
A Definitions

Consider a molecular graph G = (V, E) and its space of possible conformers CG. A conformer is an
assignment V 7→ R3 of each atom to a point in 3D-space, defined up to global rototranslation. For
notational convenience, we suppose there is an ordering of nodes such that we can regard a mapping
as a vector in R3n where n = |V|. Then a conformer C ∈ CG is a set of SE(3)-equivalent vectors
in R3n—that is, CG ∼= R3n/SE(3). This defines the space of conformers in terms of extrinsic (or
Cartesian) coordinates.

An intrinsic (or internal) coordinate is a function over CG—i.e., it is an SE(3)-invariant function
over R3n. There are four types of such coordinates typically considered:

Bond lengths. For (a, b) ∈ E , the bond length lab ∈ [0,∞) is defined as |xa − xb|.
Bond angles. For a, b, c ∈ V such that a, c ∈ N (b), the bond angle αabc ∈ [0, π] is defined by

cosαabc :=
(xc − xb) · (xa − xb)
|xc − xb||xa − xb|

(11)

Chirality. For a ∈ V with 4 neighbors b, c, d, e ∈ N (a), the chirality zabcd ∈ {−1, 1} is defined as

zabcde := sign det

(
1 1 1 1

xb − xa xc − xa xd − xa xe − xa

)
(12)

Similar quantities are defined for atoms with other numbers of neighbors. Chirality is often considered
part of the specification of the molecule, rather than the conformer. See Appendix F.3 for additional
discussion on this point.

Torsion angles. For (b, c) ∈ E , with a choice of reference neighbors a ∈ N (b)\{c}, d ∈ N (c)\{b},
the torsion angle τabcd ∈ [0, 2π) is defined as the dihedral angle between planes abc and bcd:

cos τabcd =
nabc · nbcd
|nabc||nbcd|

sin τabcd =
ubc · (nabc × nbcd)

|ubc||nabc||nbcd|

(13)

where uab = xb − xa and nabc is the normal vector uab × ubc. Note that τabcd = τdcba—i.e., the
dihedral angle is the same for four consecutively bonded atoms regardless of the direction in which
they are considered.

A complete set of intrinsic coordinates of the molecule is a set of such functions (f1, f2, . . .) such
that F (C) = (f1(C), f2(C), . . .) is a bijection. In other words, they fully specify a unique element
of CG without overparameterizing the space. In general there exist many possible such sets for a
given molecular graph. We will not discuss further how to find such sets, as our work focuses on
manipulating molecules in a way that holds fixed all l, α, z and only modifies (a subset of) torsion
angles τ .

As presently stated, the torsion angle about a bond (b, c) ∈ E is ill-defined, as it could be any τabcd
with a ∈ N (b) \ {c}, d ∈ N (c) \ {b}. However, any complete set of intrinsic coordinates needs to
only have at most one such τabcd for each bond (b, c) [Ganea et al., 2021]. Thus, we often refer to the
torsion angle about a bond (bi, ci) as τi when reference neighbors ai, bi are not explicitly stated.

B Propositions

B.1 Torsion update

Given a freely rotatable bond (bi, ci), by definition removing (bi, ci) creates two connected compo-
nents V(bi),V(ci). Then, consider torsion angle τj at a different bond (bj , cj) with neighbor choices
aj ∈ N (bj), dj ∈ N (cj), aj 6= cj , dj 6= bj . Without loss of generality, there are two cases

• Case 1: aj , bj , cj , dj ∈ V(bi)

• Case 2: dj ∈ V(ci) and aj , bj , cj ∈ V(bi)
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Note that in Case 2, cj = bi and dj = ci must hold because there is only one edge between
V(bi),V(ci). With these preliminaries we now restate the proposition:
Proposition 1. Let (bi, ci) be a rotatable bond, let xV(bi) be the positions of atoms on the bi side
of the molecule, and let R(θ, xci) ∈ SE(3) be the rotation by Euler vector θ about xci . Then for
C,C ′ ∈ CG, if τi is any definition of the torsion angle around bond (bi, ci),

τi(C
′) = τi(C) + θ

τj(C
′) = τj(C) ∀j 6= i

if ∃x ∈ C,x′ ∈ C ′.
x′V(bi)

= xV(bi)

x′V(ci)
= R (θ r̂bici , xci) xV(ci)

(14)

where r̂bici = (xci − xbi)/||xci − xbi ||.

Proof. First we show τi(C
′) = τi(C) + θ, for which it suffices to show τi(x

′) = τi(x) + θ. Because
ai, bi ∈ V(bi), x′ai = xai and x′bi = xbi . Since the rotation of xV(ci) is centered at xci , we have x′ci = xci as
well. Now we consider di and u′cd = x′di − xci . By the Rodrigues rotation formula,

u′cd = ucd cos θ +
nbcd
|ubc|

sin θ +
ubc
|ubc|

(
ubc
|ubc|

· ucd
)

(1− cos θ) (15)

Then we have

n′bcd = ubc × u′cd = nbcd cos θ −
(
nbcd ×

ubc
|ubc|

)
sin θ (16)

To obtain |n′bcd|, note that since nbcd ⊥ ubc,∣∣∣∣nbcd × ubc
|ubc|

∣∣∣∣ = |nbcd| (17)

which gives |n′bcd| = |nbcd|. Thus,

cos τ ′i =
nabc · n′bcd
|nabc||nbcd|

=
nabc · nbcd
|nabc||nbcd|

cos θ − nabc · (nbcd × ubc)

|nabc||nbcd||ubc|
sin θ

= cos τi cos θ − sin τi sin θ = cos(τi + θ)

(18)

Similarly,

sin τ ′i =
ubc · (nabc × n′bcd)

|ubc||nabc||nbcd|
=

ubc · (nabc × nbcd)

|ubc||nabc||nbcd|
cos θ − ubc · (nabc × (nbcd × ubc))

|ubc|2|nabc||nbcd|
sin θ

= sin τi cos θ + cos τi sin θ = sin(τi + θ)

(19)

Therefore, τ ′i = τi + θ

Now we show τ ′j = τj for all j 6= i. Consider any such j. For Case 1, x′aj = xaj , x
′
bj

= xbj , x
′
cj = xcj , x

′
dj

=

xdj so clearly τ ′j = τj . For Case 2, x′aj = xaj , x
′
bj

= xbj , x
′
cj = xcj immediately. But because dj = ci, we

also have x′dj = xdj . Thus, τ ′j = τj .

B.2 Parity equivariance

Proposition 2. If p(τ (C) | L(C)) = p(τ (−C) | L(−C)), then for all diffusion times t,

∇τ log pt(τ (C) | L(C)) = −∇τ log pt(τ (−C) | L(−C)) (20)

Proof. From Equation 13 we see that for any torsion τi, we have τi(−C) = −τi(C); therefore τi(−C) =
−τi(C), which we denote τ−. Also denote τ := τ (C), pt(τ ) := pt(τ | L(C)) and p′t(τ−) := pt(τ− |
L(−C)). We claim pt(τ ) = p′t(τ−) for all t. Since the perturbation kernel (equation 3) is parity invariant,

p′t(τ−) =

∫
Tm

p′0(τ ′−)pt|0(τ− | τ ′−) dτ ′−

=

∫
Tm

p0(τ ′)pt|0(τ | τ ′) dτ ′− = pt(τ )

(21)

Next, we have

∇τ log p′t(τ−) =
∂τ−
∂τ
∇τ− log p′t(τ−)

= −∇τ log pt(τ )
(22)

which concludes the proof.
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B.3 Likelihood conversion

Proposition 3. Let x ∈ C(τ , L) be a centered conformer in Euclidean space. Then,

pG(x | L) =
pG(τ | L)

8π2
√

det g
where gαβ =

n∑
k=1

J (k)
α · J (k)

β (23)

where the indices α, β are integers between 1 and m+ 3. For 1 ≤ α ≤ m, J (k)
α is defined as

J
(k)
i = J̃

(k)
i − 1

n

n∑
`=1

J̃
(`)
i with J̃

(`)
i =

{
0 ` ∈ V(bi),
xbi
−xci

||xbi
−xci

|| × (x` − xci) , ` ∈ V(ci),
(24)

and for α ∈ {m+ 1,m+ 2,m+ 3} as

J
(k)
m+1 = xk × x̂, J

(k)
m+2 = xk × ŷ, J

(k)
m+3 = xk × ẑ, (25)

where (bi, ci) is the freely rotatable bond for torsion angle i, V(bi) is the set of all nodes on the same
side of the bond as bi, and x̂, ŷ, ẑ are the unit vectors in the respective directions.

Proof. Let M be (m + 3)-dimensional manifold embedded in 3n-dimensional Euclidean space formed by
the set of all centered conformers with fixed local structures but arbitrary torsion angles and orientation. A
natural set of coordinates for M is qα = {τ1, τ2, . . . , τm, ωx, ωy, ωz}, where τi is the torsion angle at bond i
and ωx, ωy, ωz define the global rotation about the center of mass:

xk = x̃k −
1

n

n∑
`=1

x̃` where x̃` = eΛ(ω)x′k, Λ(ω) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (26)

Here x′k is the position of atom k as determined by the torsion angles, without centering or global rotations, and
ωx, ωy, ωz are rotation about the x, y, and z axis respectively.

Consider the set of covariant basis vectors

Jα =
∂x

∂qα
. (27)

and corresponding the covariant components of the metric tensor,

gαβ = Jα · Jβ =
∂x

∂qα
· ∂x
∂qβ

. (28)

The conversion factor between torsional likelihood and Euclidean likelihood is given by∫ √
detg d3ω, (29)

where
√

detg dm+3q is the invariant volume element onM [Carroll, 2019], and the integration over ω marginal-
izes over the uniform distribution over global rotations. The calculation of Eq. 29 proceeds as follows.

Let the position of the k’th atom be xk, and let the three corresponding components of Jα be J(k)
α . For

1 ≤ i ≤ m, J(k)
i is given by

J
(k)
i =

∂

∂τi

(
x̃k −

1

n

n∑
`=1

x̃`

)
= J̃

(k)
i − 1

n

n∑
`=1

J̃
(`)
i (30)

where J̃(k)
i := ∂x̃k/∂τi is the displacement of atom k upon an infinitesmal change in the torsion angle τi,

without considering the change in the center of mass. Clearly J̃(bi)
i = J̃

(ci)
i = 0 because neither bi nor ci

itself is displaced; furthermore, all atoms on the b side of torsioning bond are not displaced, so J(k)
i = 0 for all

k ∈ N (bi). The remaining atoms, inN (ci), are rotated about the axis of the (bi, ci) bond. The displacement per
infinitesimal ∂τi is given by the cross product of the unit normal along the rotation axis, (x̃ci−x̃bi)/||x̃ci − x̃bi ||,
with the displacement from rotation axis, x̃k − x̃bi . This cross product yields J(k)

α in Eq. 24, where the tildes
are dropped as relative positions do not depend on center of mass. For α ∈ {m+ 1,m+ 2,m+ 3}, a similar
consideration of the cross product with the rotation axis yields Eq. 25. Finally, since none of the components of
the metric tensor depend explicitly on ω, the integration over ω in Eq. 29 is trivial and yields the volume over
SO(3) of 8π2 [Chirikjian, 2011], proving the proposition.
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C Training and inference procedures

Algorithms 2 and 3 summarize, respectively, the training and inference procedures used for torsional
diffusion. In practice, during training, we limit KG to 30 i.e. we only consider the first 30 conformers
found by CREST (typically those with the largest Boltzmann weight). Moreover, molecules are
batched and an Adam optimizer with a learning rate scheduler is used for optimization. For inference,
to fairly compare with other methods from the literature, we follow Ganea et al. [2021] and set K to
be twice the number of conformers returned by CREST.

Algorithm 2: Training procedure
Input: molecules [G0, ..., GN ] each with true conformers [CG,1, ...CG,KG

], learning rate α
Output: trained score model sθ
conformer matching process for each G to get [ĈG,1, ...ĈG,KG

];
for epoch← 1 to epochmax do

for G in [G0, ..., GN ] do
sample t ∈ [0, 1] and Ĉ ∈ [ĈG,1, ...ĈG,KG

];
sample ∆τ from wrapped normal pt|0(· | 0) with σ = σ1−t

min σ
t
max;

apply ∆τ to Ĉ;
predict δτ = sθ,G(Ĉ, t);
update θ ← θ − α∇θ‖δτ −∇∆τpt|0(∆τ | 0)‖2;

Algorithm 3: Inference procedure
Input: molecular graph G, number conformers K, number steps N
Output: predicted conformers [C1, ...CK ]
generate local structures by obtaining conformers [C1, ...CK ] from RDKit;
for C in [C1, ...CK ] do

sample ∆τ ∼ U [0, 2π]m and apply to C to randomize torsion angles;
for n← N to 1 do

let t = n/N, g(t) = σ1−t
min σ

t
max

√
2 ln(σmax/σmin);

predict δτ = sθ,G(Ĉ, t);
draw z from wrapped normal with σ2 = 1/N ;
set ∆τ = (g2(t)/N) δτ + g(t) z;
apply ∆τ to C;

D Score network architecture

Overview To perform the torsion score prediction under these symmetry constraints we design an
architecture formed by three components: an embedding layer, a series of K interaction layers and a
pseudotorque layer. The pseudotorque layer produces pseudoscalar torsion scores δτ := ∂ log p/∂τ
for every rotatable bond. Following the notation from Thomas et al. [2018] and Batzner et al. [2022],
we represent the node representations as V (k,l,p)

acm a dictionary with keys the layer k, rotation order l
and parity p that contains tensors with shapes [|V|, nl, 2l+1] corresponding to the indices of the node,
channel and representation respectively. We use the e3nn library [Geiger et al., 2022] to implement
our architecture.

Embedding layer In the embedding layer, we build a radius graph (V, Ermax) around each atom
on top of the original molecular graph and generate initial scalar embeddings for nodes V (0,0,1)

a and
edges eab combining chemical properties, sinusoidal embeddings of time φ(t) [Vaswani et al., 2017]
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Interaction layers4 ⨉

𝑉𝑎𝑡𝑜𝑚 = (𝑉(",$) ∊ ℝ𝑐, 𝑉(&,$) ∊ ℝ3𝑐, 𝑉(',$) ∊ ℝ5𝑐) Δτ for each bond

Pseudotorque layer

∑ Y(rpos) ⊗ Vneighbor⊗ Y2(rbond)

for each atom with 𝑝 ∈ [−1, 1]

Vneighbor

rpos
rbond

Figure 4: Overview of the architecture and visual intuition of the pseudotorque layer.

and, for the edges, a radial basis function representation of their length µ(rab) [Schütt et al., 2017]:

Ermax
= E t {(a, b) | rab < rmax}

eab = Υ(e)(feab||µ(rab)||φ(t)) ∀(a, b) ∈ Ermax

V (0,0,1)
a = Υ(v)(fa||φ(t)) ∀a ∈ V

(31)

where Υ(e) and Υ(v) are learnable two-layers MLPs, rab is the Euclidean distance between atoms a
and b, rmax = 5 Å is the distance cutoff, fa are the chemical features of atom a, fab are the chemical
features of bond (a, b) if it was part of E and 0 otherwise.

The node and edge chemical features fa and fab are constructed as in Ganea et al. [2021]. Briefly,
the node features include atom identity, atomic number, aromaticity, degree, hybridization, implicit
valence, formal charge, ring membership, and ring size, constituting a 74-dimensional vector for
GEOM-DRUGS and 44-dimensional for QM9 (due to fewer atom types). The edge features are a 4
dimensional one-hot encoding of the bond type.

Interaction layers The interaction layers are based on E(3)NN [Geiger et al., 2022] convolutional
layers. At each layer, for every pair of nodes in the graph, we construct messages using tensor products
of the current irreducible representation of each node with the spherical harmonic representations of
the normalized edge vector. These messages are themselves irreducible representations, which are
weighted channel-wise by a scalar function of the current scalar representations of the two nodes and
the edge and aggregated with Clebsch-Gordan coefficients.

At every layer k, for every node a, rotation order lo, and output channel c′:

V
(k,lo,po)

ac′mo
=

∑
lf ,li,pi

∑
mf ,mi

C
(lo,mo)

(li,mi)(lf ,mf )

1

|Na|
∑
b∈Na

∑
c

ψ
(k,lo,lf ,li,pi)

abc Y
(lf )
mf (r̂ab) V

(k−1,li,pi)
bcmi

with ψ
(k,lo,lf ,li,pi)

abc = Ψ
(k,lo,lf ,li,pi)
c (eab||V (k−1,0,1)

a ||V (k−1,0,1)
b )

(32)

where the outer sum is over values of lf , li, pi such that |li − lf | ≤ lo ≤ li + lf and (−1)lf pi = po,
C indicates the Clebsch-Gordan coefficients [Thomas et al., 2018], Na = {b | (a, b) ∈ Emax} the
neighborhood of a and Y the spherical harmonics. The rotational order of the nodes representations
lo and li and of the spherical harmonics of the edges (lf ) are restricted to be at most 2. All the
learnable weights are contained in Ψ, a dictionary of MLPs that compute per-channel weights based
on the edge embeddings and scalar features of the outgoing and incoming node.

Pseudotorque layer The final part of our architecture is a pseudotorque layer that predicts a
pseudoscalar score δτ for each rotatable bond from the per-node outputs of the interaction layers.
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For every rotatable bond, we construct a tensor-valued filter, centered on the bond, from the tensor
product of the spherical harmonics with a l = 2 representation of the bond axis. Since the parity of the
l = 2 spherical harmonic is even, this representation does not require a choice of bond direction. The
filter is then used to convolve with the representations of every neighbor on a radius graph, and the
products which produce pseudoscalars are passed through odd-function (i.e., with tanh nonlinearity
and no bias) dense layers (not shown in equation 33) to produce a single prediction.

For all rotatable bonds g = (g0, g1) ∈ Erot and b ∈ V , let rgb and r̂gb be the magnitude and direction
of the vector connecting the center of bond g and b.

Eτ = {(g, b) | g ∈ Er, b ∈ V, rgb < rmax} egb = Υ(τ)(µ(rgb))

T
(lo,po)
gbmo

=
∑

mg,mr,lr:po=(−1)lr

C
(lo,mo)
(2,mg)(lr,mr)Y

(2)
mf

(r̂g) Y
(lr)
mr

(r̂gb)

δτg =
∑

l,pf ,pi:pfpi=−1

∑
mo,mi

C
(0,0)
(l,mf )(l,mi)

1

|Ng|
∑
b∈Ng

∑
c

γ
(l,pi)
gcb T

(l,pf )
gbmf

V
(K,l,pi)
bcmi

with γ(l,pi)
gcb = Γ(l,pi)

c (egb||V (K,0,1)
b ||V (K,0,1)

g0 + V (K,0,1)
g1 )

(33)

where Υ(τ) and Γ are MLPs with learnable parameters and Ng = {b | (g, b) ∈ Eτ}.

E Conformer matching

The conformer matching procedure, summarised in Algorithm 4, proceeds as follows. For a molecule
with K conformers, we first generate K random local structure estimates L̂ from RDKit. To match
with the ground truth local structures, we compute the cost of matching each true conformer C with
each estimate L̂ (i.e. a K ×K cost matrix), where the cost is the best RMSD that can be achieved
by modifying the torsions of the RDKit conformer with local structure L̂ to match the ground truth
conformer C. Note that in practice, we compute an upper bound to this optimal RMSD using the fast
von Mises torsion matching procedure proposed by Stärk et al. [2022].

We then find an optimal matching of true conformers C to local structure estimates L̂ by solving the
linear sum assignment problem over the approximate cost matrix [Crouse, 2016]. Finally, for each
matched pair, we find the true optimal Ĉ by running a differential evolution optimization procedure
over the torsion angles [Méndez-Lucio et al., 2021]. The complete assignment resulting from the
linear sum solution guarantees that there is no distributional shift in the local structures seen during
training and inference.

Algorithm 4: Conformer matching
Input: true conformers of G [C1, ...CK ]

Output: approximate conformers for training [Ĉ1, ...ĈK ]

generate local structures [L̂1, ...L̂K ] with RDKit;
for (i, j) in [1,K]× [1,K] do

Ctemp = von_Mises_matching(Ci, L̂j);
cost[i,j] = RMSD(Ci, Ctemp);

assignment = linear_sum_assignment(cost);
for i← 1 to K do

j = assignment[i];
Ĉi = differential_evolution(Ci, L̂j , RMSD);

Table 5 shows the average RMSD between a ground truth conformer Ci and its matched conformer
Ĉi. The average RMSD of 0.324 Å obtained via conformer matching provides an approximate lower
bound on the achievable AMR performance for methods that do not change the local structure and
take those from RDKit (further discussion in Appendix F.1).

20



Table 5: Average RMSD(ci, ĉi) achieved by different variants of conformer matching. "Original
RDKit" refers to the RMSD between a random RDKit conformer and a ground truth conformer
without any optimization. In "Von Mises optimization" and "Differential evolution," the torsions
of the RDKit conformer are adjusted using the respective procedures, but the pairing of RDKit and
ground truth conformers is still random. In "Conformer matching," the cost-minimizing assignment
prior to differential evolution provides a 15% improvement in average RMSD. The results are shown
for a random 300-molecule subset of GEOM-DRUGS.

Matching method RMSD (Å)

Original RDKit 1.448
Von Mises optimization 0.728
Differential evolution 0.379
Conformer matching 0.324

F Additional discussion

F.1 RDKit local structures

In this section, we provide empirical justification for the claim that cheminformatics methods like
RDKit already provide accurate local structures. It is well known in chemistry that bond lengths and
angles take on a very narrow range of values due to strong energetic constraints. However, it is not
trivial to empirically evaluate the claim due to the difficulty in defining a distance measure between
a pair of local structures. In this section, we will employ two sets of observations: marginal error
distributions and matched conformer RMSD.
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Figure 5: Histogram of the errors in 15000 predicted bond lengths and angles from randomly sampled
molecules in GEOM-DRUGS and GEOM-QM9.

Marginal error distributions We examine the distribution of errors of the bond lengths and angles
in a random RDKit conformer relative to the corresponding lengths and angles in a random CREST
conformer (Figure 5). The distributions are narrow and uni-modal distributions around zero, with a
RMSE of 0.03 Å for bond lengths and 4.1° for bond angles on GEOM-DRUGS. Comparing DRUGS
and QM9, the error distribution does not depend on the size of the molecule. Although it is difficult to
determine how these variations will compound or compensate for each other in the global conformer
structure, the analysis demonstrates that bond lengths and angles have little flexibility (i.e., no strong
variability among conformers) and are accurately predicted by RDKit.

Matched conformer RMSD We can more rigorously analyze the quality of a local structure L̂with
respect to a given reference conformer C by computing the minimum RMSD that can be obtained
by combining L̂ with optimal torsion angles. That is, we consider the RMSD distance of C to the
closest point on the manifold of possible conformers with local structure L̂: RMSDmin(C, L̂) :=

minτ RMSD(C, Ĉ) where Ĉ = (L̂, τ).
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Conveniently, Ĉ is precisely the output of the differential evolution in Appendix E. Thus, the average
RSMD reported in the last row of Table 5 is the expected RMSDmin of an optimal assignment of
RDKit local structures to ground-truth conformers. This distance—0.324 Å on GEOM-DRUGS—is
significantly smaller than the error of the current state-of-the-art conformer generation methods.
Further, it is only slightly larger than the average RMSDmin of 0.284 Å resulting from matching a
ground truth conformer to the local structure of another randomly chosen ground truth conformer,
which provides a measure of the variability among ground truth local structures. These observations
support the claim that the accuracy of existing approaches on drug-like molecules can be significantly
improved via better conditional sampling of torsion angles.

F.2 Torsion updates

In the main text, we viewed updates ∆τ as changes to a torsion angle τ , and asserted that the same
update applied to any torsion angle at a given bond (i.e., with any choice of reference neighbors)
results in the same conformer. Given this, a potentially more intuitive presentation is to define ∆τ for
a bond as a relative rotation around that bond, without reference to any torsion angle.

Consider a rotatable bond (b, c) and the connected components V(b),V(c) formed by removing the
bond. Let r̂bc = (xc − xb)/|xc − xb| and similarly r̂cb = −r̂bc. Because the bond is freely rotatable,
consider rotations of each side of the molecule around the bond axis given by r̂bc. Specifically, let
V(b) be rotated by some Euler vector θb := θbr̂bc around xb, and V(c) by θc := θcr̂bc around xc.
Then the rotations induce a torsion update ∆τ if θc − θb = ∆τ ; or equivalently

∆τ = (θc − θb) · r̂bc (34)

The expression remains unchanged if we swap the indices b, c; thus there is no sign ambiguity. Some
less formal but possibly more intuitive restatements of the sign convention are:

• Looking down a bond, a positive update is given by a CCW rotation of the nearer side; or a
CW rotation of the further side

• For a viewer positioned in the middle of the bond, a positive update is given by the CW
rotation of any one side

• A positive update is given by Euler vectors that point outwards from the bond

These are illustrated in Figure 6.

Since the Euler vector θ is a pseudovector that remains unchanged under parity inversion, while r̂ is
a normal vector, it is apparent that ∆τ—and any model predicting ∆τ—must be a pseudoscalar.

Because the update is determined by a relative rotation, it is not necessary to specify which side to
rotate. That is, the same torsion update can be accomplished by rotating only one side, both sides in
opposite directions, or both sides in the same direction. In practical implementation, we rotate the
side of the molecule with fewer atoms, and keep the other side fixed.

Figure 6: Torsion updates as relative rotations, with the rotations shown with curved red arrows and
Euler vectors shown with straight green arrows. The second row emphasizes that the sign convention
and update depend only on the relative motion of the two sides.
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F.3 Chemical isomerism

We have defined a molecule in terms of its bond connectivity, i.e., as a graph G = (V, E) with atoms
V and E . In chemistry, however, it is universal to consider molecules with the same connectivity, but
whose conformers cannot interconvert, as different molecules called stereoisomers. In our formalism,
stereoisomers correspond to subsets of the space of conformers CG for some molecular graph G.
Many types of stereoisomerism exist, but the two most important are:

• Chirality. Conformers with distinct values of chirality tags {zi}—one for each chiral atom
meeting certain criteria—are considered different molecules.

• E/Z isomerism, also called cis/trans isomerism. For each double bond meeting certain
criteria, the space [0, 2π) is partitioned into two halves, such that conformers are considered
different molecules depending on the value of the torsion angle.

These are not meant to be formal definitions, and we refer to standard chemistry texts for a more
detailed treatment. For our purposes, the key implication is that conformer generation requires
generating conformers consistent with a given stereoisomer. For a molecular graph G with k relevant
chiral centers and l relevant double bonds, there are 2k+l possible stereoisomers, corresponding to
the partition of CG into 2k+l disjoint subsets—only one of which corresponds to the molecule under
consideration.

Torsional diffusion automatically handles chirality. Because we have considered chirality to be part
of the local structure, it is drawn from the cheminformatics package RDKit, which is given the
full identification of the stereoisomer along with the molecular graph, and is not modified by the
torsional diffusion. Hence, our method always generates conformers with the correct chirality at each
chiral center. On the other hand, GeoDiff does not consider chirality at all, while GeoMol generates
molecules without any chirality constraints, and merely inverts the chiral centers that were generated
incorrectly.

E/Z isomerism is significantly trickier, as it places a constraint on the torsion angles at double bonds,
which are considered freely rotatable in our framework. Presently, torsional diffusion does not attempt
to capture E/Z isomerism. One possible way of doing so is to augment the molecular graph with
edges of a special type, and we leave such augmentation to future work. GeoDiff and GeoMol also
do not attempt to treat E/Z isomerism.

More generally, while the abstract view of molecules as graphs has enabled rapid advances in molec-
ular machine learning, stereoisomerism shows that it is clearly a simplification. As stereoisomers can
have significantly different chemical properties and bioactivities, a more complete view of molecular
space will be essential for further advances in molecular machine learning.

F.4 Limitations of torsional diffusion

As demonstrated in Section 4, torsional diffusion significantly improves the accuracy and reduces
the denoising runtime for conformer generation. However, torsional diffusion also has a number of
limitations that we will discuss in this section.

Conformer generation The first clear limitation is that the error that torsional diffusion can achieve
is lower bounded by the quality of the local structure from the selected cheminformatics method. As
discussed in Appendix F.1, this corresponds to the mean RMSD obtained after conformer matching,
which is 0.324 Å with RDKit local structures on DRUGS. Moreover, due to the the local structure
distributional shift discussed in Section 4.1, conformer matching (or another method bridging the
shift) is required to generate the training set. However, the resulting conformers are not the minima
of the (unconditional or even conditional) potential energy function. Thus, the learning task becomes
less physically interpretable and potentially more difficult; empirically we observe this clearly in the
training and validation score-matching losses. We leave to future work the exploration of relaxations
of the rigid local structures assumption in a way that would still leverage the predominance of
torsional flexibility in molecular structures, while at the same time allowing some flexibility in the
independent components.
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Rings The largest source of flexibility in molecular conformations that is not directly accounted
for by torsional diffusion is the variability in ring conformations. Since the torsion angles at bonds
inside cycles cannot be independently varied, our framework treats them as part of the local structure.
Therefore, torsional diffusion relies on the local structure sampler pG(L) to accurately model cycle
conformations. Although this is true for a large number of relatively small rings (especially aromatic
ones) present in many drug-like molecules, it is less true for puckered rings, fused rings, and larger
cycles. In particular, torsional diffusion does not address the longstanding difficulty that existing
cheminformatics methods have with macrocycles—rings with 12 or more atoms that have found
several applications in drug discovery [Driggers et al., 2008]. We hope, however, that the idea of
restricting diffusion processes to the main sources of flexibility will motivate future work to define
diffusion processes over cycles conformations combined with free torsion angles.

Boltzmann generation With Boltzmann generators we are typically interested in sampling the
Boltzmann distribution over the entire (Euclidean) conformational space pG(C). However, the
procedure detailed in Section 3.6 generates (importance-weighted) samples from the Boltzmann
distribution conditioned on a given local structure pG(C | L). To importance sample from the
full Boltzmann distribution pG(C), one would need a model pG(L) over local structures that also
provides exact likelihoods. This is not the case with RDKit or, to the best of our knowledge, other
existing models, and therefore an interesting avenue for future work.

Proteins As protein conformations are often described with backbone dihedral (i.e., torsion angles),
it is natural to consider whether torsional diffusion may be useful for modeling protein flexibility.
However, we do not believe that the direct application of the framework to proteins or other macro-
molecules is very promising. Small changes in torsional coordinates cause large displacements
in distant regions of the molecule, so the influence on a torsional score is not limited to the local
neighborhood of the bond. For small molecules—even the ones in GEOM-XL—this is not a problem
because of their limited spatial and graph theoretic diameters. In proteins, however, the graph diame-
ter is 3 times the sequence length and can easily reach over 1000; and interactions between distant
residues are extremely important in determining the structure and constraining flexibility. Although
torsional diffusion may not be the right framework for modeling proteins, we believe that similar
ideas (i.e., well-chosen diffusions over the flexible degrees of freedom) could be useful for generative
models of protein structure and is a promising avenue of work.

G Experimental details

G.1 Dataset details

Splits We follow the data processing and splits from Ganea et al. [2021]. The splits are random
with train/validation/test of 243473/30433/1000 for GEOM-DRUGS and 106586/13323/1000 for
GEOM-QM9. GEOM-XL consists of only a test split (since we do not train on it), which consists of
all 102 molecules in the MoleculeNet dataset with at least 100 atoms. For all splits, the molecules
whose CREST conformers all have a canonical SMILES different from the SMILES of the molecule
(meaning a reacted conformer), or that cannot be handled by RDKit, are filtered out.

Dataset statistics As can be seen in Figure 7, the datasets differ significantly in molecule size
as measured by number of atoms or rotatable bonds. Particularly significant is the domain shift
between DRUGS and XL, which we leverage in our experiments by testing how well models trained
on DRUGS generalize to XL.

Boltzmann generator The torsional Boltzmann generator described in Section 4.5 is trained and
tested on molecules from GEOM-DRUGS with 3–7 rotatable bonds. The training (validation) set
consists of 10000 (400) such randomly selected molecules from the DRUGS training (validation) set.
The test set consists of all the 453 molecules present in the DRUGS test set with 3–7 rotatable bonds.
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Figure 7: Statistics about the atoms and rotatable bonds counts in the three different datasets.

G.2 Training and tuning details

Conformer generation For conformer ensemble generation on GEOM-DRUGS, the torsional
diffusion models were trained on NVIDIA RTX A6000 GPUs for 250 epochs with the Adam
optimizer (taking from 4 to 11 days on a single GPU). The hyperparameters tuned on the validation
set were (in bold the value that was chosen): initial learning rate (0.0003, 0.001, 0.003), learning
rate scheduler patience (5, 20), number of layers (2, 4, 6), maximum representation order (1st, 2nd),
rmax (5Å, 7Å, 10Å) and batch norm (True, False). All the other default hyperparameters used can
be found in the attached code. For GEOM-XL the same trained model was used; for GEOM-QM9 a
new model with the same hyperparameters was trained.

Torsional Boltzmann generators We start from a torsional diffusion model pretrained on GEOM-
DRUGS, and train for 250 epochs (6-9 days on a single GPU). A separate model is trained for every
temperature. The resampling procedure with 5 steps is run for every molecule every max(5, ESS)
epochs, where ESS is computed for the current set of 32 samples. The only hyperparameter tuned
(at temperature 300K) is σmin, the noise level at which to stop the reverse diffusion process.

We further improve the training procedure of torsional Boltzmann generators by implementing
annealed training. The Boltzmann generator for some temperature T is trained at epoch k by using
the Boltzmann distribution at temperature T ′ = T + (3000− T )/k as the target distribution for that
epoch. Intuitively, this trains the model at the start with a smoother distribution that is easier to learn,
which gradually transforms into the desired distribution.

G.3 Evaluation details

Ensemble RMSD As evaluation metrics for conformer generation, Ganea et al. [2021] and fol-
lowing works have used the so-called Average Minimum RMSD (AMR) and Coverage (COV) for
Precision (P) and Recall (R) measured when generating twice as many conformers as provided by
CREST. For K = 2L let {C∗l }l∈[1,L] and {Ck}k∈[1,K] be respectively the sets of ground truth and
generated conformers:

COV-R :=
1

L

∣∣∣∣{l ∈ [1..L] : ∃k ∈ [1..K],RMSD(Ck, C
∗
l ) < δ

∣∣∣∣
AMR-R :=

1

L

∑
l∈[1..L]

min
k∈[1..K]

RMSD(Ck, C
∗
l )

(35)

where δ is the coverage threshold. The precision metrics are obtained by swapping ground truth and
generated conformers.

In the XL dataset, due to the size of the molecules, we compute the RMSDs without testing all
possible symmetries of the molecules, therefore the obtained RMSDs are an upper bound, which we
find to be very close in practice to the permutation-aware RSMDs.
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Runtime evaluation We benchmark the methods on CPU (Intel i9-9920X) to enable comparison
with RDKit. The number of threads for RDKit, numpy, and torch is set to 8. We select 10 molecules
at random from the GEOM-DRUGS test set and generate 8 conformers per molecule using each
method. Script loading and model loading times are not included in the reported values.

Boltzmann generator To evaluate how well the torsional Boltzmann generator and the AIS base-
lines sample from the conditional Boltzmann distribution, we report their median effective sample
size (ESS) [Kish, 1965] given the importance sampling weights wi of 32 samples for each molecule:

ESS =

(∑32
i=1 wi

)2∑32
i=1 w

2
i

(36)

This approximates the number of independent samples that would be needed from the target Boltz-
mann distribution to obtain an estimate with the same variance as the one obtained with the importance-
weighted samples.

For the baseline annealed importance samplers, the transition kernel is a single Metropolis-Hastings
step with the wrapped normal distributions on Tm as the proposal. We run with a range of kernel
variances: 0.25, 0.5, 0.3, 0.5, 0.75, 1, 1.5.2; and report the best result. We use an exponential an-
nealing schedule; i.e., pn ∝ p1−n/N

0 p
n/N
N where p0 is the uniform distribution and pN is the target

Boltzmann density.

H Additional results

Performance vs size Figure 8 shows the performance of different models as a function of the
number of rotatable bonds. Molecules with more rotatable bonds are more flexible and are generally
larger; it is therefore expected that the RMSD error will increase with the number of bonds. With
very few rotatable bonds, the error of torsional diffusion depends mostly on the quality of the local
structures it was given, and therefore it has a similar error as RDKit. However, as the number of
torsion angles increases, torsional diffusion deteriorates more slowly than other methods.

The trend continues with the very large molecules in GEOM-XL (average 136 atoms and 32 rotatable
bonds). These not only are larger and more flexible, but—for machine learning models trained on
GEOM-DRUGS—are also out of distribution. As shown in Table 6, on GEOM-XL GeoMol only
performs marginally better than RDKit, while torsional diffusion reduces RDKit AMR by 30% on
recall and 12% on precision. These results can very likely be improved by training and tuning the
torsional diffusion model on larger molecules.
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Figure 8: Average minimum RMSD (AMR) for recall (left) and precision (right) of the different
conformer generation methods for molecules with different number of rotatable bonds in GEOM-
DRUGS. The background shows the distribution of the number of rotatable bonds.
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Table 6: Performance of various methods on the GEOM-XL dataset.

AMR-R ↓ AMR-P ↓
Model Mean Med Mean Med

RDKit 2.92 2.62 3.35 3.15
GeoMol 2.47 2.39 3.30 3.15
Torsional Diffusion 2.05 1.86 2.94 2.78

Table 7: Performance of various methods on the GEOM-QM9 dataset test-set (δ = 0.5Å). Again
GeoDiff was retrained on the splits from Ganea et al. [2021].

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Method Mean Med Mean Med Mean Med Mean Med

RDKit 85.1 100.0 0.235 0.199 86.8 100.0 0.232 0.205
OMEGA 85.5 100.0 0.177 0.126 82.9 100.0 0.224 0.186
GeoMol 91.5 100.0 0.225 0.193 86.7 100.0 0.270 0.241
GeoDiff 76.5 100.0 0.297 0.229 50.0 33.5 0.524 0.510

Torsional diffusion 92.8 100.0 0.178 0.147 92.7 100.0 0.221 0.195

Small molecules We also train and evaluate our model on the small molecules from GEOM-QM9
and report the performance in Table 7. For these smaller molecules, cheminformatics methods already
do very well and, given the very little flexibility and few rotatable bonds present, the accuracy of local
structure significantly impacts the performance of torsional diffusion. RDKit achieves a mean recall
AMR just over 0.23Å, while torsional diffusion based on RDKit local structures results in a mean
recall AMR of 0.178Å. This is already very close lower bound of 0.17Å that can be achieved with
RDKit local structures (as approximately calculated by conformer matching). Torsional diffusion
does significantly better than other ML methods, but is only on par with or slightly worse than
OMEGA, which, evidently, has a better local structures for these small molecules.

Ablation experiments In Table 8 we present a set of ablation studies to evaluate the importance of
different components of the proposed torsional diffusion method:

1. Baseline refers to the model described and tested throughout the paper.
2. Probability flow ODE refers to using the ODE formulation of the reverse diffusion process

(not an ablation, strictly speaking). As expected, it obtains similar results to the baseline
SDE formulation.

3. Only D.E. matching refers to a model trained on conformers obtained by a random assign-
ment of RDKit local structures to ground truth conformers (without first doing an optimal
assignment as in Appendix E); this performs only marginally worse than full conformer
matching.

4. First order irreps refers to the same model but with node irreducible representations kept
only until order ` = 1 instead of ` = 2; this worsens the average error by about 5%, but
results in a 41% runtime speed-up.

5. Train on ground truth L refers to a model trained directly on the ground truth conformers
without conformer matching but tested (as always) on RDKit local structures; although the
training and validation score matching loss of this model is significantly lower, its inference
performance reflects the detrimental effect of the local structure distributional shift.

6. No parity equivariance refers to a model whose outputs are parity invariant instead of parity
equivariant; the model cannot distinguish a molecule from its mirror image and fails to learn,
resulting in performance on par with a random baseline.

7. Random τ refers to a random baseline using RDKit local structures and uniformly random
torsion angles.
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Table 8: Ablation studies with ensemble RMSD on GEOM-DRUGS. Refer to the text in the Appendix
for an explanation of each entry. As usual, we compute Coverage with δ = 0.75 Å.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Method Mean Med Mean Med Mean Med Mean Med

Baseline 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
Probability flow ODE 73.1 80.4 0.577 0.557 55.3 55.7 0.779 0.737
Only D.E. matching 72.5 81.1 0.588 0.569 53.8 56.1 0.794 0.749
First order irreps 70.1 77.9 0.605 0.589 51.4 51.4 0.817 0.783
Train on ground truth L 34.8 22.4 0.920 0.909 22.3 7.8 1.182 1.136
No parity equivariance 30.5 12.5 0.928 0.929 17.9 3.9 1.234 1.217

Random τ 30.9 13.2 0.922 0.923 18.2 4.0 1.228 1.217

Table 9: Ensemble RMSD results on GEOM-DRUGS for varying number of diffusion steps. 20 steps
were used for all results reported elsewhere. As usual, we compute Coverage with δ = 0.75 Å.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Steps Mean Med Mean Med Mean Med Mean Med

3 42.9 33.8 0.820 0.821 24.1 11.1 1.116 1.100
5 58.9 63.6 0.698 0.685 35.8 26.6 0.979 0.963
10 70.6 78.8 0.600 0.580 50.2 48.3 0.827 0.791
20 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
50 73.1 80.4 0.578 0.557 57.6 60.7 0.753 0.699

Table 10: Median absolute error of generated v.s. ground truth ensemble properties with and without
relaxation. E,∆ε, Emin in kcal/mol, µ in debye.

Without relaxation With relaxation
Method E µ ∆ε Emin E µ ∆ε Emin

RDKit 39.08 1.40 5.04 39.14 0.81 0.52 0.75 1.16
OMEGA 16.47 0.78 3.25 16.45 0.68 0.66 0.68 0.69
GeoMol 43.27 1.22 7.36 43.68 0.42 0.34 0.59 0.40
GeoDiff 18.82 1.34 4.96 19.43 0.31 0.35 0.89 0.39
Tor. Diff. 36.91 0.92 4.93 36.94 0.22 0.35 0.54 0.13
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Reverse diffusion steps In Table 9 we vary the number of steps used in the reverse diffusion
process and evaluate the ensemble RMSD results on GEOM-DRUGS. We find that torsional diffusion
is remarkably parsimonious in terms of number of steps required: the majority of gain in performance
over prior diffusion-based methods is attained with only 10 steps. We confirm that increasing the
number of steps from the default of 20 to 50 only results in minor performance gains.

Ensemble properties In Table 10, we report the median absolute errors of the Boltzmann-weighted
properties of the generated vs CREST ensembles, with and without GFN2-xTB relaxation. For all
methods, the errors without relaxation are far too large for the computed properties to be chemically
useful—for reference, the thermal energy at room temperature is 0.59 kcal/mol. In realistic settings,
relaxation of local structures is necessary for any method, after which errors from global flexibility
become important. After relaxation, torsional diffusion obtains property approximations on par or
better than all previous methods.

Torsional Boltzmann generator Figure 9 shows the histograms of ESSs at 500K for the torsional
Boltzmann generator and the AIS baseline. While AIS fails to generate more than one effective
sample for most molecules (tall leftmost column), torsional Boltzmann generators are much more
efficient, with more than five effective samples for a significant fraction of molecules.
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Figure 9: Histogram of the ESSs of the torsional Boltzmann generator and AIS baseline at 500K.
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