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Abstract

This work develops new algorithms with rigorous efficiency guarantees for infi-
nite horizon imitation learning (IL) with linear function approximation without
restrictive coherence assumptions. We begin with the minimax formulation of the
problem and then outline how to leverage classical tools from optimization, in
particular, the proximal-point method (PPM) and dual smoothing, for online and
offline IL, respectively. Thanks to PPM, we avoid nested policy evaluation and cost
updates for online IL appearing in the prior literature. In particular, we do away
with the conventional alternating updates by the optimization of a single convex
and smooth objective over both cost and Q-functions. When solved inexactly, we
relate the optimization errors to the suboptimality of the recovered policy. As an
added bonus, by re-interpreting PPM as dual smoothing with the expert policy as a
center point, we also obtain an offline IL algorithm enjoying theoretical guarantees
in terms of required expert trajectories. Finally, we achieve convincing empirical
performance for both linear and neural network function approximation.

1 Introduction

This work is concerned with the prototypical setting of imitation learning (IL) where

1. An expert provides demonstrations of state-action pairs in an environment. The expert could
be optimal or suboptimal with respect to an unknown cost/reward function.

2. The learner chooses distance measure between its policy to be learned and the expert
empirical distribution estimated from demonstrations.

3. The learner employs an algorithm, which additionally may or may not use interactions with
the environment, to minimize the chosen distance.

In IL, the central goal of the learner is to recover a policy competitive with expert with respect to the
underlying unknown cost function. IL is important for several real world applications like driving
[62], robotics [88], and economics/finance [27] at the expense of following resources: (R1) expert
demonstrations, (R2) (optional) interactions with the environment where the expert collected the
demonstrations, and (R3) computational resources for solving the problem template.

Interestingly, while there is a vast amount of literature using optimization ideas on the IL problem
template, i.e. Lagrangian duality [51, 38, 59, 63, 64], resource guarantees are still widely missing
since the optimization literature focuses on the resource (R3) where IL literature mainly focuses on

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



the first two resources (R1) and (R2). Our work leverages deeper connections between optimization
tools and IL by showing how classical optimization tools can be applied in a linear programming
formulation of IL problem guaranteeing efficiency in all (R1), (R2), (R3).

Our contributions: This work aims at designing an algorithm enjoying both theoretical guarantees
and convincing empirical performance. Our methodology is rooted in classical optimization tools
and the LP approach to MDPs. More precisely, the method uses the recently repopularized overpa-
rameterization technique to obtain the Q-function as a Lagrangian multiplier [77, 14] and solves the
associated program using a PPM update with appropriately chosen Bregman divergences. This results
to an actor-critic algorithm, with the key feature that the policy evaluation step involves optimization
of a single concave and smooth objective over both cost and Q-functions. In this way, we avoid
instability or poor convergence due to adversarial training [51, 122, 70, 105], and can also recover an
explicit cost along with Q-function. We further account for potential optimization errors, presenting
an error propagation analysis that leads to rigorous guarantees for both online and offline setting. For
the context of linear MDPs [14, 121, 55, 22, 116, 7, 84], we provide explicit convergence rates and
error bounds for the suboptimality of the learned policy, under mild assumptions, significantly weaker
than those found in the literature until now. To our knowledge, such guarantees in this setting are
provided for the first time. Finally, we demonstrate that our approach achieves convincing empirical
performance for both linear and neural network function approximation.

Related Literature. The first algorithm addressing the imitation learning problem is behavioral
cloning [93]. Due to the covariate shift problem [98, 99], it has low efficiency in terms of expert
trajectories (R1). To address this issue, [100, 87, 4, 95, 111, 85, 123, 5, 68, 69] proposed to cast the
problem as inverse reinforcement learning (IRL). IRL improves the efficiency in terms of expert
trajectories, at the cost of introducing the need of running reinforcement learning (RL) repetitively,
which can be prohibitive in terms of environment samples (R2) and computation (R3). A successive
line of work started with [112] highlights that repeated calls to an RL routine can be avoided. This
work inspired generative adversarial imitation learning (GAIL) [51] and other follow-up works
[38, 59, 63, 64] that leveraged optimization tools like primal-dual algorithms but did not try to
deepen the optimization connections to derive efficiency guarantees in terms of all (R1),(R2),(R3).
Finally, a recent line of work [40, 57] in IL bypasses the need of optimizing over cost functions and
thus avoids instability due to adversarial training. Although these algorithms achieve impressive
empirical performance in challenging high dimensional benchmark tasks, they are hampered by
limited theoretical understanding. This is the fundamental difference from our work, which enjoys
both favorable practical performance and strong theoretical guarantees.

Existing model-free IL theoretical papers with global convergence guarantees assume either a
finite horizon episodic MDP setting [70], or tabular MDPs [105], or the infinite horizon case but
with restrictive assumptions, such as linear quadratic regulator setting [21], continuous kernelized
nonlinear regulator [26, 56], access to a generative model and coherence assumption on the choice
of features [58, 14], bounded strong concentrability coefficients [122] or a linear transition law that
can be completely specified by a finite-dimensional matrix [70]. On the other hand, we provide
convergence guarantees and error bounds for the context of linear MDPs [14, 121, 55, 22, 116, 7, 84]
under a mild feature excitation condition assumption. Despite being linear, the transition law can still
have infinite degrees of freedom. To our knowledge, such guarantees in this setting are provided for
the first time.

Our work applies the technique known as regularization in the online learning literature [6, 103]
and Bregman proximal-point or smoothing in optimization literature [97, 82] to the LP formulation
for MDPs [73, 35, 36, 17, 48, 49, 33, 34, 102, 91, 92, 1, 65, 30, 79, 115, 67, 13, 31, 55, 106]. From
this perspective, we can see Deep Inverse Q-Learning [57] and IQ-Learn [40] that consider entropy
regularization in the objective as smoothing using uniform distribution as center point. In our case,
we instead use as center point the previous iteration of the algorithm (for the online case) or the expert
(for the offline case).

From the technical point of view, the most important related works are the analysis of REPS/Q-
REPS [90, 14, 89] and O-REPS [124] that first pointed out the connection between REPS and
PPM. We build on their techniques with some important differences. In particular, while in the
LP formulation of RL, PPM and mirror descent [15, 47] are equivalent, recognizing that they are
not equivalent in IL is critical for stronger empirical performance. As an independent interest, our
techniques can be used to improve upon the best rate for REPS in the tabular setting [89] and to
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extend the guarantees to linear MDPs. In order to discuss in more detail our research questions
and situate them among prior related theoretical and practical works, we provide in Appendix A an
extended literature review.

2 Background

2.1 Markov Decision Processes

The RL environment and its underlying dynamics are typically abstracted as an MDP given by a tuple
(S,A, P,ν0, c, γ), where S is the state space, A is the action space, P : S×A → ∆S is the transition
law, ν0 ∈ ∆S is the initial state distribution, c ∈ [0, 1]|S||A| is the cost, and γ ∈ (0, 1) is the discount
factor. For simplicity, we focus on problems where S and A are finite but too large to be enumerated.
A stationary Markov policy π : S → ∆A interacts with the environment iteratively, starting with an
initial state s0 ∼ ν0. At round t, if the system is at state st, an action at ∼ π(·|st) is sampled and
applied to the environment. Then a cost c(s, a) is incurred, and the system transitions to the next
state st+1 ∼ P (·|s, a). The goal of RL is to solve the optimal control problem ρ⋆c ≜ minπ ρc(π),

where ρc(π) ≜ (1− γ) ⟨ν0,V
π
c ⟩ is the normalized total discounted expected cost of π.

The state value function Vπ
c ∈ R|S| of π, given cost c, is defined by V π

c (s) ≜

Eπ
s

[∑∞
t=0 γ

tc(st, at)
]
, where Eπ

s denotes the expectation with respect to the trajectories gen-

erated by π starting from s0 = s. The optimal value function V⋆
c ∈ R|S| is defined by

V ⋆
c (s) ≜ minπ V

π
c (s). The optimal state-action value function Q⋆

c ∈ R|S||A|, given by Q⋆
c(s, a) ≜

c(s, a) + γ
∑

s′ V
⋆
c (s

′)P (s′|s, a), is known to characterize optimal behaviors. Indeed V⋆
c is the

unique solution to the Bellman optimality equation V ⋆
c (s) = mina Q

⋆
c(s, a). In addition, any deter-

ministic policy π⋆
c(s) = argmina Q

⋆
c(s, a) is known to be optimal.

For every policy π, we define the normalized state-action occupancy measure µπ ∈ ∆S×A, by
µπ(s, a) ≜ (1− γ)

∑∞
t=0 γ

tPπ
ν0

[st = s, at = a] , where Pπ
ν0
[·] denotes the probability of an event

when following π starting from s0 ∼ ν0. The occupancy measure can be interpreted as the discounted
visitation frequency of state-action pairs. This allows us to write ρc(π) = ⟨µπ, c⟩.

2.2 Imitation Learning

Similarly to RL, the IL problem is posed in the MDP formalism, with the critical difference that
the true cost ctrue is unknown. Instead, we have access to a finite set of truncated trajectories sampled
i.i.d. by executing an expert policy πE in the environment. The goal is to learn a policy that performs
better than πE with respect to the unknown ctrue. To this end, we adopt the apprenticeship learning
formalism [4, 112, 50, 51, 105], which carries the assumption that ctrue belongs to a class of cost
functions C. We then seek an apprentice policy πA that outperforms the expert across C by solving
the following optimization problem

ζ⋆ ≜ min
π

dC(π, πE), (1)

where dC(π, πE) ≜ maxc∈C
(
ρc(π) − ρc(πE)

)
defines the C-distance between π and

πE [51, 28, 122, 70]. Then, πA satisfies the goal of IL, since it holds that ρctrue(πA) − ρctrue(πE) ≤
ζ⋆ ≤ 0. Intuitively, the cost class C distinguishes the expert from other policies. The maximization
in (1) assigns high total cost to non-expert policies and low total cost to πE [51], while the
minimization aims to find the policy that matches the expert as close as possible with respect to dC .

By writing dC in its dual form d̄C(µπ,µπE
) ≜ maxc∈C

(
⟨µπ, c⟩ −

〈
µπE

, c
〉 )

, it can be interpreted
as an integral probability metric [80, 60] between the occupancy measures µπ and µπE

. Depending
on how C is chosen, dC turns to a different metric of probability measures like the 1-Wasserstein
distance [117, 32] for C = Lip1(S×A), the total variation for C = {c | ∥c∥∞ ≤ 1}, or the maximum
mean discrepancy for C = {c | ∥c∥H ≤ 1}, where Lip1(S × A) denotes the space of 1-Lipschitz
functions on S ×A, and ∥·∥H denotes the norm of a reproducing kernel Hilbert space H [104].

In our theoretical analysis, we focus on linearly parameterized cost classes [111, 112, 51, 70, 105]
of the form C ≜ {cw ≜

∑m
i=1 wiϕi | w ∈ W}, where {ϕi}mi=1 ⊂ R|S||A|

+ are fixed feature vectors,
such that ∥ϕi∥1 ≤ 1 for all i ∈ [m], and W is a a convex constraint set for the cost weights w. This
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assumption is not necessarily restrictive as usually in practice the true cost depends on just a few key
properties, but the desirable weighting that specifies how different desiderata should be traded-off is
unknown [4]. Moreover, the cost features can be complex nonlinear functions that can be obtained via
unsupervised learning from raw state observations [20, 29]. The matrix Φ ≜ [ϕ1 . . . ϕm] gives
rise a feature expectation vector (FEV) ρΦ(π) ≜ (ρϕ1

(πE), . . . , ρϕm
(πE))

T ∈ Rm of a policy π.
Then, by choosing W to be the ℓ2 unit ball Bm

1 ≜ {w ∈ Rm | ∥w∥2 ≤ 1} [4], we get a feature expec-
tation matching objective dC(π, ππE) = ∥ρΦ(π)− ρΦ(πE)∥2, while for W being the probability sim-
plex ∆[m] [111, 112] we have a worst-case excess cost objective dC(π, ππE) = maxi∈[m]

(
ρϕi

(π)−
ρϕi

(πE)
)
. For clarity, we will replace c by w in the notation of the quantities defined in Section 2.1.

3 A Q-Convex-Analytic Viewpoint

Our methodology builds upon the convex-analytic approach to AL, first introduced by [112], with the
key difference that we consider a different convex formulation that introduces Q-functions as slack
variables. This allows to design a practical scalable model-free algorithm with theoretical guarantees.

Let F ≜ {µ ∈ R|S||A| | (B− γP)⊺µ = (1− γ)ν0, µ ≥ 0} be the state-action polytope, where P

is the vector form of P , i.e., P(s,a),s′ ≜ P (s′|s, a), and B is a binary matrix defined by B(s,a),s′ ≜ 1

if s = s′, and B(s,a),s′ ≜ 0 otherwise. The linear constraints that define the set F, also known as
Bellman flow constraints, precisely characterize the set of state-action occupancy measures.
Proposition 1 (94). We have that µ ∈ F if and only if there exists a unique stationary Markov policy
π such that µ = µπ . If µ ∈ F then the policy πµ(a|x) ≜ µ(x,a)∑

a′∈A µ(x,a′) has occupancy measure µ.

Using Proposition 1 and the dual form of the C-distance d̄C(µ,µπE
) = maxw∈W

〈
µ− µπE

, cw
〉
,

it follows that (1) is equivalent to the primal convex program ζ⋆ = minµ{d̄C(µ,µπE
) | µ ∈ F}.

In particular for W = ∆[m] and by using an epigraphic transformation, we end up with an LP
program [112], while for W = Bm

1 we get a quadratic objective with linear constraints [4].

A slight variation of the above reasoning is to introduce a mirror variable d and split the Bellman
flow constraints in the definition of F. We then get the primal convex program

ζ⋆ = min
(µ,d)

{d̄C(µ,µπE
) | (µ,d) ∈ M}, (Primal)

where the new polytope is given by M ≜ {(µ,d) | B⊺d = γP⊺µ+ (1− γ)ν0, µ = d, d ≥ 0}.
This overparameterization trick has been first introduced by Mehta and Meyn [76] and has been
recently revisited by [14, 84, 67, 83, 77, 71]. A salient feature of this equivalent formulation is that it
introduces a Q-function as Lagrange multiplier to the equality constraint d = µ, and so lends itself
to data-driven algorithms. To motivate further this new formulation, in Appendix C, we shed light to
its dual and provide an interpretation of the dual optimizers. In particular, when W = Bm

1 , we show
that (V⋆

wtrue
,Q⋆

wtrue
,wtrue) is a dual optimizer.

For our theoretical analysis we focus on the linear MDP setting [55], i.e., we assume that the transition
law is linear in the feature mapping. We denote by ϕ(s, a) the (s, a)-th row of Φ.
Assumption 1 (Linear MDP). There exists a collection of m probability measures ω = (ω1, . . . , ωm)
on S, such that P (·|s, a) = ⟨ω(·), ϕ(s, a)⟩, for all (s, a). Moreover ϕ(s, a) ∈ ∆[m], for all (s, a).

Assumption 1 essentialy says that the transition matrix P has rank at most m, and P = ΦM for
some matrix M ∈ Rm×|S|. It is worth noting that in the case of continuous MDPs, despite being
linear, the transition law P (·|s, a) can still have infinite degrees of freedom. This is a substantial
difference from the recent theoretical works on IL [70, 105] which consider either a linear quadratic
regulator, or a transition law that can be completely specified by a finite-dimensional matrix such
that the degrees of freedom are bounded.

Assumption 1 enables us to consider a relaxation of (Primal). In particular, we aggregate the
constraints µ = d by imposing Φ⊺µ = Φ⊺d instead, and introduce a variable λ = Φ⊺µ. It follows
that λ lies in the m-dimensional simplex ∆[m]. Then, we get the following convex program

ζ⋆ = min
(λ,d)

{max
w∈W

⟨λ,w⟩ −
〈
µπE

, cw
〉
| (λ,d) ∈ MΦ}, (Primal′)
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where MΦ ≜ {(λ,d) | B⊺d = γM⊺λ + (1 − γ)ν0, λ = Φ⊺d, λ ∈ ∆[m], d ∈ ∆S×A}.
As shown in [84, 14, 83], for linear MDPs, the set of occupancy measures F can be completely
characterized by the set MΦ (c.f., Proposition 2). While the number of constraints and variables
in (Primal′) is intractable for large scale MDPs, in the next paragraph, we show how this problem
can be solved using a proximal point scheme.

4 Proximal Point Imitation Learning

By using a Lagrangian decomposition, we have that (Primal′) is equivalent to the following bilinear
saddle-point problem

min
x∈X

max
y∈Y

⟨y,Ax+ b⟩ , (SPP)

where A ∈ R(2m+|S|)×(m+|S||A|), and b ∈ R(m+|S|+|S||A|) are appropriately defined (see Ap-
pendix D), x ≜ [λ⊺, d⊺]⊺, y ≜ [w⊺, V⊺,θ⊺]⊺, X ≜ ∆[m] ×∆S×A, and Y ≜ W ×R|S| ×Rm.

Since in practice we do not have access to the whole policy πE, but instead can observe a finite
set of i.i.d. sample trajectories DE ≜ {(x(l)

0 , a
(l)
0 , x

(l)
1 , a

(l)
1 , . . . , x

(l)
H , a

(l)
H )}nE

l=1 ∼ πE, we define the
vector b̂ by replacing ρΦ(πE) with its empirical counterpart ρΦ(π̂E) (by taking sample averages) in
the definition of b. We then consider the empirical objective f(x) ≜ maxy∈Y

〈
y,Ax+ b̂

〉
and

apply PPM on the decision variable x. For the λ-variable we use the relative entropy D(λ||λ′) ≜∑m
i=1 λ(i) log

λ(i)
λ′(i) , while for the occupancy measure d we use the conditional relative entropy

H(d||d′) ≜
∑

s,a d(s, a) log
πd(a|s)
πd′ (a|s) . With this choice we can rewrite the PPM update as

(λk+1,dk+1) = argmin
λ∈∆[m],d∈∆S×A

max
y∈Y

〈
y,A

[
λ
d

]
+ b̂

〉
+

1

η
D(λ||Φ⊺dk) +

1

α
H(d||dk), (2)

where we used primal feasibility to replace λk with Φ⊺dk as the center point of the relative entropy.
PPM is implicit, meaning that it requires the evaluation of the gradient at the next iterate xk+1. Such
a requirement makes it not implementable in general. However, in the following, we describe a proce-
dure to apply proximal point to our specific f(x). The following Proposition summarizes the result.
Proposition 2. For a parameter θ ∈ Rm, we define the logistic state-action value function Qθ ∈
R|S||A| by Qθ ≜ Φθ, and the k-step logistic state value function Vk

θ ∈ R|S| by

V k
θ (s) ≜ − 1

α
log

(∑
a

πdk−1
(a|s)e−αQθ(s,a)

)
.

Moreover, we define the k-step reduced Bellman error function δkw,θ ∈ Rm by δkw,θ ≜ w+γMVk
θ−

θ. Then, the PPM update (λ⋆
k,d

⋆
k) in 2 is given by

λ⋆
k(i) ∝ (Φ⊺dk−1)(i) e

−ηδkw⋆
k
,θ⋆

k
(i)
, (3)

πd⋆
k
(a|s) ∝ πdk−1

(a|s) e−αQθ⋆
k
(s,a)

, (4)

where (w⋆
k,θ

⋆
k) is the maximizer over W ×Rm of the k-step logistic policy evaluation objective

Gk(w,θ) ≜ −1

η
log

m∑
i=1

(Φ⊺dk−1)(i)e
−ηδkw,θ(i) + (1− γ)

〈
ν0,V

k
θ

〉
− ⟨ρΦ(π̂E),w⟩ . (5)

Moreover, it holds that Gk(w
⋆
k,θ

⋆
k) = ⟨λ⋆

k,w
⋆
k⟩ − ⟨ρΦ(π̂E),w

⋆
k⟩ + 1

ηD(λ⋆
k||Φ

⊺λk−1) +
1
αH(d⋆

k||dk−1). If in addition Assumption 1 holds, then d⋆
k is a valid occupancy measure, i.e.,

d⋆
k ∈ F and so d⋆

k = µπd⋆
k

.

The proof of Proposition 2 is broken down into a sequence of lemmas and is presented in Appendix E.
It employs an analytical-oracle g : Y → X given by

g(y;xk) ≜ argmin
λ∈∆[m],d∈∆S×A

〈
y,A

[
λ
d

]
+ b̂

〉
+

1

η
D(λ||Φ⊺dk) +

1

α
H(d||dk),
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and a max-oracle h : X → Y given by h(x) ≜ argmaxy∈Y ⟨y,Ag(y;x)⟩+ 1
τDΩ(g(y;x)||x),

where we used DΩ to compact the two divergences. By noting that the PPM update Equation (2) can be
rewritten as xk+1 = g(h(xk);xk), its analytical computation is reduced to the characterization of the
two aforementioned oracles. In particular, the updates (3)–(4) come from the analytical-oracle
while (5) is the objective of the max-oracle.

The choice of conditional entropy as Bregman divergence for the λ variable living in the probability
simplex is standard in the optimization literature and is known to mitigate the effect of dimension. In
particular, as noted in [85], the classic REPS algorithm [90] can be seen as mirror descent with relative
entropy regularization. On the other hand, the choice of conditional entropy as Bregman divergence
for the d variable is less standard and has been popularized by Q-REPS [14]. Such particular
divergence leads to an actor-critic algorithm that comes with several merits. By Proposition 2, it is
apparent that we get analytical softmin updates for the policy πd rather than the occupancy measure d.
Moreover, these softmin updates are expressed in terms of the logistic Q-function and do not involve
the unknown transition matrix P. Consequently, we avoid the problematic occupancy measure
approximation and the restrictive coherence assumption on the choice of features needed in [13, 58],
as well as the biased policy updates appearing in REPS [90, 89]. In addition, the newly introduced
logistic policy evaluation objective Gk(w,θ) has several desired properties. It is concave and smooth
in (w,θ) and has bounded gradients. Therefore, it does not suffer from the pathologies of the squared
Bellman error [78] and does not require heuristic gradient clipping techniques. Moreover, unlike [58]
it allows a model-free implementation without the need for a generative model (see Section 4.1)

We stress the fact that the max-oracle of our proximal point scheme performs the cost update and
policy evaluation phases jointly. This is a rather novel feature of our algorithm that differs from
the separate cost update and policy evaluation step used in recent theoretical imitation learning
works [122, 105, 70]. Our joint optimization over cost and Q-functions avoids instability due to
adversarial training and can also recover an explicit cost along with the Q-function without requiring
knowledge or additional interaction with the environment (see Section 5). It is worth noting that
application of primal-dual mirror descent to (SPP) does not have this favorable property. While in
the standard MDP setting, proximal point and mirror descent coincide because of the linear objective,
in imitation learning proximal point optimization makes a difference. In Appendix K, we include
a more detailed discussion and numerical comparison between PPM and mirror descent updates.

4.1 Practical Implementation

Exact optimization of the logistic policy evaluation objective is infeasible in practical scenarios, due
to unknown dynamics and limited computation power. In this section, we design a practical algorithm
that uses only sample transitions by obtaining stochastic (albeit biased) gradient estimators.

Proposition 2 gives rise to Proximal Point Imitation Learning (P2IL), a model-free actor-critic IRL
algorithm described in Algorithm 1. The key feature of P2IL is that the policy evaluation step
involves optimization of a single smooth and concave objective over both cost and state-action value
function parameters. In this way, we avoid instability or poor convergence in optimization due to
nested policy evaluation and cost updates, as well as the undesirable properties of the widely used
squared Bellman error. In particular, the kth iteration of P2IL consists of the following two steps : (i)
(Critic Step) Computation of an approximate maximizer (wk,θk) ≈ argmaxw,θ Gk(w,θ) of the
concave logistic policy evaluation objective, by using a biased stochastic gradient ascent subroutine;
(ii) (Actor Step) Soft-min policy update πk(a|s) ∝ πk−1(a|s) e−αQθk

(s,a) expressed in terms of the
logistic Q-function.

The domain Θ in Algorithm 1 is the ℓ∞-ball with appropriately chosen radius D to be specified
later (see Proposition 3). Moreover, ΠΘ(x) ≜ argminy∈Θ ∥x− y∥2 (resp. ΠW(w)) denotes the
Euclidean projection of x (resp. w) onto Θ (resp. W).

In order to estimate the gradients ∇θ Gk(w,θ) and ∇w Gk(w,θ) we invoke the Biased Stochastic
Gradient Estimator subroutine (BSGE) (Algorithm 2) given in Appendix H. By using the linear
MDP Assumption 1 and leveraging ridge regression and plug-in estimators, the proposed stochastic
gradients can be computed via simple linear algebra with computational complexity poly(m,n(t)),
independent of the size of the state space.
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Algorithm 1 Proximal Point Imitation Learning: P2IL(Φ,DE,K, η, α)

Input: Feature matrix Φ, expert demonstrations DE, number of iterations K, step sizes η and
α, number of SGD iterations T, SGD learning rates β = {βt}T−1

t=0 , number-of-samples function
n : N→ N
Initialize π0 as uniform distribution over A
Compute the empirical FEV ρΦ(π̂E) using expert demonstrations DE
for k = 1, . . .K do
// Critic-step (policy evaluation)
Initialize θk,0 = 0 and wk,0 = 0

Run πk−1 and collect i.i.d. samples Bk = {(s(n)k−1, a
(n)
k−1, s

′(n)
k−1)}

n(T )
n=1 such that

(s
(n)
k−1, a

(n)
k−1) ∼ µπk−1

and s
′(n)
k−1 ∼ P(·|s(n)k−1, a

(n)
k−1)

for t = 0, . . . T − 1 do
Compute biased stochastic gradient estimators(

∇̂wGk(wk,t,θk,t), ∇̂θGk(wk,t,θk,t)
)
= BSGE

(
k,wk,t,θk,t, n(t)

)
wk,t+1 = ΠW

(
wk,t + βt∇̂wGk(wk,t,θk,t)

)
θk,t+1 = ΠΘ

(
θk,t + βt∇̂θGk(wk,t,θk,t)

)
end for
(wk,θk) = ( 1

T

∑T
t=1 wk,t,

1
T

∑T
t=1 θk,t)

// Actor-step (policy update)
Policy update: πk(a|s) ∝ πk−1(a|s) e−αQθk

(s,a)

end for
Output: Mixed policy π̂K of {πk}k∈[K]

4.2 Theoretical Analysis

The first step in our theoretical analysis is to study the propagation of optimization errors made
by the algorithm on the true policy evaluation objective. In particular at each iteration step k, the
ideal policy evaluation update (w⋆

k,θ
⋆
k) and the ideal policy update π⋆

k are given by (w⋆
k,θ

⋆
k) =

argmaxw,θ Gk(w,θ), and π⋆
k(a|s) = πk−1(a|s)e

−α(Qθ⋆
k
(s,a)−V k

θ⋆
k
(s))

. On the other hand, consider
the realised policy evaluation update (wk,θk) such that Gk(w

⋆
k,θ

⋆
k)− Gk(wk,θk) = ϵk, the corre-

sponding policy πk given by πk = πk−1(a|s)e−α(Qθk
(s,a)−V k

θk
(s)), and let dk ≜ µπk

. We denote by
π̂K the extracted mixed policy of {πk}Kk=1. We are interested in upper-bounding the suboptimality
gap dC(π̂K , πE) of Algorithm 1 as a function of εk. To this end, we need the following assumption.

Assumption 2. It holds that λmin(E(s,a)∼dk
ϕ(s, a)ϕ(s, a)T) ≥ β, for all k ∈ [K].

Assumption 2 states that every occupancy measure dk induces a positive definite feature covariance
matrix, and so every policy πk explores uniformly well in the feature space. This assumption is
common in the RL theory literature [2, 46, 37, 66, 3, 7]. It is also related to the condition of persistent
excitation from the control literature [81].

The following proposition ensures that maxw,θ∈W×Rm Gk(w,θ) = maxw,θ∈W×Θ Gk(w,θ). There-
fore, this constraint does not change the problem optimality, but will considerably accelerate the
convergence of the algorithm by considering smaller domains.

Proposition 3. There exists a maximizer θ⋆
k such that ∥θ⋆

k∥∞ ≤ 1+|log β|
1−γ ≜ D.

We can now state our error propagation theorem.

Theorem 1. Let π̂K be the output of running Algorithm 1 for K iterations, with nE ≥ 2 log( 2m
δ )

ε2 expert

trajectories of length H ≥ 1
1−γ log( 1ε ). Let C ≜ 1

βη

(√
2α
1−γ +

√
8η
)
+
√

18α
1−γ . Then, with probability

at least 1− δ, it holds that dC(π̂K , πE) ≤ 1
K

(
D(λ∗||ΦTd0)

η + H(d∗||d0)
α +C

∑
k

√
ϵk +

∑
k ϵk

)
+ ε.

By Theorem 1, whenever the policy evaluation errors εk, as well as the estimation error ε can be
kept small, Algorithm 1 ouputs a policy π̂K with small suboptimality gap ρctrue(π̂K) − ρctrue(πE).
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Figure 1: Online IL Experiments. We show the total returns vs the number of env steps.

Notably, there is no direct dependence on the size of the state space or the dimension of the feature
space. In the ideal case, where εk = 0 for all k, the convergence rate is O(1/K). The provided error
propagation analysis still holds with general function approximation, i.e., in the context of deep RL.
Indeed, by choosing Φ = I, Assumption 1 is trivially satisfied and the θ variable in the objective
Gk is replaced by a Q-function. In practice, the estimation error ε can be made arbitrary small,
by increasing the number of expert demonstrations nE. Moreover, the next theorem ensures that
under Assumptions 1 and 2 the biased stochastic gradient ascent (BSGA) subroutine has sublinear
convergence rate.
Theorem 2. Let (wk,θk) be the output of the BSGA subroutine in Algorithm 1 for T iterations, with

n(t) ≥ max
(
O
(

γ2mDt
(η+α)2β log Tm

δ

)
,O
(

mt
(η+α)2β log Tm

δ

))
sample transitions, and learning rates

βt = O( 1√
t
). Then, ϵk = Gk(w

⋆
k,θ

⋆
k)− Gk(wk,θk) ≤ O(max{η,1}mD

β
√
T

), with probability 1− δ.

Corollary 1 (Resource guarantees). Choose η = α = 1 and let K = Ω
(
ϵ−1
)
, T = Ω

(
ϵ−4
)
. Then

for Ω (KT ) = Ω
(
ϵ−5
)

sample transitions, Ω
(
ε−2
)

expert trajectories and approximately solving
Ω
(
ϵ−1
)

concave maximization problems, we can ensure dC(π̂, πE) ≤ O(ϵ+ε), with high probability.

Offline Setting. Finally, we notice that using Φ⊺µπE
as the reference distribution for the relative

entropy we can obtain an offline algorithm that does not require environment interactions. By
reinterpreting smoothing [82] as one step of proximal point, and using similar arguments as in the
proof of Theorem 1, we can provide similar theoretical guarantees for the offline setting. The formal
statement of the theoretical result as well as the optimization of the empirical policy evaluation
objective are presented in Appendix J (see Theorems 4 and 6).

5 Experiments

In this section, we demonstrate that our approach achieves convincing empirical performance in both
online and offline IL settings on several environments.1 The precise setting is detailed in Appendix L.

Online Setting. We first present results in various tabular environments where we can implement
our algorithm without any practical relaxation outperforming GAIL [51], AIRL [38] and IQ-Learn
[40]. Results are given in Figure 1. Good performance but inferior to IQ-Learn is observed also
for continuous states environments (CartPole and Acrobot) where we used neural networks function
approximation.

Offline Setting. Figures 2a to 2c shows that our method is competitive with the state-of-the-art
offline IL methods IQLearn [40] and AVRIL [25] that recently showed performances superior to
other methods like [54][64]. We also tried our algorithm in the complex image-based Pong task from
the Atari suite. Figure 2d shows that the algorithm reaches the expert level after observing 2e5 expert
samples. We did not find AVRIL competitive in this setting, and skip it for brevity. In these settings,
we verified that the algorithmic performance is convincing even for costs parameterized by neural
networks.

Continuous control experiments. We attain the expert performance also in 2 MuJoCo environments:
Ant, HalfCheetah, Hopper, and Walker (see Figures 2e to 2h). The additional difficulty in
implementing the algorithm in continuous control experiments is that the analytical form of the policy

1The code is available at the following link https://github.com/lviano/P2IL.
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improvement step is no longer computationally tractable because this would require to compute an
integral over the continuous action space. Therefore, we approximated this update using the Soft
Actor Critic (SAC) [44] algorithm. SAC requires environment samples making the algorithm online.
The good empirical result opens the question of analyzing policy improvement errors as in [41].
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Figure 2: Neural function approximation experiments. Figures 2a to 2c show the total returns vs
the number of expert trajectories. Figures 2e to 2h show the total returns vs the number of env steps.
Figure 2d shows the total return vs the number of expert state-action pairs.

Recovered Costs. A unique algorithmic feature of the proposed methodology is that we can explicitly
recover a cost along with the Q-function without requiring adversarial training. In Figure 3, we
visualize our recovered costs in a simple 5x5 Gridworld. Most importantly, we verify that the
recovered costs induce nearly optimal policies w.r.t. the unknown true cost function. Compared to
IQ-Learn [40], we do not require knowledge or further interaction with the environment. Therefore,
the recovered cost functions show promising transfer capability to new dynamics.
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Figure 3: Recovered Costs in Gridworld. Comparison between the true cost ctrue and the cost
cK recovered by P2IL. We notice that the optimal value functions V ⋆

ctrue
and V ⋆

cK
present the same

pattern. Hence, the optimal policy with respect to cK is nearly optimal with respect to ctrue.

Cost Transfer Setting. We experimented with a transfer cost setting on a Gridworld (Figure 4).
We consider two different Gridworld MDP environments, say M and M̃ , with opposite action effects.
This means that action Down in M̃ corresponds to action Left in M and vice versa. Similarly, the
effects of Up and Right are swapped between M̃ and M . We denote by Vπ

M̃,ctrue
(resp. V⋆

M̃,ctrue
)

the value function of policy π (resp. optimal value function) in the MDP environment M̃ with cost
function ctrue. Moreover, we denote by π⋆

M,c the optimal policy in the MDP environment M under
cost function c. Figure (a) gives the corresponding optimal value function. Figure (b) presents the
value function of the expert policy πE = π⋆

M,ctrue
used as target by P2IL. Figure (d) shows the value

function of the learned imitating policy πK from P2IL. Finally, Figure (b) depicts the value function
of the optimal policy π⋆

M̃,cK
for the environment M̃ endowed with the recovered cost function cK by

9



P2IL (with access to samples from M ). We conclude that the policy π⋆
M̃,cK

is optimal in M̃ with

cost ctrue. By contrast, the expert policy πE = π⋆
M,ctrue

used as target by P2IL performs poorly and
as a consequence also the imitating policy πK does so. All in all, we notice that the recovered cost
induces an optimal policy for the new dynamics while the imitating policy fails. Albeit, cost transfer
is successful in this experiment we do not expect this fact to be true in general because we do not
tackle the issue of cost shaping [87].
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Figure 4: Cost Transfer Experiment in Gridworld. We compare the performance of several
policies in the new MDP environment M̃ with cost function ctrue. We notice that the recovered cost
induces an optimal policy for the new dynamics while the imitating policy fails.

6 Discussion and Outlook

In this work, we studied a Proximal Point Imitation Learning (P2IL) algorithm with both theoretical
guarantees and convincing empirical performance. Our methodology is rooted in classical optimiza-
tion tools and the LP approach to MDPs. The most significant merits of P2IL are the following: (i) It
optimizes a convex and smooth logistic Bellman evaluation objective over both cost and Q-functions.
In particular, it avoids instability due to adversarial training and can also recover an explicit cost along
with Q function; (ii) In the context of linear MDPs, it comes with efficient resource guarantees and
error bounds for the suboptimality of the learned policy (Theorem 2 and Corollary 1). In particular,
given poly(1/ε, log(1/δ),m) many samples , it recovers an ε-optimal policy, with probability 1− δ.
Notably, the bound is independent of the size of the state-action space; (iii) Beyond the linear MDP
setting, it can be implemented in a model-free manner, for both online and offline setups, with general
function approximation without losing its theoretical specifications. This is justified by providing an
error propagation analysis (Theorems 1 and 4), guaranteeing that small optimization errors lead to
high-quality output policy; (iv) It enjoys not only strong theoretical guarantees but also favorable
empirical performance. At the same time, our newly introduced methods bring challenges and open
questions. One interesting question is whether one can accelerate the PPM updates and improve
the convergence rate. Another direction for future work is to provide rigorous arguments for the
near-optimality of the recovered cost function. On the practical side, we plan to conduct experiments
in more challenging environments than MuJoCo and Atari. We hope our new techniques will be
useful to future algorithm designers and lay the foundations for overcoming current limitations and
challenges. In Appendix B, we point out in detail a few interesting future directions.
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