

Regret minimization for reinforcement learning. There is a long line of works devoting to regret
minimization for RL problem [Kakade, 2003, Jaksch et al., 2010, Bartlett and Tewari, 2009, Dann
et al., 2019, Azar et al., 2017, Jin et al., 2018, Zanette and Brunskill, 2019, Zhang and Ji, 2019, Zhang
et al., 2020, Li et al., 2020, Zhang et al., 2021]. For tabular setting, near optimal regret bound of
Õp

?
SAH3T q has been established by [Azar et al., 2017, Zanette and Brunskill, 2019, Zhang et al.,

2020] for both model-based and model-free algorithms. However, fewer algorithms focused on the
setting of multi-batch RL.

3 Preliminaries

Episodic reinforcement learning. M “ xS,A, r, P, s1y, where S ˆ A is the discrete
state-action space, r “ trhps, aqups,aqPSˆA,hPrHs is the known8 reward function, P “

tPhps, aqups,aqPSˆA,hPrHs is the unknown transition model and s1 is the fixed initial state9. We
assume that the reward function rhps, aq P r0, 1s for any ph, s, aq. In each episode, the agent starts
at s1, then takes actions and transits to the next state step by step, and finally conducts the trajec-
tory tpsh, ah, sh`1quHh“1. The target of the agent is to maximize the accumulative reward function
řH

h“1 rhpsh, ahq.

A policy π can be viewed as a series of mappings tπhuHh“1 where πh : S Ñ ∆A maps sh to a
distribution over the action space at the h-th step, where πhpa|sq is the probability taking action a at
state s of the h-th horizon.

Given a policy π, the (optimal) Q-function and value function are given by

Qπ
hps, aq “ Eπ

«

H
ÿ

h1“h

rh1 psh1 , ah1 q

ˇ

ˇ

ˇ
psh, ahq “ ps, aq

ff

; Q˚
hps, aq “ sup

πPΠ
Qπ

hps, aq;

V π
h psq “ Eπ

«

H
ÿ

h1“h

rh1 psh1 , ah1 q

ˇ

ˇ

ˇ
sh “ s

ff

; V ˚
h psq “ max

a
Q˚

hps, aq.

8This is a common assumption since the uncertainty of reward function is dominated by that of the transition
model.

9The more general case, where the agent starts from a fixed initial distribution, could be reduced to our
setting by increasing H by 1

3

Let πpkq denote the policy in the k-th episode. Then the regret is given by

RegretpKq :“
K
ÿ

k“1

pV ˚
1 ps1q ´ V πpkq

1 ps1qq. (1)

Notations In this paper, we use Eπ,pr¨s (Pπ,pr¨s) to denote the expectation (probability) following
policy π under transition model p. In particular, Eπr¨s(Pπr¨s) denotes the expectation (probability)
following π under the true transition model P . We define the general value function

Wπpr1, pq “ Eπ,p

«

H
ÿ

h“1

r1
hpsh, ahq

ff

.

We use 1 to denote the S-dimensional vector r1, 1, . . . , 1sJ and 1h,s,a to denote the reward func-
tion r1 such that r1

h1 ps1, a1q “ Irph, s, aq “ ph1, s1, a1qs. We also define tdπhps, aqups,a,hq be the
occupancy distribution of π. That is, dπhps, aq “ EπrIrpsh, ahq “ ps, aqss. ∆d is used to denote
the d-dimensional simplex. For two vector x, y with the same dimension, we write xJy as xy for
convenience. For p P ∆S and v P RS , we define Vpp, vq “ pv2 ´ ppvq2. For N ě 1, we use rN s to
denote the set r1, 2, . . . , N s.

4 Technique Overview

In this section, we first introduce the policy elimination framework, which enjoys the near-optimal
batch complexity. Then we summarize the technical challenges to achieve the near-optimal regret
bound efficiently under this framework. At last, we introduce our major technical contributions.

4.1 Policy Elimination Framework

Following the methods in multi-batch bandit learning Perchet et al. [2016], Gao et al. [2019], we
construct our main algorithm using policy elimination. Like most model-based reinforcement learning
methods, we maintain a confidence region P for the transition model, where the true transition model
P P P with high probability. Before each batch starts, for a policy π and a reward function u, by
extended value iteration (See Algorithm 5 in Appendix C.2), we are able to compute the confidence
interval rLπpu,Pq, Uπpu,Pqs for the value function of π, where

Uπpu,Pq :“ max
p1PP

Wπpu ` 1z, p1q; Lπpu,Pq :“ min
p1PP

Wπpu, p1q. (2)

Here z is a virtual state for the infrequent state-action-state triples (See Function clip in Algorithm 2).
The reason why we give reward 1 for z in computing the upper confidence bound is to encourage
exploration to these infrequent state-action-state triples.

By policy elimination we get Πpr,Pq “

!

π
ˇ

ˇUπpr,Pq ě supπ1 Lπ1

pr,Pq

)

as the set of survived
policies. The next step is to choose a policy π P Πpr,Pq and execute π in the current batch.
Defining Pm to be the confidence region for the transition model after the m-th batch and gapm`1 “

maxπPΠpr,PmqpUπpr,Pmq ´ Lπpr,Pmqq, the regret in the m ` 1-th batch could be bounded by
tm`1gapm`1. Therefore, the main task is to design efficient exploration policy to reduce gapm for
each 1 ď m ď M .

4.2 Technical Challenges

Following the policy elimination framework above, we have two major challenges to achieve the
near-optimal regret bound with an efficient algorithm.

Difficulty in exploration Fix the reward function r and confidence region P . To construct tight
confidence interval for every policy π P Πpr,Pq, we need to find a policy π P Πpr,Pq to collect
enough samples for each ph, s, aq. To address the problem, Qiao et al. [2022] proposed an algorithm
named APEVE, which learns each ph, s, aq triple independently. More precisely, for each ph, s, aq P

rHsˆSˆA, the algorithm searches for a policy πh,s,a to maximize the probability of visiting ph, s, aq

4

over Πpr,Pq, and then execute πh,s,a to collect samples for ph, s, aq. However, this algorithm might
be inefficient in sampling, since different horizon-state-action triples may match along with the same
exploration policy. As shown in Qiao et al. [2022], the regret bound might be sub-optimal with this
algorithm. Therefore, to achieve the near-optimal regret bound, we need to design a new exploration
strategy to utilize the correlationship among different horizon-state-action triples.

Difficulty in efficient implementation Because the policy set Πpr,Pq might have exponential size,
naive enumeration is not applicable to searching for a good exploration policy. As a consequence, it
requires additional efforts to study the structure of Πpr,Pq. For example, when r “ 0, Πpr,Pq is the
set of all possible policies. In this case, we can use extended value iteration (See Algorithm 5) to find
the policy which visits ph, s, aq most frequently.

4.3 Key Techniques

Near-optimal design scheme Unlike RL algorithm with limited switching cost, in multi-batch
reinforcement learning, the agent can not change the policy adaptively. As a result, we need to design
a policy with proper coverage ratio for all the survived policies. That is, using the data collected
following this policy, the length of the confidence interval for any survived policy is bounded by a
uniform threshold.

Recall that dπhps, aq “ EπrIrpsh, ahq “ ps, aqs. Using classical regret analysis for tabular RL [Azar
et al., 2013, Zanette and Brunskill, 2019], for a fixed policy π, the length of confidence interval for π
could be roughly bounded by

Õ

˜

ÿ

s,a,h

dπhps, aq

d

Varhps, aq

Nhps, aq

¸

ď

Cauchy1s ineq.Õ

¨

˝

g

f

f

e

ÿ

s,a,h

dπhps, aq

Nhps, aq
¨

d

ÿ

s,a,h

dπhps, aqVarhps, aq

˛

‚,

(3)

where Varhps, aq is the variance term with respect to Ph,s,a and V ˚h`1 p¨q, and Nhps, aq ě 1 is the
count of ph, s, aq.

Because
ř

s,a,h d
π
hps, aqVarhps, aq could be uniformly bounded by OpH2q using classical analysis,

we focus on bounding the term
ř

s,a,h
dπ
hps,aq

Nhps,aq
. Suppose the policy for current batch is π̃. After this

batch, we roughly have that Nhps, aq9dπ̃hps, aq. So it corresponds to find a policy π̃ P Πpr,Pq to
minimize the worst-case coverage number maxπPΠpr,Pq

ř

h,s,a
dπ
hps,aq

dπ̃
hps,aq

. For this problem, we have
the lemma below, and the proof is deferred to Appendix E.1.
Lemma 1. Let d ą 0 be an integer. Let X Ă p∆dqm. Then there exists a distribution D over X ,
such that

max
x“txiudmi“1PX

dm
ÿ

i“1

xi

yi
“ md,

where y “ tyiu
dm
i“1 “ Ex„Drxs. Moreover, if X has a boundary set BX with finite cardinality, we

can find an approximation solution for D in polyp|BX |q time.

Plugging X “
␣

tdπhp¨, ¨quHh“1|π P Πpr,Pq
(

, d “ SA and m “ H into Lemma 1, there exists a
policy π̃ being a mixture of policies in Πpr,Pq, such that maxπPΠpr,Pq

ř

s,a,h
dπ
hps,aq

dπ̃
hps,aq

“ SAH . In

this way, we can find the desired exploration policy π̃ by assuming the knowledge of tdπhp¨, ¨qu
H
h“1

for all π P Πpr,Pq.

Given the design scheme above, it remains two problems, for which we present solutions below:
1) tdπhp¨, ¨qu

H
h“1 is unknown; 2) even assuming tdπhp¨, ¨qu

H
h“1 is known, it is hard to find π̃ since the

cardinality of
␣

tdπhp¨, ¨quHh“1|π P Πpr,Pq
(

might be exponential in SH .

Constructing tight confidence region To estimate tdπhp¨, ¨qu
H
h“1, we consider to construct a tight

confidence region for the transition model to estimate the occupancy distribution up to a constant
ratio.

5

Definition 2. We say a confidence transition region P “ bh,s,aPh,s,a is tight with respect to p1 iff
(i)p1 P P; (ii) e´ 1

H p1
h,s,a,s1 ď ph,s,a,s1 ď e

1
H p1

h,s,a,s1 for any ph, s, a, s1q and any ph,s,a P Ph,s,a;
(iii) Ph,s,a has the form Ph,s,a “ tp P ∆S |aJ

i p ď bi, i “ 1, 2, ...,mu where m ď polypSMq.

In model-based reinforcement learning, these conditions are natural and it is easy to construct a tight
confidence region with acceptable error.

Once we have a confidence region which is tight w.r.t. the true transition model P , for any policy π
and ph, s, aq, we can estimate the expected visit count Wπp1h,s,aq by Wπp1h,s,a, pq for any p P P
because

e´1Wπp1h,s,a, pq ď Wπp1h,s,aq “ dπhps, aq ď eWπp1h,s,a, pq.

With Wπp1h,s,a, pq as approximation of dπhps, aq, we can continue the analysis above by paying a
constant factor.

To learn such a confidence region, by Bennet’s inequality (Lemma 3), it suffices to visit ph, s, a, s1q10

for C1H
2ι for each ph, s, a, s1q, where C1 is an universal constant. By this idea, we try to visit each

ph, s, a, s1q as much as possible. In the meantime, it is very possible that some ph, s, a, s1q tuples are
extremely hard to visit. Fortunately, with proper exploration scheme, we can show that the maximal
probability to visit such tuples is well-bounded, so that these tuples could be ignored by suffering
regret Op

?
T q.

Computational efficient design scheme Assume the confidence region P is tight w.r.t.
P . We invoke reward-zero exploration to learn a sub-optimal solution for the problem
minπ̃PΠpr,Pq maxπPΠpr,Pq

ř

h,s,a
dπ
hps,aq

dπ̃
hps,aq

. Let p P P be fixed and define d̃πhps, aq “ Wπp1h,s,a, pq

be the approximation for dπhps, aq. We define π̃i “ argmaxπPΠpr,Pq W
πpri, pq for 1 ď i ď k “ K3,

where rihps, aq “ min

"

1
ři´1

j“1 d̃π̃j

h ps,aq
, 1

*

. Let π̃ be the mixture of tπ̃iuki“1. For any policy π, we

have that

ÿ

s,a,h

dπhps, aq ¨ min

"

1

dπ̃hps, aq
, k

*

ď O

˜

ÿ

s,a,h

d̃πhps, aq ¨ min

#

1

d̃π̃hps, aq
, k

+¸

(4)

ď O

˜

k
ÿ

i“1

Wπpri, pq

¸

(5)

ď O

˜

k
ÿ

i“1

W π̃i

pri, pq

¸

(6)

ď O

˜

ÿ

s,a,h

k
ÿ

i“1

dπ̃
i

h ps, aq ¨ min

#

1
ři´1

j“1 d
π̃j

h ps, aq
, 1

+¸

ď O

˜

ÿ

s,a,h

k
ÿ

i“1

log

˜

maxt
ři

j“1 d
π̃j

h ps, aq, 1u

maxt
ři´1

j“1 d
π̃j

h ps, aq, 1u

¸¸

ď OpSAH logpkqq. (7)

Here (4) holds by the tightness of P , (5) holds by the fact that rihps, aq ě rk`1
h ps, aq “

min

"

1
řk

j“1 d̃π̃j

h ps,aq
, 1

*

“ 1
k min

!

1
d̃π̃
hps,aq

, k
)

for any ph, s, aq, and (6) holds by the optimality

of π̃i for 1 ď i ď k. With (7) in hand, maxπPΠpr,Pq

ř

h,s,a
dπ
hps,aq

dπ̃
hps,aq

is roughly bounded by

OpSAH logpKqq11, which nearly matches the best worst-case coverage number number of SAH .

10A tuple ph, s, a, s1
q is visited means psh, ah, sh`1q “ ps, a, s1

q.
11We remark the there is still a gap between maxπPΠpr,Pq

ř

h,s,a

dπhps,aq

dπ̃
h

ps,aq
and

ř

s,a,h dπhps, aq ¨

min
!

1
dπ̃
h

ps,aq
,K3

)

. Actually (7) is sufficient for further regret analysis.

6

Algorithm 1 Main Algorithm

1: Input: state-action space S ˆ A, number of episodes K, confidence parameter δ;
2: Initialize: ι Ð lnp2{δq, k1 Ð 144

?
SAKHι, k2 Ð 288S3A2H4

?
Kι;

3: tD1u Ð Raw Explorationp0,H, k1q;
4: tD2u Ð Raw Explorationpr,D1, k2q;
5: Policy EliminationpD2,K ´ Hk1 ´ Hk2q.

Computational efficient constrained exploration Let u, u1 be two reward functions and P be
a set of transition models. As stated before, for general Πpu,Pq , it might be non-trivial to solve
the problem π̃ “ argmaxπPΠpu,Pq W

πpu1, pq for fixed p P P . As a trade-off, we turn to find some
policy π̃ P Πpu,Pq such that W π̃pu1, pq ě cmaxπPΠpu,Pq W

πpu1, pq, where c ą 0 is some universal
constant. The problem turns out to be a RL problem with a soft constraint. For general Πpu,Pq, the
problem might be hard to solve. Fortunately, on the benefit of the tight property of P , we can find
such π̃ efficiently.

5 Algorithms

In this section we present our algorithms. The main algorithm (Algorithm 1) consists of three stages.

In the first two stages, we conduct naive exploration to identify the tuples which are hard to visit,
which we called infrequent tuples. In particular, the length of the second stage is slightly larger than
that of the first stage, where we use the dataset in the first stage to reduce the regret in the second stage.
In this way, we can bound the regret in the first two stages by Õp

?
SAH3Kq, while the probability

of visiting the infrequent tuples is small enough.

After ignoring the infrequent tuples, we could obtain a tight confidence region. Given the tight
confidence region, we compute the confidence region for each policy and conduct policy elimination
in the third stage. The first and second stages contains OpHq batches, and the third stage contains
Oplog2 log2pKqq batches. So the batch complexity of Algorithm 1 is OpH ` log2 log2pKqq. Below
we describe Raw Exploration (Algorithm 2) and Policy Elimination (Algorithm 3) in detail.

5.1 Raw Exploration

Given a dataset D with counts tNhps, a, s1qu, we define the set of known tuples as tph, s, a, s1q :
Nhps, a, s1q ě C1H

2ιu and the left tuples are regarded as infrequent tuples.

In Algorithm 2, we are given a dataset. Then we compute the corresponding confidence region P in

Line 20, where αpn, n1q “

b

4n1ι
n2 ` 5ι

n .

We conduct exploration layer by layer over policies in the set of survived policies Πpr,Pq. By visiting
each ph, s, aq as much as possible, we can judge whether a tuple ph, s, a, s1q is hard to visit using
policies in Πpr,Pq.

Given the set of known tuples W , we redirect all tuples not in W to an additional absorbed state z
using clipp¨, ¨q. Once we prove that the probability of reaching z is small enough for the any optimal
policy, we can directly learn under the clipped transition model.

In Line 6 Algorithm 2, the algorithm Policy Search is invoked. Given any reward u, u1, any
confidence region P and threshold ϵ ą 0, this algorithm returns a policy π̃ P Πpu,Pq such that
W π̃pu1, pq ě cmaxπPΠpu,Pq W

πpu1, pq ´ ϵ with some universal constant c ą 0. Moreover, when
P is tight w.r.t. the true transition model P after clipping, the time complexity of the algorithm is
OppolypSAHKq logp1{ϵqq. The algorithm and corresponding analysis is postponed to Appendix C.

It is also worth noting that executing each πh,s,a with probability 1
SA can not be regarded as a

(history-independent) policy because the agent need to keep in mind which policy is chosen in current
episode. In contrast, the agent only needs to observe current state to take actions following a policy.
To address this problem, we define an operator Sum to take sum over policies under some transition
model. Formally, we have the lemma below and postpone the proof to Appendix E.2.

7

Algorithm 2 Raw Explorationpu,D, kq

1: Input: reward function u, dataset D, length k;
2: Initialize: C1 Ð 200;
3: for h “ 1, 2, . . . ,H do
4: P Ð CRpDq;
5: for ps, aq P S ˆ A do
6: πh,s,a Ð Policy Searchpu, 1h,s,a,Pq;
7: end for
8: p Ð arbitrary element in P;
9: tπ̃h, pu Ð Sum

´

␣

1
SA , πh,s,a, p

(

ph,s,aq

¯

;

10: πh be the policy which is the same as π̃h in the first h ´ 1 steps, and be the uniformly random
policy in the left H ´ h ` 1 steps;

11: Execute πh for k episodes, and collect the samples as Dh;
12: D Ð D Y Dh;
13: end for
14: return: tDu;

15: Function: CRpDq:
16: Nhps, a, s1q Ð count of ph, s, a, s1q in D, for all ps, a, s1q;
17: Nhps, aq Ð maxt

ř

s1 Nhps, a, s1q, 1u for all ps, aq;
18: p̂h,s,a,s1 Ð

Nhps,a,s1
q

Nhps,aq
, @ph, s, a, s1q;

19: W Ð tph, s, a, s1q : Nhps, a, s1q ě C1H
2ιu;

20: P̃h,s,a Ð
␣

p P ∆S | |ps1 ´ p̂h,s,a,s1 | ď αpNhps, aq, Nhps, a, s1qq,@s1 P S
(

, @ph, s, aq;
21: Ph,s,a Ð tclippp,Wq : p P P̃h,s,au, @ph, s, aq;
22: Return: bh,s,aPh,s,a.

23: Function: clippp,Wq

24: p1
h,s,a,s1 Ð ph,s,a,s1 ,@ph, s, a, sq P W;

25: p1
h,s,a,s1 Ð 0,@ph, s, a, s1q R W;

26: p1
h,s,a,z Ð

ř

s1:ph,s,a,s1qRW ph,s,a,s1 ,@ph, s, aq P rHs ˆ S ˆ A;
27: p1

h,z,a Ð 1z,@ph, aq P rHs ˆ A;
28: Return: p.

Lemma 2. Let P “ bph,s,aqPh,s,a be a set of transition models such that Ph,s,a Ă ∆S is convex for
any ph, s, aq. Let tpπi, P iquni“1 be a sequence of policy-transition pairs such that P i P P . For any
tλiu

n
i“1 such that λi ě 0 for i ě 1 and

ř

i λi “ 1, there exists a policy π and P P P , satisfying that

Wπp1h,s,a, P q “
ÿ

i

λiW
πi

p1h,s,a, P iq (8)

for any ph, s, aq P rHs ˆ S ˆ A. Furthermore, the time complexity to find tπ, P u could be bounded
by OpnS3A2H2q.

Therefore, for any tλi, π
i, P iuni“1 satisfying

řn
i“1 λi “ 1 and λi ě 0 for i ě 1 as input, there

exists tπ, P u such that Wπp1h,s,a, P q “
ř

i λiW
πi

p1h,s,a, P
iq and Ph,s,a P ConvexptP i

h,s,auni“1q

for any ph, s, aq P rHs ˆ S ˆ A, where ConvexpUq denotes the convex hull of the set U . Then Sum
is defined as Sumptλi, π

i, P iuni“1q “ tπ, P u.

5.2 Policy Elimination

Given the dataset collected in the first two stages, we first compute the known set W . Unlike
Algorithm 2, we do not update W in the rest time because the first two stages can ensure that the
probability of visiting WC is Op1{

?
Kq.

As mentioned in Section 4, for each batch, we invoke reward-zero exploration to search for the policy
with near-optimal coverage. Based on such a policy, we can provide uniform bound for the length

8

Algorithm 3 Policy Elimination

1: Input: dataset D, length k;
2: Initialize: D0 Ð D, P´1 Ð p∆SqSA C1 Ð 100, v´1

h psq Ð H ´ h ` 1, @ph, sq P rHs ˆ S;

Km Ð

Q

K1´ 1
2m

U

for m “ 1, 2, . . . ,M “ rlog2 log2pKqs;

3: Nhps, a, s1q Ð count of ph, s, a, s1q in D;
4: W Ð tph, s, a, s1q : Nhps, a, s1q ě C1H

2ιu;
5: for m “ 0, 1, 2, . . . ,M ´ 1 do
6: Pm Ð Pm´1 X CR˚

´

Dm,Dm
,W, tvm´1

h psquph,sq

¯

;

7: πm`1 Ð DesignppPmq;
8: if

řm
m1“1 Km1 ď k then

9: Execute πm`1 for Km`1 episodes;
10: else
11: Execute πm`1 for k ´ p

řm
m1“1 Km1 q episodes;

12: end if
13: D

m`1
Ð the dataset in the pm ` 1q-th batch;

14: Update the dataset Dm`1 Ð Dm Y Dm`1
;

15: vmh psq Ð maxπ,pPPm Eπ,p

”

řH
h1“h rhpsh, ahq|sh “ s

ı

for all ph, sq P rHs ˆ S;
16: end for
17: Function: CR˚pD,D1,W, vq:
18: tNhps, a, s1qu Ðcounts in D, Nhps, aq Ð maxt

ř

s1 Nhps, a, s1q, 1u for all ph, s, a, s1q;
19: p̂h,s,a,s1 Ð

Nhps,a,s1
q

Nhps,aq
, @ph, s, a, s1q;

20: tŇhps, a, s1qu Ð counts in D1, Ňhps, aq Ð maxt
ř

s1 Ňhps, a, s1q, 1u for all ph, s, a, s1q;
21: p̌h,s,a,s1 Ð

Ňhps,a,s1
q

Ňhps,aq
, @ph, s, a, s1q;

22: P̃h,s,a Ð

!

p P ∆S | |ps1 ´ p̂h,s,a,s1 | ď αpNhps, aq, Nhps, a, s1qq,@s1 P S,

|pp ´ p̌h,s,aqv| ď α˚pŇhps, aq, p̌h,s,a, vq

)

, @ph, s, aq;

23: Ph,s,a Ð tclippp,Wq : p P P̃h,s,au, @ph, s, aq;
24: Return: bh,s,aPh,s,a.

25: Function: DesignpPq:
26: p Ð arbitrary element in P;
27: for i “ 1, 2, ...,K3 do
28: d̃π̃

j

h ps, aq Ð W π̃j

p1h,s,a, pq for 1 ď j ď i ´ 1 and any ph, s, aq;

29: rihps, aq Ð min

"

1
ři´1

j“1 d̃π̃j

h ps,aq
, 1

*

, @ph, s, aq;

30: π̃i Ð Policy Searchpr, ri,Pq;
31: end for
32: tπ, pu Ð Sum

´

␣

1
K3 , π̃

i, p
(K3

i“1

¯

;
33: Return: π.

of confidence intervals for all survived policies, which enables us to using the batch sizes in bandit
algorithms [Perchet et al., 2016, Gao et al., 2019].

Besides, to obtain a better regret bound, we estimate the optimal value function at the end of
each batch, and use it to build a tighter confidence region. As presented in Line 22 Algorithm 3,
we use two empirical transition probabilities to construct the confidence region. Noting that the
samples in the m-th batch is independent of vm´1, we could add a Bernstein-style constraint, where

α˚pn, p, vq “ 5
b

Vpp,vqι
n ` 3ι

n ..

9

6 Conclusion

In this paper, we study multi-batch reinforcement learning, and provide an efficient algorithm to
achieve the near-optimal regret bound and batch complexity. It would be an interesting problem to
generalize our results to reinforcement learning with function approximation case, e.g., linear MDP.
Another important direction is to study the exact batch-regret trade-off for multi-batch reinforcement
learning.

Broader Impact This work focus on the theory of multi-batch reinforcement learning, and the
broader impact is not applicable.

References
Daniel Almirall, Scott N Compton, Meredith Gunlicks-Stoessel, Naihua Duan, and Susan A Murphy.

Designing a pilot sequential multiple assignment randomized trial for developing an adaptive
treatment strategy. Statistics in medicine, 31(17):1887–1902, 2012.

Daniel Almirall, Inbal Nahum-Shani, Nancy E Sherwood, and Susan A Murphy. Introduction to smart
designs for the development of adaptive interventions: with application to weight loss research.
Translational behavioral medicine, 4(3):260–274, 2014.

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds on the
sample complexity of reinforcement learning with a generative model. Machine learning, 91(3):
325–349, 2013.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 263–272. JMLR. org, 2017.

Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient q-learning with low
switching cost. In Advances in Neural Information Processing Systems, pages 8004–8013, 2019.

Peter L Bartlett and Ambuj Tewari. Regal: a regularization based algorithm for reinforcement
learning in weakly communicating mdps. In Proceedings of the 25th Conference on Uncertainty
in Artificial Intelligence (UAI 2009)), 2009.

Nicolo Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs and other
adaptive adversaries. In Advances in Neural Information Processing Systems, pages 1160–1168,
2013.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021.

Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards accountable
reinforcement learning. In Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pages 1507–1516, Long Beach,
California, USA, 09–15 Jun 2019. PMLR.

Kefan Dong, Yingkai Li, Qin Zhang, and Yuan Zhou. Multinomial logit bandit with low switching
cost. In International Conference on Machine Learning, pages 2607–2615. PMLR, 2020.

Minbo Gao, Tianle Xie, Simon S Du, and Lin F Yang. A provably efficient algorithm for linear
markov decision process with low switching cost. arXiv preprint arXiv:2101.00494, 2021.

Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits problem.
arXiv preprint arXiv:1904.01763, 2019.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient?
In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

10

Sham M Kakade. On the sample complexity of reinforcement learning. PhD thesis, University of
London London, England, 2003.

Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion Stoica. Learning to
optimize join queries with deep reinforcement learning. arXiv preprint arXiv:1808.03196, 2018.

Huitan Lei, Inbal Nahum-Shani, Kevin Lynch, David Oslin, and Susan A Murphy. A" smart" design
for building individualized treatment sequences. Annual review of clinical psychology, 8:21–48,
2012.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Breaking the sample size barrier in
model-based reinforcement learning with a generative model. arXiv preprint arXiv:2005.12900,
2020.

Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen
Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optimization with
reinforcement learning. In International Conference on Machine Learning, pages 2430–2439.
PMLR, 2017.

Vianney Perchet, Philippe Rigollet, Sylvain Chassang, Erik Snowberg, et al. Batched bandit problems.
Annals of Statistics, 44(2):660–681, 2016.

Dan Qiao, Ming Yin, Ming Min, and Yu-Xiang Wang. Sample-efficient reinforcement learning with
loglog (t) switching cost. arXiv preprint arXiv:2202.06385, 2022.

Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning
distributional optimal design. arXiv preprint arXiv:2007.01980, 2020.

David Simchi-Levi and Yunzong Xu. Phase transitions and cyclic phenomena in bandits with
switching constraints. Available at SSRN 3380783, 2019.

Ming Yu, Zhuoran Yang, Mladen Kolar, and Zhaoran Wang. Convergent policy optimization for safe
reinforcement learning. arXiv preprint arXiv:1910.12156, 2019.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference on
Machine Learning, pages 7304–7312, 2019.

Zihan Zhang and Xiangyang Ji. Regret minimization for reinforcement learning by evaluating the
optimal bias function. In Advances in Neural Information Processing Systems, pages 2823–2832,
2019.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning via
reference-advantage decomposition. arXiv preprint arXiv:2004.10019, 2020.

Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than bandits? a
near-optimal algorithm escaping the curse of horizon. In Conference on Learning Theory, pages
4528–4531. PMLR, 2021.

11

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [N/A] The paper is theoretical and
there is no numerical experiments.

• Did you include the license to the code and datasets? [N/A] The paper is theoretical and
there is no numerical experiments.

• Did you include the license to the code and datasets?[N/A] The paper is theoretical and
there is no numerical experiments.

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We provide a near-optimal regret bound for multi-batch
RL

(b) Did you describe the limitations of your work? [Yes] We focus on studying the tabular
case. More efforts are required to extend the results to RL with function approximation

(c) Did you discuss any potential negative societal impacts of your work? [N/A] The paper
is theoretical and there is no possible negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] .

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] We sketch the proof

in the main body. The details are postpone to the appendix

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A] The paper is
theoretical and there is no numerical experiments.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A] The paper is
theoretical and there is no numerical experiments.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

12

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] This paper is irrelevant to crowdsourcing or human projects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

A Technical Lemmas

Lemma 3. Let Z,Z1, ..., Zn be i.i.d. random variables with values in r0, 1s and let δ ą 0. Define
VZ “ E

“

pZ ´ EZq2
‰

. Then we have

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

E rZs ´
1

n

n
ÿ

i“1

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

ą

c

2VZ lnp2{δq

n
`

lnp2{δq

n

ff

ď δ.

Lemma 4. Let X1, X2, . . . be a sequence of random variables taking value in r0, ls. Define Fk “

σpX1, X2, . . . , Xk´1q and Yk “ ErXk|Fks for k ě 1. For any δ ą 0, we have that

P

«

Dn,
n
ÿ

k“1

Xk ď 3
n
ÿ

k“1

Yk ` l lnp1{δq

ff

ď δ

P

«

Dn,
n
ÿ

k“1

Yk ě 3
n
ÿ

k“1

Xk ` l lnp1{δq

ff

ď δ.

Proof. Let t P r0, 1{ls be fixed. Consider to bound Zk :“ Erexppt
řk

k1“1pXk1 ´ 3Yk1 qqs. By
definition, we have that

ErZk|Fks “ exppt
k
ÿ

k1“1

pXk1 ´ 3Yk1 qqE rtpXk ´ 3Ykqs

ď exppt
k
ÿ

k1“1

pXk1 ´ 3Yk1 qq expp3Ykq ¨ Er1 ` tXk ` 2t2X2
ks

ď exppt
k
ÿ

k1“1

pXk1 ´ 3Yk1 qq expp3Ykq ¨ Er1 ` 3tXks

“ exppt
k
ÿ

k1“1

pXk1 ´ 3Yk1 qq expp3Ykq ¨ p1 ` 3tYkq

ď exppt
k
ÿ

k1“1

pXk1 ´ 3Yk1 qq

“ Zk´1,

where the second line is by the fact that ex ď 1 ` x ` 2x2 for x P r0, 1s. Define Z0 “ 1
Then tZkukě0 is a super-martingale with respect to tFkukě1. Let τ be the smallest n such that
řn

k“1 Xk ´ 3
řn

k“1 Yk ą l lnp1{δq. It is easy to verify that Zmintτ,nu ď expptl lnp1{δq ` tlq ă 8.
Choose t “ 1{l. By the optimal stopping time theorem, we have that

P

«

Dn ď N,
n
ÿ

k“1

Xk ě 3
n
ÿ

k“1

Yk ` l lnp1{δq

ff

“ P rτ ď N s

ď P
“

Zmintτ,Nu ě expptl lnp1{δqq
‰

ď
ErZmintτ,Nus

expptl lnp1{δqq

ď δ.

Letting N Ñ 8, we have that

P

«

Dn,
n
ÿ

k“1

Xk ď 3
n
ÿ

k“1

Yk ` l lnp1{δq

ff

ď δ.

14

Considering Wk “ Erexppt
řk

k1“1pYk{3´Xkqqs, using similar arguments and choosing t “ 1{p3lq,
we have that

P

«

Dn,
n
ÿ

k“1

Yk ě 3
n
ÿ

k“1

Xk ` l lnp1{δq

ff

ď δ.

The proof is completed.

Lemma 5. Let the policy π and reward r be fixed. Let p and p1 be two transition model, it holds that

Wπpr, pq ´ Wπpr, p1q “
ÿ

h,s,a

Wπp1h,s,a, pqpp1
h,s,a ´ ph,s,aqV 1

h`1, (9)

where tV 1
hpsquph,sqPrHsˆS is the value function under p1 following π.

B Lower Bound (Proof of Theorem 2)

Firstly, by the lower bound on batched bandit (Theorem 3 in [Gao et al., 2019]), to achieve
OppolypS,A,Hq

?
Kq regret, the number of batches is at least Ωplog2 log2pKqq. To show a lower

bound of ΩpH{ logApKqq, we have the lemma below by considering an MDP with 2 states and A
actions.
Lemma 6. Let S “ tsp0q, sp1qu, A “ ta0, a1, . . . , aAu and s1 “ sp0q. Let d “ t2 logApKqu`2. For
v “ rv1, v2, . . . , vdsJ P Ad, we define the transition model P v by setting P v

h,sp0q,ax
“ r1, 0sJ,@x ‰

vh, P v
h,sp0q,avh

“ r0, 1sJ and P v
h,sp1q,ax

“ r0, 1sJ,@1 ď x ď A for 1 ď h ď d. Let π be a stochastic

policy, Then there exists v such that with probability 1 ´ 1
K , ph, sp0qq is never visited in K episodes

following π.

Proof. Denote the distribution of π as D, we define x “ rx1, x2, . . . , xdsJ as below. Let x1 “

argmini Eπ„D

“

π1pai|s
p0qq

‰

. For 2 ď h ď d, we define

xh “ argmax
i

Eπ„D

“

Iπrsh´1 “ sp0q|P x,h´1sπhpai|shq
‰

Eπ„D

“

Iπrsh´1 “ sp0q|P x,h´1s
‰ ,

where P x,h´1 denote the first ph ´ 1q-layers of the transition model P x. Because Pπrsh “ sp0q|P xs

is determined by the first ph ´ 1q-layers of P x, xh is well-defined. By definition we have that

Eπ„D

“

Iπrsh´1 “ sp0q|P x,h´1sπhpaxh
|shq

‰

Eπ„D

“

Iπrsh´1 “ sp0q|P x,h´1s
‰ ď

1

A
. (10)

Recall that x “ rx1, x2, . . . , xdsJ. For 1 ď h1 ď d, by (10) we have that

Eπ„DPπ

”

sh1 “ sp0q|P x
ı

“ Eπ„DΠ
h1

´1
h“1 πhpaxh

|sp0qq

“ Eπ„DPπ

”

sh1´1 “ sp0q|P x
ı

¨
Eπ„D

“

Iπrsh1´1 “ sp0q|P x,h´1sπhpaxh
|shq

‰

Eπ„D

“

Iπrsh1´1 “ sp0q|P x,h´1s
‰

ď
1

A
Eπ„DPπ

”

sh1´1 “ sp0q|P x
ı

. (11)

Therefore, Eπ„DPπ

“

sd “ sp0q|P x
‰

ď 1
Ad´1 ď 1

K . Then the probability of visiting ph, sp0qq in K

episodes is at most 1
K , where the conclusion follows.

We name the MDP in Lemma 6 as a basic MDP. Now we construct our counter-example by con-
catenating ΘpH{ logApKqq basic MDPs and a tail MDP with large rewards. Let S “ tsp0q, sp1qu

and A “ ta1, a2, . . . , aAu. Let d “ t2 logApKqu ` 2 and c “
X

H
2d

\

. Then c “ C 1H{ logApKq

for some constant C 1. For v “ rv1, v2, . . . , vcdsJ P t0, 1ucd, we define the transition model P v as
below: P v

id`j,sp0q,avid`j

“ r1, 0sJ, P v
id`j,sp0q,al

“ r0, 1sT for l ‰ vid`j and P v
id`j,sp1q,al

“ r0, 1sJ

15

for 1 ď l ď A for any 0 ď i ď c ´ 1 and 1 ď j ď d; Ph,sp0q,al
“ r1, 0sJ and Ph,sp1q,al

“ r0, 1sJ

for any 1 ď l ď A and cd ` 1 ď h ď H . The reward function r is given by rh,sp0q,al
for 1 ď l ď A

cd ` 1 ď h ď H and 0 for other ph, s, aq triples.

To achieve sub-linear regret, the agent needs to visit pcd ` 1, sp0qq for at least one time. Then the
proof is completed by the lemma below.
Lemma 7. If the number of batches M ď c ´ 2, for any algorithm G there exists v such that with
probability 1 ´ c

K ě 1
2 , pcd ` 1, sp0qq is never visited.

Proof. Let mi denote the number of batches used at the time when pid`1, sp0qq is visited for the first
time. Besides, we let πpiq denote the policy at time mi. Because πpiq is determined before visiting
pid ` 1, sp0qq, given the algorithm G, πi could be viewed as a stochastic function of tv1, v2, . . . , vidu.
By Lemma 6, when tv1, v2, . . . , vidu is fixed, we can choose tvid`1, . . . , vid`du properly, so that
with probability 1 ´ 1

K , ppi ` 1qd ` 1, sp0qq is never visited in K episodes following πpiq. Therefore,
with probability 1 ´ 1

K , πpi ` 1q ‰ πpiq, which implies that mi`1 ě mi ` 1. By choosing
tvid`1, vid`1, . . . , vid`du recursively following the way in Lemma 6 for 0 ď i ď c ´ 1, we have
that with probability 1 ´ c

K , mi`1 ě mi ` 1 for 1 ď i ď c, where mc ě c ´ 1 follows. Then the
conclusion follows by the equation below.

P
”

M ď c ´ 2, pcd ` 1, sp0qq is visited
ı

“ P rmc ď c ´ 2s ď
c

M
.

C Efficient Implementation of the Proposed Algorithm

In this section, we analyze the computational cost of Algorithm 1. In particular, we first introduce the
algorithm PolicySearch to show that it can help find the desired exploration policy efficiently.

C.1 The Algorithm

Policy Search is presented in Algorithm 4. The algorithms takes two reward functions u, u1 and a
confidence region P as input, and output a policy π and p P P such that Wπpu1, P q is large enough
compared to maxπ1PΠpu,Pq, W

π1

pu1, P q.

In the algorithm, we first compute a :“ maxπ U
πpu ` 1z,Pq and b :“ maxπ L

πpu,Pq. Then we
set the target reward as u ` 1z ` ηu1 for different η and learn the corresponding optimal policy and
transition model tπη, P ηu. In intuition, the larger η is, the larger Wπη

pu, P ηq is. In this way, we aim
to find the maximal η such that πη is not eliminated, i.e., πη P Πpu,Pq. To find such η, we play the
naive dichotomy method as presented in Algorithm 4.

When u “ r, we assume that a ´ b ě 1
K3 without loss of generality. Note that when a ´ b ď 1

K3 ,
any policy π in Πpr,Pq is 1

K3 optimal and we can follow π in the rest episodes.

In Algorithm 4, we invoke extended value iteration (EVI, see Algorithm 5) as a sub-routine. Algo-
rithm 5 targets compute pπ, pq Ð argmaxπ,pPP Wπpu, pq for some reward function u and confidence
region P . In finite-horizon MDP, this step could be implemented by back induction. So it suffices to
solve argmaxa,pPP ph,s,aVh`1 where Vh`1 is the value function computed by back induction. Note
that in this paper, the confidence region could be described by at most OpS2AKq linear constraints,
which enables us to find an approximate solution in polynomial time. Besides, given u and P ,
maxπUπpu,Pq and maxπ L

πpu,Pq could be computed in a similar way, for which we present
Algorithm 6. As a conclusion, Algorithm 4 is computationally efficient.

C.2 Theoretical Results and Proofs for Algorithm 4

Lemma 8. Let u, u1 be two reward functions and P be a set of transition models. Assume P “

bh,s,aPh,s,a is tight w.r.t. a transition model P . Then by Algorithm 4 we can find π such that

Wπpu1, P q ě
1

18
max

π1PΠpu,Pq,
Wπ1

pu1, P q ´
2

9
ϵ

16

Algorithm 4 Policy Search

Input: reward u, u1, confidence region P “ bh,s,aPh,s,a;
Initialization: threshold ϵ “ 1

pSAHKq10 , b Ð maxπ L
πpu,Pq, a Ð maxπ U

πpu ` 1z,Pq;
η0 Ð pa ´ bq{2;
for i “ 0, 1, 2, . . . , do

tπpiq, P piqu Ð EVIpu ` 1z ` ηiu
1,Pq;

if 1
ϵ ď ηi ă 2

ϵ ; then
Return: πpiq;

else if Wπpiq

pu, P piqq ď b then

ξ “
b´Wπpiq

pu,P piq
q

Wπpi´1q
pu,P pi´1qq´Wπpiq

pu,P piqq
;

pπ̌, P̌ q Ð Sumptξ, πpi´1q, P pi´1qu, t1 ´ ξ, πpiq, P piquq

Return: π̌ ;
else

ηi`1 “ 2ηi;
end if

end for

Algorithm 5 Extended Value Iteration pEVIq

Input: reward function u, confidence region P “ bh,s,aPh,s,a

Initialize: Qhps, aq Ð 0, Vhpsq Ð 0,@ph, s, aq P rH ` 1s ˆ S ˆ A
for h “ H,H ´ 1, . . . , 1 do
Qhps, aq Ð maxqPPh,s,a

pups, aq ` qVh`1q, @ps, aq P S ˆ A;
ph,s,a Ð argmaxqPPh,s,a

pups, aq ` qVh`1q;
Vhpsq Ð maxa Qhps, aq, @s P S;
πhpa|sq Ð Ira “ argmaxa1 Qhps, a1qs,@ps, aq;

end for
Return: tπ, pu.

Algorithm 6 Upper&Lower Confidence Bound

Input: reward function u, confidence region P “ bh,s,aPh,s,a;
Initialize: Qhps, aq, V hpsq, Q

h
ps, aq, V hpsq Ð 0, @ph, s, aq P rH ` 1s ˆ S ˆ A;

for h “ H,H ´ 1, . . . , 1 do
Qhps, aq Ð maxqPPh,s,a

pups, aq ` qV h`1q, @ps, aq P S ˆ A;
V hpsq Ð maxa Qhps, aq, @s P S;
Q

h
ps, aq Ð minqPPh,s,a

pups, aq ` qV h`1q, @ps, aq P S ˆ A;
V hpsq Ð maxa Qh

ps, aq, @s P S;
end for
Return: maxπ U

πpu,Pq :“ V 1ps1q, maxπ L
πpu,Pq :“ V 1ps1q;

17

in time OpS4AHM3 logpSAHKq logpSAHK{pa ´ bqqq, where a “ maxπ U
πpu ` 1z,Pq and

b “ maxπ L
πpu,Pq.

Proof. Let ũ “ u ` 1z . For any η ě 0, we define pπη, pηq be the policy-transition pair such that

pπη, P ηq “ arg max
π,pPP

Wπpũ ` ηu1, pq.

By Lemma 10, with Algorithm 6, we can compute a and b within time Õ
`

S4AHM3 logpSAHKq
˘

.
In the same way, with Algorithm 5 we can find pπη, pηq within time Õ

`

S4AHM3 logpSAHKq
˘

for any η ą 0. Note that in Algorithm 4, the value of i is at most logp1{pη0ϵqq “

Oplogp 1
ϵpa´bq

qq “ OplogpSAHKqq. As a result, the computational cost is at most
OpS4AHM3 logpSAHKq logpSAHK{pa ´ bqqq.

We continue with an useful property of pπη, P ηq.

Lemma 9. Let 0 ă η ă η1 be fixed. Let pπη, pηq, pπη1

, P η1

q be such that

pπη, P ηq “ arg max
π,pPP

Wπpũ ` ηu1, pq

pπη1

, P η1

q “ arg max
π,pPP

Wπpũ ` η1u1, pq.

Then we have that

Wπη

pũ, P ηq ě Wπη1

pũ, P η1

q.

Proof. Let x1 “ Wπη

pũ, P ηq, x2 “ Wπη1

pũ, P η1

q, y1 “ Wπη

pu1, P ηq and y2 “ Wπη1

pu1, P η1

q.
It suffices to show that x1 ě x2. By the optimality of pπη, P ηq and pπη1

, P η1

q, we have that

x1 ` ηy1 ě x2 ` ηy2;

x2 ` η1y2 ě x1 ` η1y1.

If x1 ă x2, then we have that y1 ą y2. It then follows that x2 ` η1y2 “ x2 ` ηy2 ` pη1 ´ ηqy2 ă

x1 ` ηy1 ` pη1 ´ ηqy1 “ x1 ` η1y1, which leads to contradiction.

In Algorithm 4, there are two breaking conditions.

Case 1 Recall that tπpiq, P piqu “ argmaxπ,pPP Wπpu ` 1z ` ηiµ
1, pq “ argmaxπ,pPP Wπpũ `

ηiµ
1, pq In the first case, we end with obtaining some i satisfying that

Wπpiq

pũ, P piqq ď b.

Because Wπp0q

pũ, P p0qq ě a ´ η0 ą b, it holds that ηi ą η0 for any i ě 1. By Lemma 9 and the
stopping condition, we have that Wπpi´1q

pũ, P pi´1qq ě b. By Lemma 2, we can find a policy π̌ and
P̌ P P such that

W π̌pv, P̌ q “ ξWπpiq

pv, P piqq ` p1 ´ ξqWπpi´1q

pv, P pi´1qq (12)

for any reward function v.

Noting that ξ “
b´Wπpiq

pũ,P piq
q

Wπpi´1q
pũ,P pi´1qq´Wπpiq

pũ,P piqq
, we have that U π̌pu,Pq ě W π̌pũ, P̌ q “

ξWπpiq

pũ, P piqq ` p1 ´ ξqWπpi´1q

pũ, P pi´1qq “ b, which implies that π̌ P Πpu,Pq.

Note that Wπpv, pq is linear in v for fixed π and p. For any policy π P Πpr,Pq and p1 P P , we have
that

Wπpũ, p1q ` ηiW
πpu1, p1q ď Wπpiq

pũ, ppiqq ` ηiW
πpiq

pu1, P piqq, (13)

Wπpũ, p1q ` ηi´1W
πpu1, p1q ď Wπpi´1q

pũ, P pi´1qq ` ηi´1W
πpi´1q

pu1, P pi´1qq. (14)

18

It then follows that

Wπpũ, p1q ` ηi´1W
πpu1, p1q

ď ξ
´

Wπpiq

pũ, P piqq ` ηiW
πpiq

pu1, P piqq

¯

` p1 ´ ξq

´

Wπpi´1q

pũ, P pi´1qq ` ηi´1W
πpi´1q

pu1, P pi´1qq

¯

ď b ` ηiW
π̌pu1, P̌ q. (15)

For any π P Πpu,Pq, there exists p1 P Πpu,Pq such that Wπpũ, p1q ě b. By (15) and noting that
ηi “ 2ηi´1, we have

Wπpu1, p1q ď
ηi

ηi´1
W π̌pu1, P̌ q ď 2W π̌pu1, P̌ q. (16)

On the other hand, by Lemma 17, for any π it holds that

Wπpu1, pq ď 3Wπpu1, p1q ď 9Wπpu1, pq, (17)

for any p1 P P̄ , which implies that

W π̌pu1, pq ě
1

6
max

πPΠpu,Pq
Wπpu1, pq.

Case 2 In the second case, we end with some i such that 1
ϵ ď ηi ă 2

ϵ .

In this case, because Wπpiq

pũ, P piqq ě b, we have that πpiq P Πpu,Pq . For any π P Πpu,Pq such
that

Wπpu1, pq ě 18Wπpiq

pu1, pq, (18)

by the tightness of P (w.r.t. p) it holds that

ηiW
πpu1, p1q ě

ηi
3
Wπpu1, pq ě 6ηiW

πpiq

pu1, pq ě 2ηiW
πpiq

pu1, P piqq (19)

for any p1 P P . On the other hand, by optimality of pπpiq, P piqq, we have that

ηiW
πpu1, p1q ď Wπpiq

pũ, P piqq ` ηiW
πpiq

pu1, P piqq. (20)

Combine (19) with (20), we have that

ηiW
πpiq

pu1, P piqq ď Wπpiq

pũ, P piqq ď 2. (21)

Combining (20) with (21), for any p1 P P , using the optimality of pπpiq, P piqq and (21), we have that

ηiW
πpu1, p1q ď Wπpiq

pu, P piqq ` ηiW
πpiq

pu1, P piqq ď 4. (22)

It then follows Wπpu1, pq ď 4ϵ. Therefore, for any π P Πpu,Pq, it holds either Wπpu1, pq ď

18Wπpiq

pu1, pq or Wπpu1, pq ď 4ϵ. We then have that

Wπpiq

pu1, pq ě
1

18
max

πPΠpu,Pq
Wπpu1, pq ´

2

9
ϵ. (23)

The proof is completed.

Lemma 10. The computational cost of Algorithm 5 and Algorithm 6 is bounded by
OpS3AHM3 logpSAKHqq.

Proof. To implement the two algorithm, we need to solve SAH linear optimization problem, which
has the form maxqPPh,s,a

pr ` qvq or minqPPh,s,a
pr ` qvq. Note that Ph,s,a has the form tp P

∆S : aJ
i pp ´ p1q ď bi, i ě 1u, and the number of linear constraints is increased for at most

OpSq in each batch. As a result, the total number of linear constraints in Ph,s,a is bounded by
OpSMq. By the results in Cohen et al. [2021], the time cost to solve the linear program problem
above is bounded by OpS3M3 logpSAHKqq. Therefore, the total computational cost is bounded by
OpS3AHM3 logpSAKHqq.

19

D Proof of Theorem 1

Additional Notations In this section, we use Nm
h ps, a, s1q to denote the visit count of ps, a, h, s1q

after the m-th batch. We also define Nm
h ps, aq “ maxt

ř

s1 Nm
h ps, a, s1q, 1u. We use tŇm

h ps, a, s1qu

to denote the counts of the m-th batch. Similarly we define Ňm
h ps, aq “ maxt

ř

s1 Ňm
h ps, a, s1q, 1u.

Let W˚ be the known set after the first two stages. Let P̂m
h,s,a,s1 “

Nm
h ps,a,s1

q

Nm
h ps,aq

be the empirical

transition model for 1 ď m ď 2H ` M . For 2H ` 1 ď m ď 2H ` M , define tP̌m
h,s,au be the

clipped transition model, i.e., tP̌m
h,s,auh,s,a “ clip

ˆ

!”

Ňm
h ps,a,s1

q

Ňm
h ps,aq

ı

s1PS

)

h,s,a
,W˚

˙

.

Note that the m-batch in Algorithm 3 indicates the 2H ` m-th batch in the main algorithm. To align
the indices, with a slight abuse of notations we use Pm and vm to denote respectively the value of
Pm´2H and vm´2H in Algorithm 3 for m ě 2H .

Table 1: Explanation of the notations

Wπpu, pq the general value function: Wπpu, pq “ Ep,π,s1„µ1
r
řH

h“1 uhpsh, ahqs

Uπpu,Pq the upper confidence bound w.r.t. policy π, reward u and confidence region P ;
Lπpu,Pq the lower confidence bound w.r.t. policy π, reward u and confidence region P ;
Nm

h ps, a, s1q the visit count of ps, a, h, s1q after the m-th batch
Nm

h ps, aq Nm
h ps, aq “ maxt

ř

s1 Nm
h ps, a, s1q, 1u;

Ňm
h ps, a, s1q the count of

`

h, s, a, s1
˘

in the m-th batch;
Ňm

h ps, aq Ňm
h ps, aq “ max

␣
ř

s1 Ňm
h ps, a, s1q, 1

(

W˚ the known set after the first two stages
P̂m
h,s,a,s1 P̂m

h,s,a,s1 “
Nm

h ps,a,s1
q

Nm
h ps,aq

, the empirical transition probability;

P̌m
h,s,a tP̌m

h,s,auh,s,a “ clip

ˆ

!”

Ňm
h ps,a,s1

q

Ňm
h ps,aq

ı

s1PS

)

h,s,a
,W˚

˙

;

P̄ P̄ “ clip
´

P,W˚

¯

, the clipped true transition model;
Pm the confidence region after the m-th batch;
tvmh psqu the extended optimal value function after the m-th batch;

V ˚

´

V̄ ˚

¯

the optimal value function for the (clipped) true transition model;

αpn, n1q αpn, n1q “

b

4n1ι
n2 ` 5ι

n ;

α˚pn, p, vq α˚pn, p, vq “ 5
b

Vpp,vqι
n ` 3ι

n ;

The good event For 1 ď m ď 2H ` M , define Gm
h,s,a,s1 be the event where it holds

ˇ

ˇ

ˇ
P̂m
h,s,a,s1 ´ Ph,s,a,s1

ˇ

ˇ

ˇ
ď βm

h,s,a,s1 :“ min

$

&

%

d

2Ph,s,a,s1ι

Nm
h ps, aq

`
ι

3 ¨ Nm
h ps, aq

,

d

4P̌m
h,s,a,s1ι

Nm
h ps, aq

`
5ι

Nm
h ps, aq

,

.

-

.

(24)

By Lemma 3 and Bernstein inequality, we have that PrGm
h,s,a,s1 s ě 1 ´ 2δ .

For 1 ď m ď 2H , we set Ǧm
h,s,a to be the whole event. For 2H ` 1 ď m ď M , we define Ǧm

h,s,a be
the event where it holds

(25)

ˇ

ˇpP̌h,s,a ´ P qvm´1
ˇ

ˇ ď λm
h,s,a :“ min

$

&

%

5

d

VpP̌m
h,s,a, v

m´1qι

Ňm
h ps, aq

,

.

-

(26)

ˇ

ˇpP̌h,s,a ´ P qV̄ ˚
ˇ

ˇ ď λm,˚
h,s,a :“ min

$

&

%

5

d

VpP̌m
h,s,a, V̄

˚qι

Ňm
h ps, aq

,

.

-

. (27)

20

Noting that P̌h,s,a is independent with both V̄ ˚ and vm´1, by Bernstein’s inequality, we have that
PrǦm

h,s,a,s1 s ě 1 ´ 4δ

The good event G is defined as G “
Ş

h,s,a,s1

ŞM
m“1

´

Gm
h,s,a,s1 X Ǧm

h,s,a

¯

Then PrGs ě 1 ´

6S2AHMδ. Throughout the analysis, we always assume G holds.

Lemma 11. Conditioned on G, we have P̄ P Pm for 2H ď m ď 2H ` M .

Noting that the batch complexity is bounded by 2H ` M “ OpH ` log2 log2pKqq, it suffices to
prove the regret bound. We start with counting the regret in the first two stages. The regret in the first
batch is bounded by OpH2k1q trivially. As for the second batch, we have that

Lemma 12. Conditioned on G, with probability 1 ´ 4SAHδ the regret bound in the second batch is
bounded by O

´

k2

?
S4A3H8ι?

k1
` k2S

3A3H4ι
k1

¯

.

To count the regret in the third stage, we first show that the difference between the clipped model and
the original model could be ignored.

Lemma 13. Conditioned on G, with probability 1 ´ 4S2AH2δ, for any optimal policy π˚, it holds
that Prπ˚ rDh P rHs, ph, sh, ah, sh`1q R W˚s ď O

´

S3A2H3ι
k2

¯

Based on Lemma 13, we further have that

Lemma 14. Recall that V̄ ˚ be the optimal value function with respect to the transition model P̄ and
reward function r. It then holds that V̄ ˚

1 ps1q ď V ˚
1 ps1q ď V̄ ˚

1 ps1q ` O
´

S3A2H4ι
k2

¯

.

Proof. The left side is obvious since the reward at z is always 0. On the other hand, letting π˚ be an
optimal policy and E be the event where Dh P rHs, ph, sh, ah, sh`1q R W˚. Then we have that

V π˚

1 ps1q ď Eπ˚

«˜

H
ÿ

h“1

rhpsh, ahq

¸

IrEs

ff

` HPrπ˚ rEs

ď Eπ˚

«

H
ÿ

h“1

rhpsh, ahqIr@h1 ă h, ph1, sh1 , ah1 , sh‘`1q P W˚s

ff

` O

ˆ

S3A2H4ι

k2

˙

“ V̄ π˚

1 ps1q ` O

ˆ

S3A2H4ι

k2

˙

.

Recall that gapm`1 :“ maxπPΠpr,PmqpUπpPmq ´ LπpPmqq. For m ě 2H ` 1, we have that

Lemma 15. Conditioned on G, with probability 1 ´ 4SAHKMδ, it holds that

gapm`1

ď O

¨

˝

d

SAH3 lnpKqι2

Km´2H
`

SAH2 lnpKqι

Km´2H
`

d

S
11
2 A4H7 lnpKqι

5
2

Km´2Hk1
`

d

S4A
5
2H4 lnpKqι

3
2

Km´2H

?
k1

˛

‚.

(28)

By Lemma 11, 14 and 15, for any 2H ď m ď 2H ` K and any π P ΠpPmq, we have that

V π
1 ps1q ě LπpPmq ě UπpPmq ´ gapm`1 ě V̄ ˚

1 ps1q ´ gapm`1 ´ O

ˆ

S3A2H4ι

k2

˙

.

Recall that k1 “ 144
a

SAKι{H , k2 “ 288S3A2H4
?
Kι and Km “

Q

K1´ 1
2m

U

for 1 ď m ď M .

It then holds that Km´2H`1?
Km´2H

“
?
K for any 2H ` 1 ď m ď 2H ` K. Noting that the regret in the

21

m` 1-th batch is bounded by Km`1´2H ¨ gapm`1, and the regret in the 2H ` 1-th batch is bounded
by K1 “ Op

?
Kq, the total regret is bounded by

RegretpKq “ M ¨ O
´

a

SAH3K lnpKqι2 ` S
15
4 A

9
8H

17
8 ι

5
8K

3
8 ` S

19
4 A

13
4 H

33
4 lnpKqιK

1
4 ` S

11
2 A

9
2H

17
2 ι
¯

.

By replacing δ by δ
20S2AHK , we get the desired regret bound.

Below we analyze the computational cost of Algorithm 1. By Lemma 2 the computational costs of
Sum is OpnS3A2H2q , where n is the number of inputs for Sum.

Below we analyze the computational cost of PolicySearch. By Lemma 8, for input pu, u1,Pq, the
computational cost of PolicySearch is bounded by OpS4AHM3 logpSAHKq logpSAHK{pa ´

bqqq with a “ maxπ U
πpu ` 1z,Pq and b “ maxπ L

πpu,Pq.

In the first stage, we invoke PolicySearch with u “ 0, which implies b “ 0 and Wπpu, pq “ 0 for
any π and p P P . Then the condition in Line 7 Algorithm 4 is satisfied and the loop would break.
Therefore, by Lemma 10, the computational cost of PolicySearch in the first stage is bounded by
OpS4AHM3 logpSAKHqq.

In the second and the third stage, we invoke PolicySearch with u “ r. In this case, if a´ b ď 1{K,
then we can learn an 1{K-optimal policy by solving π1 “ argmaxπ L

πpr,Pq. Then we can simply
run this policy in the left episodes. Without loss of generality, we then assume that a ´ b ą 1{K,
which implies the time cost of PolicySearch is bounded by OpS4AHM3 log2pSAKHqq.

Now we count the number of callings to Sum and PolicySearch. In the first and second stage, Sum
is called for 2H times with n “ SAH inputs, and PolicySearch is called for 2H times. In the third
stage, Sum is called for M times with n “ K3 inputs, and PolicySearch is called for K3M times.
So the total time cost due to Sum and PolicySearch is bounded by ÕpS4AHK3 ` S3A2H2K3q.
On the other hand, to compute tvmh psquhPrHs,sPS in Line 15 Algorithm 4, we need to invoke EVI (see
Algorithm 5) for M times, which needs additional OpS4AHM4 logpSAHKqq time by Lemma 10.
Finally, to observe the samples and compute the confidence region, we need OpS2AHKq time.

Putting all together, the computational cost of Algorithm 1 is bounded by ÕpS4AHK3 `

S3A2H2K3q. The proof is completed.

D.1 Proof of Lemma 11

Lemma 11 (restated) Conditioned on G, we have P̄ P Pm for 2H ď m ď 2H ` M .

Proof. with a slight abuse of notation, we use vm to denote the value of vm´2H in Algorithm 3.

Recall the definition of Pm. It suffices to show that P̄ P CR˚pDm, ¯Dm,W˚, tvm´1
h psquph,sqq for

each m ě 2H .

Note that after the m-th batch p̂h,s,a,s1 “ P̂m
h,s,a,s1 and p̌h,s,a “ P̌m

h,s,a. By the definition of G, and
recalling the definition of βm

h,s,a,s1 and λm
h,s,a in (24) and (26), we have that

ˇ

ˇ

ˇ
P̄h,s,a,s1 ´ P̂m

h,s,a,s1

ˇ

ˇ

ˇ
ď βm

h,s,a,s1 ď αpNm
h ps, aq, Nm

h ps, a, s1qq

ˇ

ˇpP̄h,s,a ´ P̌m
h,s,aqvm´1

ˇ

ˇ ď λm
h,s,a ď α˚pŇm

h ps, aq, P̌m
h,s,a, v

m´1q.

The proof is completed.

D.2 Proof of Lemma 12

Lemma 12 (restated) Conditioned on G, with probability 1´ 4SAHδ the regret bound in the second
stage is bounded by O

´

k2

?
S4A3H8ι?

k1
` k2S

3A3H4ι
k1

¯

.

Proof. Let D1 and D2 be respectively the dataset after the first and second stage. Let tN̄1
hps, a, s1qu

and tN̄2
hps, a, s1qu be the corresponding counts. Let W̄1 and W̄2 be the corresponding known set.

22

Note that W˚ “ W̄2. By Lemma 16, with probability 1 ´ 8S2AH2δ, it holds that

max
π

Pπ

“

Dh P rHs, ph, sh, ah, sh`1q R W̄1
‰

ď
36C1S

2A2H3ι

k1

N̄1
hps, aq ě

ck

27SA
max
π

Wπp1h,s,a, P q ´ 4ι ´
36C1SAH3ι

27
. (29)

For any policy π in ΠpCRpD1qq, using policy difference lemma we have that
UπpCRpD1qq ´ LπpCRpD1qq

“ UπpCRpD1qq ´ Wπpr, clippP, W̄1qq ` Wπpr, clippP, W̄1qq ´ LπpCRpD1qq (30)

ď max
π

Pπ

“

Dh P rHs, ph, sh, ah, sh`1q R W̄1
‰

` O

˜

ÿ

h,s,a

Wπp1h,s,a, clippP, W̄1qq

d

Sι

N̄1
hps, aq

¨ H

¸

ď
36C1S

2A2H3ι

k1
` O

˜

ÿ

h,s,a

ˆ

SApN̄1
hps, aq ` SAH3ιq

k

˙

d

SH2ι

N̄1
hps, aq

¸

(31)

ď
36C1S

2A2H3ι

k1
` O

˜

d

S4A3H8ι

k1
`

S3A3H4ι

k1

¸

,

where the third line is by (29) and the last line is by Cauchy’s inequality and the fact that
N̄1

hps, aq ě 1. Conditioned on G, we have that = clippP, W̄1q P CRpD1q. As a result, we have
that maxπ U

πpCRpD1qq ě V ˚
1 ps1q ´ 36C1S

3A2H4ι
k1

. To conclude, the regret in the second stage is

bounded by O
´

k2

?
S4A3H8ι?

k1
` k2S

3A3H4ι
k1

¯

.

D.3 Proof of Lemma 13

Lemma 13 (restated) Conditioned on G, with probability 1 ´ 4S2AH2δ, for any optimal policy π˚,
it holds that Prπ˚ rDh P rHs, ph, sh, ah, sh`1q R W˚s ď O

´

S3A2H3ι
k2

¯

.

Proof. By Lemma 16, with probability 1 ´ 4S2AH2δ, it holds that

max
πPΠ˚

Prπ rDh P rHs, ph, sh, ah, sh`1q R W˚s ď
36C1S

2A2H3ι

k2
.

The proof is completed.

D.4 Proof of Lemma 15

Lemma 15 (restated) Conditioned on G, with probability 1 ´ 4SAHKMδ, it holds that

gapm ď O

¨

˝

d

SAH3 lnpKqι2

Km´2H
`

SAH2 lnpKqι

Km´2H
`

d

S
11
2 A4H7 lnpKqι

5
2

Km´2Hk1
`

d

S4A
5
2H4 lnpKqι

3
2

Km´2H

?
k1

˛

‚

for 2H ` 1 ď m ď M .

Proof. Let m P r2H ` 1,M s be fixed. Conditioned on G, we have that for any p P Pm´1, for any
ph, s, a, s1q P W˚ it holds that

ˇ

ˇ

ˇ
P̂m´1
h,s,a,s1 ´ P̄h,s,a,s1

ˇ

ˇ

ˇ
ď

g

f

f

e

4P̂m´1
h,s,a,s1ι

Nm´1
h ps, aq

`
ι

3Nm´1
h ps, aq

“
1

Nm´1
h ps, aq

¨ p

b

4Nm´1
h ps, a, s1qι ` 1{3q

ď 3P̂m´1
h,s,a,s1 ¨

c

ι

Nm´1
h ps, a, s1q

ď
1

3H
P̂m´1
h,s,a,s1 .

23

On the other hand, noting that for any p P Pm´1 and ph, s, a, s1q P W˚, with similar computation it
holds that

ˇ

ˇph,s,a,s1 ´ P̄h,s,a,s1

ˇ

ˇ ď

ˇ

ˇ

ˇ
ph,s,a,s1 ´ P̂m´1

h,s,a,s1

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
p̂h,s,a,s1 ´ P̄h1

h,s,a,s1

ˇ

ˇ

ˇ

ď
1

3H
P̄h,s,a,s1 `

1

3H
P̂m´1
h,s,a,s1

ď

ˆ

2

3H
`

1

9H2

˙

P̄h,s,a,s1

Therefore Pm´1 is tight with respect to P̄ . Let pm´1 P Pm´1 be the value of p in Line 26
Algorithm 3. Let ri,m´1 be the value of ri defined in Line 29 Algorithm 3. Let tπ̃i,m´1u be the
value of π̃piq in Line 30 Algorithm 3.

As a result, by Lemma 8, Lemma 2 and Lemma 17

W π̃i,m´1

pri,m´1, P̄ q ě
c

9
max

πPΠpPm´1q
Wπpri,m´1, P̄ q

Wπm

p1h,s,a, P̄ q ě
1

9K3

K3
ÿ

i“1

W π̃i,m´1

p1h,s,a, P̄ q,@ph, s, aq. (32)

Consequently, for any π P ΠpPm´1q and ph, s, aq, it holds that

WπprK
3

`1,m´1, P̄ q ď
81

cK3

K3
ÿ

i“1

W π̃i,m´1

pri,m´1, P̄ q

“
81

cK3

K3
ÿ

i“1

ÿ

h,s,a

W π̃i,m´1

p1h,s,a, P̄ q ¨ min

#

1
ři´1

j“1 W
π̃j,m´1

p1h,s,a, pm´1q
, 1

+

“
81

cK3

ÿ

h,s,a

K3
ÿ

i“1

ÿ

h,s,a

W π̃i,m´1

p1h,s,a, P̄ q ¨ min

#

1
ři´1

j“1 W
π̃j,m´1

p1h,s,a, pm´1q
, 1

+

ď
243

cK3

ÿ

h,s,a

K3
ÿ

i“1

ÿ

h,s,a

W π̃i,m´1

p1h,s,a, P̄ q ¨ min

#

1
ři´1

j“1 W
π̃j,m´1

p1h,s,a, P̄ q
, 1

+

ď
243SAH lnpKq

cK3
(33)

where the second line is by the tightness (w.r.t. P̄) of Pm´1, and the last line is by the fact that for
any non-negative txiu

n
i“1

n
ÿ

i“1

xi ¨ min

#

1
ři´1

j“1 xj

, 1

+

ď 2 ` 2
n
ÿ

i“1

˜

ln

˜

i
ÿ

j“1

xi

¸

´ ln

˜

i´1
ÿ

j“1

xj

¸¸

I

«˜

i´1
ÿ

j“1

xj

¸

ě 1

ff

ď 2 ` 2 ln

˜

n
ÿ

i“1

xi

¸

.

By definition of rK
3,m´1, we have that for any ph, s, aq

rK
3

`1,m´1
h ps, aq “ min

#

1
řK3

j“1 W
π̃j,m´1

p1h,s,a, pm´1q
, 1

+

ě
1

3
min

#

1
řK3

j“1 W
π̃j,m´1

p1h,s,a, P̄ q
, 1

+

“
1

3
min

"

1

K3Wπm
p1h,s,a, P̄ q

, 1

*

.

(34)

By (33) and (34), for any π P ΠpPm´1q it holds that
ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨ min

"

1

K3Wπm
p1h,s,a, P̄ q

, 1

*

ď 3
ÿ

h,s,a

Wπp1h,s,a, P̄ qrK
3

`1,m´1
h ps, aq ď

729SAH lnpKq

cK3
.

(35)

24

Note that πm is executed for Km´2H rounds. By Lemma 4, with probability 1 ´ 4SAHδ, it holds
that

Ňm
h ps, aq ě

1

3
Km´2HWπm

p1h,s,a, P̄ q ´ ι. (36)

Fix π P Πpr,Pm´1q. Let tfhp¨quSh“1 be the value function under π and P̄ . For any P 1 P Pm, by
policy difference lemma, we have that
ˇ

ˇWπpr, P 1q ´ Wπpr, P̄ q
ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

h,s,a

Wπp1h,s,a, P
1q ¨ pP 1

h,s,a ´ P̄h,s,aqfh`1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

h,s,a

Wπp1h,s,a, P
1qpP 1

h,s,a ´ P̄h,s,aqvm´1
h`1

ˇ

ˇ

ˇ

ˇ

ˇ

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Term.1

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

h,s,a

Wπp1h,s,a, P 1qpP 1
h,s,a ´ P̄h,s,aqpfh`1 ´ vm´1

h`1 q

ˇ

ˇ

ˇ

ˇ

ˇ

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

Term.2

.

(37)

By the definition of Pm and G, we have that

Term.1 “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

h,s,a

Wπp1h,s,a, P
1qpP 1

h,s,a ´ P̌m
h,s,a ` P̌m

h,s,a ´ Ph,s,aqvm´1
h`1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

h,s,a

Wπp1h,s,a, P 1q ¨

¨

˝5

d

VpP̌m
h,s,a, v

m´1
h`1 qι

Ňm
h ps, aq

` 5

d

VpP̄h,s,a, v
m´1
h`1 qι

Ňm
h ps, aq

`
8ι

Ňm
h ps, aq

˛

‚

ď O

¨

˝

g

f

f

e

ÿ

h,s,a

Wπp1h,s,a, P̄ qι

Ňm
h ps, aq

¨

d

ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨

´

VpP̌m
h,s,a, v

m´1
h`1 q ` VpP̄h,s,a, v

m´1
h`1 q

¯

˛

‚

` O

˜

ÿ

h,s,a

Wπp1h,s,a, P̄ qι

Ňm
h ps, aq

¸

(38)

Define T1 “
ř

h,s,a
Wπ

p1h,s,a,P̄ qι

Ňm
h ps,aq

, T2 “
ř

h,s,a W
πp1h,s,a, P̄ q ¨ VpP̄h,s,a, v

m´1
h`1 q and T2 “

ř

h,s,a W
πp1h,s,a, P̄ q ¨ VpP̌m

h,s,a, v
m´1
h`1 q.

Bound of T1 By (35) and (36), we have that

T1 ď 3
ÿ

h,s,a

Wπp1h,s,a, P̄ q

maxtKm´2HWπm
p1h,s,a, P̄ q ´ 3ι, 1u

“
3K3

Km´2H

ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨ min

"

1

K3Wπm
p1h,s,a, P̄ q ´ 3K3ι{Km´2H

,
Km´2H

K3

*

ď
3K3

Km´2H

ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨

ˆ

min

"

2

K3Wπm
p1h,s,a, P̄ q

, 1

*

¨ I
”

Km´2HWπm

p1h,s,a, P̄ q ě 6ι
ı

˙

` 3
ÿ

h,s,a

Wπp1h,s,a, P̄ qI
”

Km´2HWπm

p1h,s,a, P̄ q ă 6ι
ı

ď
3K3

Km´2H
¨
729SAH lnpKq

cK3
`

18SAHι

Km´2H

“ O

ˆ

SAH lnpKqι

Km´2H

˙

. (39)

25

Bound of T2

T2 “
ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨ VpP̄h,s,a, v
m´1
h`1 q

“
ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨
`

P̄h,s,apvm´1
h`1 q2 ´ pP̄h,s,av

m´1
h`1 q2

˘

ď
ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨
`

pvm´1
h psqq2 ´ pP̄h,s,av

m´1
h`1 q2

˘

` H2

ď H
H
ÿ

h“1

Eπ,P̄

“

|vm´1
h pshq ´ P̄h,sh,ah

vm´1
h`1 |

‰

` H2

“ H
H
ÿ

h“1

Eπ,P̄

“

vm´1
h pshq ´ P̄h,sh,ah

vm´1
h`1

‰

` H2 (40)

ď H
H
ÿ

h“1

Eπ,P̄ rrhpsh, ahqs ` 2H2

ď 4H2. (41)

Here (40) is by the fact that vm´1
h is the optimal value function with respect to Pm´1 and P̄ P Pm´1.

Bound of T3 By Lemma 3, with probability 1 ´ 4S2AHδ, it holds that

ˇ

ˇP̌m
h,s,a,s1 ´ P̄h,s,a,s1

ˇ

ˇ ď 4

d

P̄h,s,a,s1ι

Ňm
h ps, aq

`
3ι

Ňm
h ps, aq

ď 2P̄h,s,a,s1 `
5ι

Ňm
h ps, aq

.

As a result, we have that

T3 “
ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨ VpP̌m
h,s,a, v

m´1
h`1 q

ď
ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨
ÿ

s1

P̌m
h,s,a,s1

`

vm´1
h`1 ps1q ´ P̄h,s,a,s1vm´1

h`1

˘2

ď
ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨
ÿ

s1

P̄m
h,s,a,s1

`

vm´1
h`1 ps1q ´ P̄h,s,a,s1vm´1

h`1

˘2
`

ÿ

h,s,a

Wπp1h,s,a, P̄ q ¨
5H2ι

Ňm
h ps, aq

“ 4T2 ` 5H2ιT1

ď O

ˆ

H2 `
SAH2 lnpKqι2

K2m´H

˙

. (42)

By (39), (41) and (42), Term.1 is bounded by

Term.1 ď O

˜

d

SAH3 lnpKqι2

Km´2H
`

SAH2 lnpKqι

Km´2H

¸

. (43)

26

To bound Term.2, by definition of Pm and G, we have

Term.2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

h,s,a

Wπp1h,s,a, P 1qpP 1
h,s,a ´ P̄h,s,aqpfh`1 ´ vm´1

h`1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

h,s,a

Wπp1h,s,a, P
1q
ÿ

s1

˜

10

d

P̄h,s,a,s1ι

Nm
h ps, aq

`
6ι

Nm
h ps, aq

¸

¨ |fh`1ps1q ´ vm´1
h`1 ps1q ´ l|

ď O

˜

ÿ

h,s,a

Wπp1h,s,a, P̄ q
ÿ

s1

d

P̄h,s,a,s1ι

Nm
h ps, aq

|fh`1ps1q ´ vm´1
h`1 ps1q ´ lhps, aq|

¸

` O

˜

ÿ

h,s,a

Wπp1h,s,a, P̄ q
SHι

Nm
h ps, aq

¸

,

(44)

where lhps, aq “ P̄h,s,apfh`1 ´ vmh`1q. By (39), the second term in (44) is bounded by

O
´

SAH lnpKqι
Km´2H

¯

. To bound the the first term in (44), by Cauchy’s inequality, we have that

O

¨

˝

ÿ

h,s,a

Wπp1h,s,a, P̄ q

d

SVpP̄h,s,a, fh`1 ´ vm´1
h`1 qι

Nm
h ps, aq

˛

‚

ď O

¨

˝

d

SWπp1h,s,a, P̄ qι

Nm
h ps, aq

¨

d

ÿ

h,s,a

Wπp1h,s,a, P̄ qVpP̄h,s,a, fh`1 ´ vm´1
h`1 q

˛

‚

ď O

¨

˝

d

S2AH lnpKqι2

Km´2H
¨

d

ÿ

h,s,a

Wπp1h,s,a, P̄ qVpP̄h,s,a, fh`1 ´ vm´1
h`1 q

˛

‚,

where the last line is by (39). Continuing the computation:
ÿ

h,s,a

Wπp1h,s,a, P̄ qVpP̄h,s,a, fh`1 ´ vm´1
h`1 q

“
ÿ

h,s,a

Wπp1h,s,a, P̄ q
`

P̄h,s,apfh`1 ´ vh`1m´1q2 ´ pP̄h,s,afh`1 ´ P̄h,s,av
m´1
h`1 q2

˘

ď Eπ,P̄

«

H
ÿ

h“1

˜

pfh`1psh`1q ´ vm´1
h`1 psh`1q2 ´ p

ÿ

a

πhpa|sqP̄h,s,apfh`1 ´ vh`1qq2

¸ff

(45)

ď pvm´1
1 ps1q ´ f1ps1qq2 ` HEπ,P̄

«

H
ÿ

h“1

ˇ

ˇ

ˇ

ˇ

ˇ

fhpshq ´ vm´1
h pshq ´

ÿ

a

πhpa|shqP̄h,sh,apfh`1 ´ vm´1
h`1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď pvm´1
1 ps1q ´ f1ps1qq2 ` HEπ,P̄

«

H
ÿ

h“1

vm´1
h pshq ´

ÿ

a

πhpa|shq
`

rhpsh, aq ` P̄h,sh,av
m´1
h`1 q

˘

ff

(46)

ď pvm´1
1 ps1q ´ f1ps1qq2 ` Hpvm´1

1 ps1q ´ f1ps1qq

ď 2Hpvm´1
1 ps1q ´ f1ps1qq.

Here (45) holds by the fact that VarpXq ě EY rVarpX|Y qs for any random variables X and
Y (recalling that VarpXq denotes the variance of X), and (46) is by the fact that vm´1

h pshq ě
ř

a πhpa|shqprhpsh, aq ` P̄h,s,av
m´1
h`1 q and fhpshq “

ř

a πhpa|shqprhpsh, aq ` P̄h,s,afh`1q for any
1 ď h ď H .

Because π P Πpr,Pm´1q, we learn that vm´1
1 ´ f1ps1q ď gapm. By Lemma 16, we have that

for any m ě H ` 1, Nm´1
h ps, aq ě ck1

27SA maxπ W
πp1h,s,a, P̄ q ´ 4ι ´ 36C1SAH3ι

27 . With similar

27

analysis, and noting that }p1
h,s,a ´ p2

h,s,a}1 ď Op

b

Sι{Nm´1
h ps, aqq for any p1, p2 P Pm´1, we have

gapm ď O

˜

max
π1

ÿ

h,s,a

Wπ1

p1h,s,a, P̄ q

d

SH2ι

Nm´1
h ps, aq

¸

ď O

˜

d

S4A3H4ι

k1
`

S
7
2A3H5ι

3
2

k1

¸

. (47)

As a result, we have that

Term.2 ď O

¨

˝

d

S
11
2 A4H7 lnpKqι

5
2

Km´2Hk1
`

d

S4A
5
2H4 lnpKqι

3
2

Km´2H

?
k1

`
S2AH lnpKqι

Km´2H

˛

‚. (48)

Putting all together, for any π P Πpr,Pm´1q and any P 1 P Pm, we have

|Wπpr, P 1q ´ Wπpr, P̄ q|

ď O

¨

˝

d

SAH3 lnpKqι2

Km´2H
`

SAH2 lnpKqι

Km´2H
`

d

S
11
2 A4H7 lnpKqι

5
2

Km´2Hk1
`

d

S4A
5
2H4 lnpKqι

3
2

Km´2H

?
k1

˛

‚.

By definition, there exists P 1, P 2 such that UπpPmq “ Wπpr, P 1q and LπpPmq “ Wπpr, P 2q.
Therefore,

|UπpPmq ´ LπpPmq|

ď O

¨

˝

d

SAH3 lnpKqι2

Km´2H
`

SAH2 lnpKqι

Km´2H
`

d

S
11
2 A4H7 lnpKqι

5
2

Km´2Hk1
`

d

S4A
5
2H4 lnpKqι

3
2

Km´2H

?
k1

˛

‚.

Taking maximization over π P Πpr,Pm´1q we finish the proof.

D.4.1 Statement and Proof of Lemma 16

Lemma 16. Given a dataset D and k ě 0, let D1 be the output by running Algorithm 2 with
input pr,D, kq. Let tNhps, a, s1quptN 1

hps, a, s1quq be the counts with respect to DpD1q. Let W “

tph, s, a, s1q|Nhps, a, s1q ě C1H
2ιu and W 1 “ tph, s, a, s1q|N 1

hps, a, s1q ě C1H
2ιu. Let p̄ “

clippP,Wq. With probability 1 ´ 4S2AH2δ, it holds that

max
πPΠ˚

Prπ
“

Dh1 P rhs, ph1, sh1 , ah1 , sh1`1q R W 1
‰

ď
36C1S

2A2H3ι

k
, (49)

where Π˚ is the set of optimal policies. Moreover, if D “ H and u “ 0, with probability 1 ´

4S2AH2δ it holds that

N 1
h,s,a ě

ck

27SA
max
π

Wπp1h,s,a, P q ´ 4ι ´
36C1SAH3ι

27
(50)

for any 1 ď h ď H .

Proof. For h1 “ 1, 2, ...,H , we denote Dh1

as the value of D after the h1-th batch in Algorithm 2. Sim-
ilarly, we define tNh1

h ps, a, s1qu, tNh1

h ps, aqu and tp̂h
1

h,s,au be respectively the value of tNhps, a, s1qu

, tNhps, aqu and tp̂h,s,au after the h1-th batch. Note that Ph1

“ CRpDh1

q is the value of P after the
h1-th batch.

Define Wh1

:“ tph, s, a, s1q : Nh1

h ps, a, s1q ě C1H
2ιu and Ph1

“ clippP,Wh1

q. Let ph
1

P Ph1
´1

be the transition model chosen at line 8 Algorithm 2.

28

Using Lemma 3 and Lemma 4, with probability 1 ´ 4S2AH2δ, for any ph, s, a, s1q P Wh1

, it holds
that

ˇ

ˇ

ˇ
Ph1

h,s,a,s1 ´ p̂h
1

h,s,a,s1

ˇ

ˇ

ˇ
ď

d

4Ph1

h,s,a,s1ι

Nh1

h ps, aq
`

ι

3Nh1

h ps, aq

ď
1

3H
Ph1

h,s,a,s1 ,

where in the last inequality, we use Lemma 4 to get that Nh1

h Ph1

h,s,a,s1 ě 1
3N

h1

h ps, a, s1q ´ ι ě 64H2ι
with probability 1 ´ δ.

It then holds that Ph1

P Ph1

for each h1. Moreover, noting that for any p P Ph1

and ph, s, a, s1q P Wh1

,
with similar computation it holds that

ˇ

ˇ

ˇ
ph,s,a,s1 ´ Ph1

h,s,a,s1

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
ph,s,a,s1 ´ p̂h

1

h,s,a,s1

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
p̂h,s,a,s1 ´ Ph1

h,s,a,s1

ˇ

ˇ

ˇ

ď
1

3H
Ph1

h,s,a,s1 `
1

3H
p̂h

1

h,s,a,s1

ď

ˆ

2

3H
`

1

9H2

˙

Ph1

h,s,a,s1

As a result, Ph1

is tight with respect to Ph1

.

Fix h P rHs. Recall that

πh,s,a “ Policy Searchp1h,s,a,Ph´1q;

tπ̃h, phu “ Sum

˜

"

1

SA
, πh,s,a, p

h

*

h,s,a

¸

. (51)

Recall that, for the first h´1 steps πh is the policy which is the same as π̃h, and for the left H ´h`1
steps, πh is the uniformly random policy.

We first show that the h-th layer is well explored. By the property of Policy Search and Sum (see
Lemma 8 and 2), there exists a constant c ą 0 such that12

Wπh,s,a

p1h,s,a, Ph´1q ě c max
πPΠpr,Ph´1q

Wπp1h,s,a, Ph´1q

Wπh

p1h,s,a, phq “
1

SA
Wπh,s,ap1h,s,a, p

hq,@ps, aq P S ˆ A.

Noting that ph P Ph´1 and Ph´1 is tight with respect to Ph´1, by Lemma 17 we obtain that

Wπh

p1h,s,a, P
h´1q ě

c

9SA
max

πPΠpr,Ph´1q
Wπp1h,s,a, Ph´1q (52)

for any ps, aq P S ˆ A.

Using Lemma 4, with probability 1 ´ 4SAδ, the count of ph, s, aq in the h-th batch is at least
ck

27SA ¨ maxπPΠpr,Ph´1q W
πp1h,s,a, P

h´1q ´ ι. As a result, we have that

Nh
h ps, aq ě

ck

27SA
¨ max
πPΠpr,Ph´1q

Wπp1h,s,a, Ph´1q ´ 4ι (53)

for any ps, aq P S ˆ A.

In the meantime, if ph, s, a, s1q R Wh , we have that Nh
h ps, a, s1q ď C1H

2ι. Using Lemma 4, with
probability 1 ´ δ, we have that

kWπh

p1h,s,a, P
h´1qPh,s,a,s1 ď 3C1H

2ι ` 4ι. (54)

12We omit ϵ for convenience. By setting ϵ “ 1{pSAHKq
10, it is easy to verify the error only leads to a lower

order term.

29

Combining (52) and (54), we have that

max
πPΠpr,Ph´1q

Pπ,Ph´1

“

psh, ah, sh`1q “ ps, a, s1q
‰

“ max
πPΠpr,Ph´1q

Wπp1h,s,a, Ph´1qPh,s,a,s1

ď
9SA

c
Wπh

p1h2,s,a, P
h´1qPh2,s,a,s1

ď
9SA

c
¨
3C1H

2ι ` 4ι

k

ď
36C1SAH2ι

k
. (55)

With an union bound over all ph, s, a, s1q R Wh, we have that

max
πPΠpr,Ph´1q

Pπ,Ph´1

“

ph, sh, ah, sh`1q R Wh
‰

ď
36C1S

2A2H2ι

k
. (56)

Note that Wh is non-decreasing in h. For any π P Xh1

h“1Πpr,Phq, it holds that

Pπ,P

“

Dh1 ď H, ph1, sh1 , ah1 , sh1`1q R WH
‰

“ Pπ,PH

“

Dh1 ď H, ph1, sh1 , ah1 , sh1`1q R WH
‰

“

H
ÿ

h1“1

Pπ,PH

“

ph1, sh1 , ah1 , sh1`1q P WH ,@1 ď h1 ă h, ph, sh, ah, sh`1q R WH
‰

ď

H
ÿ

h“1

max
πPΠpr,Ph´1q

Pπ,Ph´1

“

ph, sh, ah, sh`1q R Wh
‰

ď
36C1S

2A2H3ι

k
. (57)

Recall that Πpr,Pq :“ tπ|Uπpr ` 1z,Pq ě maxπ L
πpr,Pqu. Because Ph P Ph for any h, for any

optimal policy π˚ and any policy π1, we have that Uπ˚

pr ` 1z,Pq ě V ˚
1 ps1q ě Wπ1

pr, Phq ě

Lπ1

pr,Pq. Therefore, π˚ P ΠpPhq for any 1 ď h ď H . By (57), (49) is proven.

In the case u “ 0, we have that Πpu,Phq “ Π for 1 ď h ď H , where Π is the set of all possible
policies. By (53), we have that

Nh
h ps, aq (58)

ě
ck

27SA
max
π

Wπp1h,s,a, P
hq ´ 4ι (59)

ě
ck

27SA
max
π

Wπp1h,s,a, P
q ´ 4ι ´

ck

27SA
max
π

Pπ,P

“

Dh1 P rHs, ph1, sh1 , ah1 , sh1`1q R WH
‰

ě
ck

27SA
max
π

Wπp1h,s,a, P q ´ 4ι ´
36C1SAH3ι

27
.

The proof is completed by noting that N 1
hps, aq ě Nh

h ps, aq.

D.5 Statement and Proof of Lemma 17

Lemma 17. Suppose P is tight with respect to p. Then we have that

3Wπp1h,s,a, pq ě Wπp1h,s,a, p1q ě
1

3
Wπp1h,s,a, pq (60)

for any p1 P P , policy π and ph, s, aq.

Proof. For each trajectory L “ ps1, a1, ..., sH , aH , sH`1q such that sh ‰ z for 1 ď h ď H ` 1, we
have that

Pπ,prLs “ πH
h“1πhpah|shqph,sh,ah,sh`1

ě e´ H
H Pπ,prLs “ πH

h“1πhpah|shqp1
h,sh,ah,sh`1

ě
1

3
Pπ,p1 rLs.

30

So the left side of (60) is proven. By reversing p and p1 the right side follows.

E Other Missing Proofs

E.1 Proof of Lemma 1

Lemma 1 (restated) Let d ą 0 be an integer. Let X Ă p∆dqm. Then there exists a distribution D
over X , such that

max
x“txiudmi“1PX

dm
ÿ

i“1

xi

yi
“ md,

where y “ tyiu
dm
i“1 “ Ex„Drxs. Moreover, if X has a boundary set BX with finite cardinality, we

can find D in polyp|BX |q time.

Proof. Note that X is always bounded. Without loss of generality, we assume X is a discrete set with
X “ tx1, x2, ..., xLu where xi “ txi

nudmn“1 For λ “ tλ1, λ2, ..., λLu P ∆L, we define Epλq by

Epλq :“ Πdm
i“1

˜

L
ÿ

j“1

λjx
j
i

¸

.

Then Epλq is bounded and ∆L is compact. Consider to maximize ln pEpλqq over λ P ∆L. It’s
not hard to verify that ln pEpλqq is concave in λ, so it is efficient to maximize it by gradient ascent
algorithms. Let λ˚ be the optimal solution. By the KKT condition, we have that for any j1, j2 such
that λ˚

j1 , λ˚
j2 P p0, 1q, it holds that

w :“
dm
ÿ

i“1

xj1

i
ř

j“1 λjx
j
i

“

dm
ÿ

i“1

xj2

i
ř

j“1 λjx
j
i

.

Therefore, if for any λ˚
j ‰ 1 for any j, we have that

w “

L
ÿ

j“1

λjw “

dm
ÿ

i“1

ř

j“1 λjx
j
i

ř

j“1 λjx
j
i

“ dm.

Then λ˚ is the desired solution. Otherwise, suppose λ˚
1 “ 1. Then we have that

dm “

dm
ÿ

i“1

x1
i

x1
i

ě

dm
ÿ

i“1

xj1

i

x1
i

for any j1 ě 2. Then λ˚ is also the desired solution. The proof is completed.

E.2 Proof of Lemma 2

Lemma 2 (Restatement) Let P “ bph,s,aqPh,s,a be a set of transition models such that Ph,s,a Ă ∆S

is convex for any ph, s, aq. Let tpπi, P iquni“1 be a sequence of policy-transition pairs such that
P i P C. For any tλiu

n
i“1 such that λi ě 0 for i ě 1 and

ř

i λi “ 1, there exists a policy π and
P P P , satisfying that

Wπp1h,s,a, P q “
ÿ

i

λiW
πi

p1h,s,a, P iq (61)

for any ph, s, aq P rHs ˆ S ˆ A. Furthermore, the time complexity to find tπ, P u could be bounded
by OpnS3A2H2q.

Proof. By induction on n, it suffices to prove for the case n “ 2. Our target is to find pπ, pq such that

Wπp1h,s,a, P q “ λ1W
π1

p1h,s,a, P 1q ` p1 ´ λ1qWπ2

p1h,s,a, P 2q (62)

31

holds for any ph, s, aq P rHs ˆ S ˆ A. We will prove this by induction on h. For the case h “ 1,
since the initial distribution is fixed, we finish by letting

π1pa|sq “ λ1π
1
1pa|sq ` p1 ´ λ1qπ2

1pa|sq (63)

for all ps, aq P S ˆ A

Suppose (62) holds for any 1 ď h1 ď h and any ps, aq P S ˆ A. Then λh,s,a “
λ1W

π1
p1h,s,a,P

1
q

Wπp1h,s,a,P q
is

well-defined. We set

Ph,s,a “ λh,s,aP
1
h,s,a ` p1 ´ λh,s,aqP 2

h,s,a

for any ps, aqs P S ˆ A. By the inductive assumption

Wπp1h,s,a, P q “ λ1W
π1

p1h,s,a, P
1q ` p1 ´ λ1qWπ2

p1h,s,a, P 2q, (64)

we have that for any ps, aq

Ph,s,aW
πp1h,s,a, P q “ λ1W

π1

p1h,s,a, P
1qP 1

h,s,a ` p1 ´ λ1qWπ2

p1h,s,a, P 2qP 2
h,s,a.

We then have that

λ1

ÿ

s1,a1

Wπ1

p1h,s1,a1 , P 1qP 1
h,s1,a1,s ` p1 ´ λ1q

ÿ

s1,a1

Wπ2

p1h,s1,a1 , P 2qP 2
h,s,1,a1,s

“
ÿ

s1,a1

λh,s1,a1Wπp1h,s1,a1 , P qP 1
h,s1,a1,s `

ÿ

s1,a1

p1 ´ λh,s1,a1 qWπp1h,s1,a1 , P qP 2
h,s1,a1,s (65)

“
ÿ

s1,a1

Wπp1h,s1,a1 , P qPh,s1,a1,s, (66)

which implies that

Wπp1h`1,s, P q “ λ1W
π1

p1h`1,sP
1q ` p1 ´ λ1qWπ2

p1h`1,sP
2q (67)

for any s P S, where the reward function 1h`1,s “
ř

a 1h`1,s,a. Let

πh`1pa|sq “
λ1W

π1

p1h`1,s, P
1qπ1

h`1pa|sq ` p1 ´ λ1qWπ2

p1h`1,s, P
2qπ2

h`1pa|sq

Wπp1h`1,s, P q
. (68)

Then it is easy to verify that

Wπp1h`1,s,a, P q “ Wπp1h`1,s, P qπh`1pa|sq “ λ1W
π1

p1h`1,s,a, P
1q ` p1 ´ λ1qWπ2

p1h`1,s,a, P
2q.

Also note that the process above costs at most OpS3A2H2q time, so the total computational cost is
bounded by OpnS3A2H2q. The proof is completed.

32

	Introduction
	Related Works
	Preliminaries
	Technique Overview
	Policy Elimination Framework
	Technical Challenges
	Key Techniques

	Algorithms
	Raw Exploration
	Policy Elimination

	Conclusion
	Technical Lemmas
	Lower Bound (Proof of Theorem 2)
	Efficient Implementation of the Proposed Algorithm
	The Algorithm
	Theoretical Results and Proofs for Algorithm 4

	Proof of Theorem 1
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 15
	Statement and Proof of Lemma 16

	Statement and Proof of Lemma 17

	 Other Missing Proofs
	Proof of Lemma 1
	Proof of Lemma 2

