
Supplementary Material for
Curious Exploration via Structured World Models Yields

Zero-Shot Object Manipulation

A GNN Architectural Details

We use message-passing GNNs in CEE-US as described in Sec. 2.2. When different object types
are present in the environment, we also include static object features in the object states sit. The
dynamic component sdyn,i

t is time-dependent and contains object positions and velocities, whereas
the time-independent static features sstat,i contain identifiers for different object types. For the overall
object state at time step t, we get sit = [sdyn,i

t , sstat,i]. This can be viewed as a concatenation of a
dynamic and a static graph [44]. The GNN only makes a next state prediction for the dynamic state
component of the object nodes so that e.g. the node update is given by:

ŝdyn,i
t+1 = gnode

([
sdyn,i
t , sstat,i, c, aggri̸=j

(
e
(i,j)
t

)])
. (S1)

We use static features only in the PLAYGROUND environment, where we have 4 different object types
(cube, light cube, cylinder and pyramid) and the color of each object is used as the static feature. The
mean is used as the permutation-invariant aggregation function aggr.

B Planning Details

For planning, we use the improved Cross-Entropy Method (iCEM) [14]. The pseudocode is given in
Alg. S1. The costs for the planner correspond to negative reward such that:

C(st, at, st+1) = −R(st, at, st+1),

where R can be intrinsic rewards RI or extrinsic task rewards Rtask. Whenever we are dealing with
an ensemble of models, we use the same notation R(st, at, st+1), even though the reward function in
this case takes the transitions of the whole ensemble {(smt , at, s

m
t+1)}Mm=1 as input arguments. 1

The algorithm shown here is for a single model fθ. In the case of an ensemble of models {(fθm)Mm=1}
with ensemble size M , each model sees the same P sampled action trajectories with each at =
(at+h)

H−1
h=0 ∈ Rna×H . During the intrinsic phase of CEE-US, the intrinsic rewards for planning are

computed based on the ensemble disagreement, such that RI(st, at, st+1) for one time step in a
simulated trajectory is a scalar, computed according to Eq. 6.

In the extrinsic phase when we have task-specific reward functions, we utilize the different ensemble
predictions for more robust action selection. Each model of the ensemble creates a cost trajectory
for each sampled action sequence with {Rtask(st+h, at+h, st+h+1)}H−1

h=0 such that the overall cost
of a sampled trajectory amounts to a tensor with size M ×H . In order to then select the elites, we
average the costs over the ensembles.

In a generalized setup, the sum in Eq. 1 can be replaced with another permutation-invariant function ϕ.
For planning, other than the default mode sum as shown in equation Eq. 1, we also allow mode best
with ϕ = max

(
{R(st+h, at+h, st+h+1)}H−1

h=0

)
, which chooses the optimal trajectory according to

the best reward observed at any time step over the planning horizon.

C Experiment Details

In this section, we provide experimental details and hyperparameter settings.

1Note that we overload the superscript to both indicate ensemble members’ predictions and object-centric
state representations. The index m is for the the prediction of ensemble member m on the whole state, and i
signals that we are looking at the state of object i.
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Algorithm S1 Model predictive control with iCEM planner

1: Input: P : number of samples; H: planning horizon; na: action dimension; K: size of elite-set;
β: colored-noise exponent, CEM-iterations: number of iterations; ξ: fraction of elites reused;
σinit: noise strength, α: momentum, fθ: Forward dynamics model, ϕ: permutation-invariant
function to compute overall cost over planning horizon.

2: for t = 0 to T−1 do ▷ loop over episode length
3: if t == 0 then
4: µ0← constant vector in Rna×H

5: else if shift_elites then
6: µt ← shifted µt−1 (and repeat last time-step)
7: σt← constant vector in Rna×H with values σinit

8: for i = 0 to CEM-iterations−1 do
9: samples← P samples from clip(µt + Cβ(na, H)⊙ σ2

t )
10: if i == 0 and shift_elites then
11: add fraction ξ of shifted elite-sett−1 to samples
12: else if keep_elites then
13: add fraction ξ of elite-sett to samples
14: if i == last-iter then
15: add mean to samples
16: for h = 0 to H-1 do ▷ Compute state trajectories in model fθ’s imagination
17: st+h+1 ← fθ(st+h, at+h) for at+h in samples
18: rewards← rewards of sampled trajectories ϕ({R(st+h, at+h, st+h+1)}H−1

h=0 )
19: elite-sett← best K samples according to rewards
20: µt, σt← fit Gaussian distribution to elite-sett with momentum α

21: if use_mean_actions then
22: execute first action of mean of elite sequences
23: else
24: execute first action of best elite sequence

C.1 Intrinsic Phase with CEE-US

In the intrinsic phase of CEE-US, we iteratively generate rollouts with the iCEM planner using
intrinsic rewards and then train the models of the ensemble on the overall data collected so far. We
test CEE-US on the PLAYGROUND and CONSTRUCTION environments. The environment properties
as well as the episode lengths and model training frequencies are given in Table S1. Four objects
are present in each environment during free play (in PLAYGROUND: one of each object type). The
parameters for the GNN model architecture as well as the training parameters for model learning are
listed in Table S2. Note that model learning only occurs during the intrinsic phase. For the extrinsic
phase, we take the learned model with the listed architectural settings to solve downstream tasks
zero-shot.

The intrinsic free-play in CEE-US, together with the data collection and consequent model updates,
is run for 300 training iterations in CONSTRUCTION, which takes roughly 72 hours using a single
GPU (here NVIDIA GeForce RTX 3060) and 6 cores on an AMD Ryzen 9 5900X Processor. In
PLAYGROUND, we run CEE-US for 250 training iterations which takes ca. 50 hours. Note that the
duration of one training iteration increases throughout free-play, since we train the model for a fixed
number of epochs on the whole data collected so far. As the number of transitions stored in the buffer
increases, the number of update steps for the same number of epochs also increases.

C.2 Controller Parameters

The set of default hyperparameters used for the iCEM controller are presented in Table S3, as well as
environment-specific controller settings used for the intrinsic phase of CEE-US.
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Table S1: Environment settings. In both environments 2000 transitions are generated within one
training iteration of CEE-US.

PLAYGROUND
Parameter Value
Episode Length 200
Train Model Every 10 Episodes
Action Dim. 2
Robot/Agent State Dim. 4
Object Dynamic State Dim. 6
Object Static State Dim. 3

CONSTRUCTION
Parameter Value
Episode Length 100
Train Model Every 20 Episodes
Action Dim. 4
Robot/Agent State Dim. 10
Object Dynamic State Dim. 12
Object Static State Dim. 0

Table S2: Base settings for GNN model training in intrinsic phase of CEE-US.

(a) General settings.

Parameter Value
Network Size of gnode 2× 128
Network Size of gedge 2× 128
Network Size of gglobal 2× 128
Activation function ReLU
Layer Normalization Yes
Number of Message-Passing 1
Ensemble Size 5
Optimizer ADAM
Batch Size 125
Epochs 25
Learning Rate 10−5

Weight Decay 0.001
Weight Initialization Truncated Normal
Normalize Input Yes
Normalize Output Yes
Predict Delta Yes

(b) Environment-specific settings.

PLAYGROUND
Parameter Value
Network Size of gnode 2× 64
Network Size of gedge 2× 64
Network Size of gglobal 2× 64
Learning Rate 0.0001
Weight decay 5 · 10−5

CONSTRUCTION
Parameter Value

Same as general settings

C.3 Extrinsic Phase

In this section, we provide details on the extrinsic phase of CEE-US, where the learned GNN ensemble
is used to solve downstream tasks zero-shot via model-based planning.

C.3.1 Details on Downstream Tasks and Reward Functions

We use the notation introduced in Sec. 2.1, where si for i = 1, . . . , N denotes the state of each of the
N objects present in the environment and gi denotes the goal for each object in the environment. The
superscript i is omitted for the goal if all objects’ goals are the same. For ease of notation in the reward
function definitions, we consider si to be the achieved goal state, which for all tasks other than flipping
corresponds to the positional information of each object’s state (x-y for PLAYGROUND and x-y-z for
CONSTRUCTION). The actuated agent, i.e. robot, state is given by sagent. Unless stated otherwise,
the L2-norm is used to compute the distance between the current state s and a target/goal state g
denoted by dist(s, g) = ∥s− g∥2. We use δ to denote the environment threshold for goal distances
used to compute sparse rewards as well as potential cut-off values for dense rewards. The sizes in
both environments are on different scales, so the used δ values vary. In PLAYGROUND, the spherical
agent’s diameter is 0.2 and objects have size ca. 0.2 with slight variations. In CONSTRUCTION, each
cube/block has size 0.05.

PLAYGROUND-Pushing The task in the PLAYGROUND environment is defined as bringing all
objects to a target location g ∈ R2 that is sampled randomly in the beginning of each episode. The
reward is defined as the sum of the negative distances of each object to the target location up to a
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Table S3: Base settings for iCEM in CEE-US as well as the environment-specific settings used in the
intrinsic phase. Same settings are used for MLP + iCEM.

(a) General settings.

Parameter Value
Number of samples P 128
Horizon H 30
Size of elite-set K 10
Colored-noise exponent β 3.5
CEM-iterations 3
Noise strength σinit 0.5
Momentum α 0.1
use_mean_actions Yes
shift_elites Yes
keep_elites Yes
Fraction of elites reused ξ 0.3
Cost along trajectory sum

(b) Environment-specific settings.

PLAYGROUND
Intrinsic Phase

Parameter Value
shift_elites No
keep_elites No
Noise strength σinit 0.8

CONSTRUCTION
Intrinsic Phase

Parameter Value
Same as general settings

threshold distance δ such that:

Rpush =

N∑
i=1

−max(dist(si, g), δ). (S2)

The reason we have a cut-off at distance δ is to ensure that the agent doesn’t unnecessarily try to
bring each object to the exact center since the task is to bring all objects to the target location and the
overall reward cannot be zero in the end with more than one object in the environment. We still use a
small δ of 0.23 for this buffer zone in the experiments, such that the model still has to find a plan
that focuses on the next unsolved object instead of optimizing for small gains with an object that is
essentially already at the target g. Note that for evaluating whether the task was successfully solved,
we define the distance threshold to be larger δeval = 0.35, as to accurately account for cases where
the target is in the corners or at the wall, such that not all objects can fit in the buffer zone area with
the conservative δ.

CONSTRUCTION-Stacking For stacking, sparse incremental rewards are used with reward shaping.
The shaped reward contains the (dense) distance between the gripper and the position of the next
block to be stacked in the tower given by snext. If the tower is fully stacked, then the shaped reward
component snext contains the distance of the gripper to a resting position away from the tower base.
In the experiments, we use (0, 0, 0) as the goal position for the robot after it has finished stacking.
The reward function is given by:

Rstack =

N∑
i=1

(
−1 + Jdist(si, gi) < δK

)
− η · dist(sagent, snext), (S3)

where J·K are Iverson brackets and η is the scale of the shaped reward component. In the experiments,
we use δ = 0.02 (each block has size 0.05) and η = 0.01. Note that in the original environment
proposed in Li et al. [24], the distance threshold for all tasks was defined to be 0.05. However, in
order to ensure stable stacking we reduce this to 0.02 and also use this same value for evaluating for a
successful stack. We do not allow any mismatch between δ and δeval, when we have sparse rewards.

CONSTRUCTION-Pick & Place The task is defined as bringing each object i to its individual goal
position gi that is randomly sampled. In an environment with N objects, the first N − 1 have goal
positions on the ground. The N th object’s goal is in air with 50% probability, where the target height
is also sampled randomly. We use a dense reward with the sum of the negative distances of each
object position si to its individual goal position gi

Rpp =

N∑
i=1

−max(dist(si, gi), δ), (S4)
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with δ = 0.025. Similar to the PLAYGROUND-Push task, we use the δ value in the reward to ensure
that the model doesn’t over-optimize for each object. This is again set to be a more conservative
distance threshold than the evaluation threshold δeval = 0.05, that is set to be the same as in the
original environment [24].

CONSTRUCTION-Throwing The task is to throw blocks onto goal sites with size 0.2 by 0.2 (so
4 times the size of each block). Each goal site is at least 0.16 and at most 0.20 away from the
manipulability range of the robot arm. For this task, we use sparse rewards together with a dense
component. Throwing is a challenging task as (i) goal locations for objects are farther away, requiring
a longer planning horizon and (ii) in the case of planning with dense rewards the agent can easily be
stuck in a local optimum and push blocks outside of its manipulability range without actually reaching
the goal location. In order to deal with (i), we keep a dense component for the reward and to address
(ii), we also include sparse rewards and use a kernel for the dense reward component. For throwing,
we only take the x-y positions of objects into account during the reward computation, such that our
achieved block state is 2-dimensional with si = [six, s

i
y] ∈ RD. We evaluate the distance between

each block position si and the center location gi = [gix, g
i
y] of each block’s goal site individually

across the x-y dimensions, such that the sparse component of the reward uses the evaluation:

Rsparse(s
i, gi) = −1 +

D∏
d=1

J|sid − gid| < δK, (S5)

where δ is 0.1, corresponding to the half-size of the goal site. The same value is used for δeval such
that we don’t require the whole block to be inside the goal site, but the block’s center has to be inside
the goal site for a successful throw. Note that we do not take the z-position of the object into account
for the reward function. The dense reward component is given by:

Rdense(s
i, gi) =

D∑
d=1

−1 + exp
(
−0.5 · |sid − gid|

)
. (S6)

For the overall throwing reward, we get the following function with η = 0.001:

Rthrow =

N∑
i=1

Rsparse(s
i, gi) + η ·Rdense(s

i, gi). (S7)

CONSTRUCTION-Flipping The flipping task is defined as rotating the blocks +90◦ around their
x-axis. As in the original environment [24], the orientation information for each block is encoded
in Euler angles in the state vector, where the xyz convention is used. As a result the angle values
encode the relative rotating angles about x, y, and z axes in order, i.e. after we rotate about x, then we
use the new (rotated) y, and the same for z. The flipping task reward thus only applies a constraint
on the first Euler angle αx. We use sparse rewards for the flipping task. We also add a small dense
component to the reward to incentivize the end effector to stay close to its initialization position sinit.
We observed that this additional reward helps the robot find plans for flipping in-place as opposed to
flicking objects from the side.

Rflip =

N∑
i=1

(−1 + Jdist(αx, 90
◦) < δK)− η · dist(sagent, sinit), (S8)

with δ = 5◦ and η = 0.001.

C.3.2 Planning Details for Downstream Tasks

We use slightly different controller settings for the different tasks as shown in Table S4. These
parameters are shared between CEE-US and the unstructured baseline MLP + iCEM.

C.3.3 Evaluation of Downstream Task Performance

In the PLAYGROUND environment, we evaluate the success rate of CEE-US and the unstructured
baseline MLP + iCEM on the PLAYGROUND-Pushing task, when models taken from different training
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Table S4: Settings for the iCEM controller used for zero-shot generalization in the extrinsic phase
of CEE-US. Same settings were also used for the baseline MLP + iCEM. Any settings not specified
here are the same as the general settings given in Table S3.
Task Controller Parameters

Horizon Colored-noise exponent use_mean_actions Noise strength Cost Along
h β σinit Trajectory

PLAYGROUND-Pushing 40 3.5 Yes 0.8 sum
CONSTRUCTION-Stacking 30 3.5 No 0.5 best
CONSTRUCTION-Pick & Place 30 3.5 Yes 0.5 best
CONSTRUCTION-Throwing 35 2.0 Yes 0.5 sum
CONSTRUCTION-Flipping 30 3.5 No 0.5 sum

checkpoints are used for planning. Complementary to the results shown in Table 2 in the main text,
Fig. S2 depicts the sample-efficiency of CEE-US compared to the unstructured baseline MLP + iCEM.
In Fig. S1, we see that the learned GNN models’ ability to capture object-object interactions leads to
the selection of more efficient control plans like pushing two objects to the goal position at the same.

Table S5 and Table S6 contain the success rates reported for zero-shot generalization on downstream
tasks in the CONSTRUCTION environment, complementary to Fig. 7 in the main text.

Figure S3: Multi-tower stack-
ing task (Here task solved by
CEE-US).

We spawn the environment with the number of objects specified
in the table. The MLP + iCEM baseline that lacks combinatorial
generalization, can only be applied to the 4 object case, as seen
during the free-play phase. We do not perform masking of objects
during planning for this baseline, as we consider a task with e.g. 2
object stacking to be defined in an environment spawned with the
same amount of objects. For CONSTRUCTION-Stacking, in addition
to the single-tower stacking, we also test for the multi-tower task
with 4 objects (denoted by 2 + 2) such that the goal is to build two
towers with 2 blocks each. Since the base of these towers can be
close to one another, this task has an increased level of difficulty
compared to stacking 2 blocks, also reflected in the success rates
shown in Table S5.

In the stacking tasks (single-tower and multi-tower), success is 1, only when the required towers with
all the objects present in the environment are fully stacked. In all the other tasks in CONSTRUCTION
and in PLAYGROUND-Pushing, the success rate in the multi-object setup is defined as the fraction of
objects solved relative to the total number of objects spawned in the environment. For example, in an
environment with 4 objects, 0.75 success rate means 3 out of 4 objects reached their respective goal
positions.

C.4 Hyperparameter settings for baselines

The hyperparameters for the model architecture and the training of the unstructured baseline
MLP + iCEM, which corresponds to CEE-US without GNNs, are given in Table S7.

(a) t = 0 (b) t = 100 (c) t = 300

Figure S1: Downstream task PLAYGROUND-Pushing: move all
objects to target location (red), as solved by CEE-US. At t = 100,
we see that the planner can find a trajectory pushing two objects at
the same time with the learned GNN models. At t = 300, the task is
already solved.
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Figure S2: Success rate of
downstream task in PLAY-
GROUND for CEE-US vs.
MLP + iCEM evaluated at dif-
ferent training iterations.
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Table S5: Zero-shot generalization performance of CEE-US vs. MLP + iCEM on downstream tasks
CONSTRUCTION-Pick&Place and CONSTRUCTION-Stacking.
Task Pick&Place Stacking
# Objects 2 3 4 5 6 2 3 4 2+2

CEE-US 0.94± 0.01 0.96± 0.01 0.97± 0.01 0.96± 0.01 0.96± 0.001 0.91± 0.02 0.27± 0.08 0.02± 0.02 0.236± 0.06
MLP-iCEM - - 0.83± 0.02 - - - - 0± 0 0.013± 0.012

Table S6: Zero-shot generalization performance of CEE-US vs. MLP + iCEM on downstream tasks
CONSTRUCTION-Throwing and CONSTRUCTION-Flipping.

Task Throwing Flipping
# Objects 2 3 4 2 3 4 5 6

CEE-US 0.675± 0.039 0.67± 0.04 0.61± 0.01 0.94± 0.01 0.93± 0.03 0.88± 0.04 0.87± 0.04 0.83± 0.04
MLP-iCEM - - 0.32± 0.03 - - 0.25± 0.02 - -

Table S7: Base settings for MLP model training in MLP + iCEM.

(a) General settings.

Parameter Value
Network Size 3× 256
Activation function SiLU
Ensemble Size 5
Optimizer ADAM
Batch Size 256
Epochs 50
Learning Rate 0.0001
Weight decay 5 · 10−5

Weight Initialization Truncated Normal
Normalize Input Yes
Normalize Output Yes
Predict Delta Yes

(b) Environment-specific settings.

PLAYGROUND
Parameter Value
Network Size 3× 128
Batch Size 128

CONSTRUCTION
Parameter Value

Same as general settings

For the other baselines RND [17], Disagreement [16] and ICM [6], we use the implementation from
Laskin et al. [25] that uses DDPG [26] with the same hyperparameter settings proposed there. The
code for these baselines can be found in https://github.com/rll-research/url_benchmark.

C.5 Offline RL

Policy Selection Since CQL tends to overfit to the training data, resulting in a significant drop in
task performance, we use early stopping to select the best policy on a run by run basis.

Rewards To train the policies with offline RL, we use sparse rewards in all the experiments. The
reward is computed according to:

r(gachieved, gdesired) = Jdist(gachieved, gdesired) < δK ∈ [0, 1], (S9)

with gachieved being the achieved goal, gdesired being the desired goal and δ being a task-dependent
threshold. Depending on the task, gachieved is equal to sagent or si, i = 1, . . . , N , or any combination
of these.

State Representation In PLAYGROUND, we use the flat state representation provided by the envi-
ronment as input for the CQL algorithm. In CONSTRUCTION, we also use the flat state representation
provided by the environment, including the relative positions of the objects to the end-effector po-
sition. Without this relative information, CQL could not learn a policy for the object manipulation
task.

Datasets We use the data collected by the different intrinsically motivated agents during free play as
datasets for offline RL. The same amount of free-play data is used from the different agents to generate
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Table S8: Settings for offline RL.

(a) Settings for CQL.

Parameter Value
Batch size 256
Actor learning rate 1.0e-4
Critic learning rate 3.0e-4
Temp learning rate 1.0e-4
Alpha learning rate 0.0
Conservative weight 10.0
Number of action samples 10
q_func_factory mean
Optimizer ADAM
Actor Encoder Network Size 3× 256
Critic Encoder Network Size 3× 256
gamma 0.99
tau 0.005
n_critics 2
Initial temperature 1.0
Initial α 1.0
αthreshold 10.0
Conservative weight 1.0
soft_q_backup No

(b) HER Settings

PLAYGROUND
Parameter Value
Replay Strategy Future
replay_k 4

the datasets. In PLAYGROUND, the datasets contain 500, 000 transitions. In CONSTRUCTION, the
datasets contain 600, 000 transitions.

Tasks In PLAYGROUND, we evaluate the performance of offline RL trained with the different
datasets on two tasks: (i) move the agent to a randomly sampled target location and (ii) move the first
object to a randomly sampled target location. In CONSTRUCTION, we evaluate CQL on (i) move the
end-effector to a randomly sampled location and (ii) move the first object to a randomly sampled
target location that is in the air in 50% of the cases.

C.6 Uncertainty Heatmaps

The uncertainty heatmaps are computed by a spatial discretization of the playground area (bin size
equal to r/10, where r is the agent’s radius) and evaluating Eq. 6 for 8 actions, equidistant unit
vectors on the unit circle, for the agent hypothetically being at each (x, y) location of the grid. This
means that we also spawn the agent inside objects and walls, violating the regular physical properties
of the environment. As a result, there is always remaining uncertainty inside the walls and inside the
objects.

The progression of the uncertainty heatmaps shown in Fig. 3 can be interpreted as follows:

• Iteration 1: After only one training iteration of CEE-US, we still have uniform uncertainty
of the model as the model lacks training and the model’s predictions are very inaccurate.

• Iteration 25: As more data of agent-object interactions are collected, the model discovers
objects as a source of uncertainty, resulting in high epistemic uncertainty around the objects.
As the models also start learning that the agent cannot permeate objects, i.e. agent and object
cannot occupy the same space, the uncertainty at the center of objects is also high. Notice
how this isn’t the case for the variant MLP + iCEM (see Fig. 3). As the MLP models lack
data from agent-object interactions, the model is confident (low ensemble disagreement)
that the agent can simply move through objects. Same principle also applies to the walls.
Before CEE-US generates enough agent-wall interactions, there is no reason for the agent to
expect any different dynamics at the boundaries of the playground since the walls are not
part of the state information. For instance, the GNN ensemble doesn’t have enough data
generated at the left wall at iteration 25, resulting in low ensemble disagreement.
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Figure S4: Close-up of each object in uncertainty heatmaps of the GNN ensemble with CEE-US
in PLAYGROUND.

• Iterations 100 - 249: As CEE-US generates more agent-object and object-object interactions,
the uncertainty around the object boundaries starts decreasing as the GNN ensemble learns
more about each object’s dynamics. As demonstrated in Fig. S4, the objects’ shapes (cube,
cylinder, pyramid) becomes discernible with more training iterations. As explained above,
the uncertainty at the center of each object always remains.

We generate similar uncertainty heatmaps for the CONSTRUCTION environment as shown in Fig. S5.
Here, we only put the robot gripper on different locations on the table, more precisely on a 80 cm ×
80 cm square grid around the initial gripper position, that is discretized into bins of size 0.005 mm
corresponding to 1/10th of the cube size. In order to obtain the uncertainty heatmaps, we evaluate
the ensemble disagreement Eq. 6 for 100 random actions at each hypothetical location of the robot
arm in the spatially discretized grid on the table.

D Multi-step Prediction Performance of GNNs and MLPs

In the PLAYGROUND environment, we showcase the multi-step prediction performance of the trained
GNN vs. MLP dynamics models at the end of free play. For a given starting state of the environment
at t = 0 and an action sequence (at)

H−1
t=0 , we generate a rollout in imagination of the trained models

and compare these multi-step dynamics predictions to the ground truth. An example trajectory can be
found in Fig. S6. We compute the cumulative prediction error of the generated trajectories, taking
the mean predictions across the ensemble members for the GNNs and MLPs respectively, on 50
random evaluation rollouts with a multi-step prediction horizon of 50 timesteps. The evaluation
rollouts are generated using a random policy, that interacts with one or more randomly chosen objects
at each rollout. Using the GNN ensemble we get a prediction error of 2.82, whereas for the MLP
ensemble we get 4.06 (cumulative error over the time horizon as well as the state space dimension).
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Figure S5: Uncertainty heatmaps of the world model ensembles with CEE-US in CONSTRUC-
TION, compared to the unstructured baseline MLP + iCEM. Similar to the results shown in the
PLAYGROUND environment, the uncertainty in CONSTRUCTION is also localized around the objects
early on in the training, with object shapes becoming even more discernible further along in free play
at iteration 200.

This illustrates the improved dynamics prediction that is obtained through the use of structured world
models.

In Fig. S7, we also show the behavior of MLP + iCEM later on during free play in terms of interaction
metrics, where we train it for an additional 100 iterations. In Fig. S8, we show the downstream task
performance on the Pick & Place and Flipping tasks for models checkpointed at different iterations
of free play. Even with an additional 100 iterations of free play, MLP + iCEM’s downstream task
performance is inferior to CEE-US. Overall, this showcases the importance of the accurate forward
dynamics prediction of GNNs not just in terms of sample-efficiency of interaction metrics, but also
for zero-shot downstream task generalization.

Figure S6: Multi-step prediction performance of the trained GNN ensemble with CEE-US at
the end of free play compared to the trained MLP ensemble with MLP + iCEM.
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Figure S7: Asymptotic behavior of MLP + iCEM during free play in CONSTRUCTION compared
to CEE-US. Interaction metrics of free-play exploration count the relative amount of time steps spent
in moving one object (a), moving two and more objects (b), flipping object(s) (c), and moving objects
into the air (d). This is the extension of Fig. 5 in the main paper. Here the baseline MLP + iCEM is
trained for an additional 100 training iterations (corresponding to 200K more transitions collected).
For CEE-US, we use the dashed line to visualize the achieved interaction metrics at the end of training
at iteration 300. Three independent seeds were used.
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Figure S8: Asymptotic downstream task performance of MLP + iCEM in CONSTRUCTION
compared to CEE-US. We compute the achieved success rates for models checkpointed over
the course of free play, where we train the MLP + iCEM for an additional 100 training iterations
(corresponding to 200K more data points collected). Three independent seeds were used.

E Combining Model-based Control with Random Network Distillation

One key element of our method is that we use the ensemble disagreement to approximate the
epistemic uncertainty of the model itself. This is inherently different from the intrinsic rewards
computed for instance in Random Network Distillation (RND) [17]. RND is essentially an expansion
of count-based methods to continuous domains and the intrinsic reward is decoupled from the actual
model performance of the dynamics model. Note that in the case of RND, as explained in Sec. 3.2,
the RND module tries to match the output of a random target network. As long as a state is not
visited enough, the RND module will generate high intrinsic reward regardless of whether the model
can already predict this state accurately or not. In the opposite scenario, even if a state is trivial,
the RND module is agnostic to the invariances and symmetries in an environment. As a result, it
will try to create state-space coverage even when the state transition dynamics is trivial to learn.
In order to test how using the RND intrinsic reward for planning affects behavior during free play,
as well as the consequent downstream task performance, we ran new baselines that we refer to as
GNN + RND and MLP + RND. In these baselines, we have a world model learning the dynamics
(GNN for GNN + RND and an MLP for MLP + RND) which is used for model-based planning during
free play. However, instead of using ensemble disagreement, we use the intrinsic reward of a separate
RND module (MLP) to structure the free play. The RND network is also trained on the generated
free-play data, separately from the actual world model.

Figure S9 illustrates that the GNN + RND and MLP + RND both produce less single- and multi-object
interactions and flipping behavior than their ensemble disagreement counterparts. In terms of object(s)
in air time, GNN + RND surpasses CEE-US. This is expected as once the GNN ensemble learns
the lifting behavior, this knowledge is shared among all objects. The GNN ensemble focuses more
on bringing two objects together, flipping and/or rolling them. In the case of RND, covering the
whole air space with the different cubes is still incentivized since there is no connection between
the dynamics model and the RND module. However, this behavior does not necessarily lead to
superior task performance for the RND variant, as shown in Fig. S10. There is a large difference in
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Figure S9: Interactions generated during free play in CONSTRUCTION by CEE-US. Interaction
metrics of free-play exploration count the relative amount of time steps spent in moving one object
(a), moving two and more objects (b), flipping object(s) (c), and moving objects into the air (d). We
compare CEE-US and MLP + iCEM, which use the epistemic uncertainty of the model approximated
via the ensemble disagreement, with variants that use a separate RND module for intrinsic reward.
We used three independent seeds.
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Figure S10: Downstream task performance in CONSTRUCTION by CEE-US and the baselines
for models checkpointed over the course of free play. We compare CEE-US and MLP + iCEM,
which use the model’s epistemic uncertainty approximated via the ensemble disagreement as intrinsic
reward, with variants that use a separate RND module. We used three independent seeds.

the achieved success rates after 300 training iterations, where each training iteration corresponds
to collecting 2000 Transitions and training the models. In the case of flipping, CEE-US is again
superior to the GNN + RND variant. On the pick & place task, similar end performance is reached
and yet CEE-US reaches better performance faster. Despite the fact that GNN + RND collects a
lot of data with objects in air between training iterations 100-200, this doesn’t culminate in any
significantly better task performance in the pick & place and stacking tasks, where lifting is a key
component. Similarly for the throwing task, we observe the superior performance of the ensemble
disagreement-based methods, CEE-US and MLP + iCEM, over their RND counterparts.

These results showcase the sample-efficiency of our method not just in terms of generated interactions,
but also in terms of zero-shot downstream task performance.

Another important observation in these experiments is the sample-efficiency we obtain through model-
based planning alone. If we compare MLP + RND with the standard RND baseline performance
that is trained with an exploration policy as shown in Fig. 5, we get much more interaction-rich
exploration during free-play. This again highlights the importance of planning for multi-step intrinsic
rewards into the future.

F Preliminary Results for CEE-US in ROBODESK

We apply CEE-US to the ROBODESK environment [53] (Fig. S11) in order to test if our method can
deal with diverse geometries of objects with only proprioceptive state information. This environment
has complex objects/entities such as a drawer, a sliding cabinet, buttons and other blocks.

Table S9: Preliminary success rates for zero-shot generalization in the extrinsic phase of CEE-US in
ROBODESK.

Task
Open Drawer Open Slide Cabinet Push Green Button Push Flat Block Off Table

CEE-US 0.97± 0.02 0.87± 0.07 0.87± 0.07 0.58± 0.09
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Figure S11: ROBODESK environment.

For ROBODESK, we encode each entity’s state purely as proprioceptive information of position,
quaternion, linear and angular velocities. Note that the entities have even different joint types, where
the drawer has a slide/prismatic joint along y-axis, the sliding cabinet a slide joint only in x-axis, the
buttons slide joints in z-axis, and the blocks and the ball corresponding to free joints. The different
entity types are encoded as static object features and are categorical variables with one-hot encoding.

In our experiments, during the intrinsic phase of CEE-US, the robot arm interacts with the different
entities, e.g. opening drawer and cabinet, pushing blocks and pushing buttons. The learned GNN
ensemble can then be used in the extrinsic phase to solve downstream tasks zero-shot. We test
opening the drawer, sliding the cabinet, pushing buttons, and moving blocks yielding the following
success rates shown in Table S9.

The corresponding videos can be found on our supplementary website https://martius-lab.
github.io/cee-us.
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