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Abstract

It has been a long-standing dream to design artificial agents that explore their
environment efficiently via intrinsic motivation, similar to how children perform
curious free play. Despite recent advances in intrinsically motivated reinforce-
ment learning (RL), sample-efficient exploration in object manipulation scenarios
remains a significant challenge as most of the relevant information lies in the
sparse agent-object and object-object interactions. In this paper, we propose to use
structured world models to incorporate relational inductive biases in the control
loop to achieve sample-efficient and interaction-rich exploration in compositional
multi-object environments. By planning for future novelty inside structured world
models, our method generates free-play behavior that starts to interact with objects
early on and develops more complex behavior over time. Instead of using models
only to compute intrinsic rewards, as commonly done, our method showcases that
the self-reinforcing cycle between good models and good exploration also opens
up another avenue: zero-shot generalization to downstream tasks via model-based
planning. After the entirely intrinsic task-agnostic exploration phase, our method
solves challenging downstream tasks such as stacking, flipping, pick & place, and
throwing and generalizes to unseen numbers and arrangements of objects without
any additional training.1

1 Introduction

Curious free-play has been identified as a driving force in child development, allowing children to
efficiently explore their environment and build an understanding of the world [1]. Such intrinsically
motivated exploration schemes are especially attractive in open-ended learning scenarios to guide
an agent even without extrinsic tasks and corresponding rewards. Similar to how children learn, we
want Reinforcement Learning (RL) agents to learn through play and then be able to solve new tasks
quickly. We address both challenges in this work.

Minimization of novelty (or surprise) is a prominent formulation of curiosity, with several psycho-
logical studies showcasing the role of novelty in children’s curious exploration [2–4]. Novelty as
an intrinsic reward signal has also been adopted in RL, where agents try to resolve a cognitive
disequilibrium [5, 6]. However, applying entirely intrinsic task-agnostic exploration to object manip-
ulation scenarios in a sample-efficient manner is an ongoing challenge as the relevant information
lies in the sparse agent-object and object-object interactions. These compositional multi-object
manipulation environments highlight one of the significant weaknesses of the current novelty-based
intrinsic motivation methods: a novel stimulus alone does not necessarily mean that it contains useful

1Code and videos are available at https://martius-lab.github.io/cee-us.
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Figure 1: Intrinsic motivation for epistemic uncertainty reduction with structured world models
yields capable models for zero-shot task planning. In an intrinsic phase, the system plans for
maximum epistemic uncertainty with an ensemble of GNNs and uses the actively collected data to
update the model. This iterative procedure ultimately reduces the overall epistemic uncertainty of
the system, i.e. maximizing information gain. The learned models can be used to solve complex
manipulation tasks using online planning.

or generalizable information for an individual [7]. Thus, curious exploration needs to attend to a
subset of possibilities, as supported by studies in psychology [8, 9]. Analyzing children during free
play accumulated evidence that infants have innate biases and heuristics to help guide their attention
toward relevant and informative features of the environment [10, 11]. Our goal is to improve curious
exploration in RL by incorporating appropriate inductive biases. We hypothesize that viewing the
world as a collection of entities and their interactions is such a “useful” inductive bias, which was
also put forward in Tsividis et al. [12]. However, instead of utilizing explicit theory-based modeling,
we exploit a relational inductive bias by using Graph Neural Networks (GNN) as our choice of model
[13] and learn everything from interactions. We postulate that curious exploration via epistemic
uncertainty of such a model leads to the collection of valuable data as it inherits this structure.

This paper shows how online planning methods can efficiently exploit learned models, both for explo-
ration and zero-shot generalization to tasks. Recent advances in general-purpose model predictive
control methods have reduced their complexity and show strong performance when good forward
models are available [14, 15]. We build on this work to create a self-reinforcing cycle between
learning good models and good exploration. Thanks to their ability to plan for a new task without
further training, models efficiently track the naturally changing exploration targets and perform
downstream tasks in a zero-shot generalization manner.

We propose CEE-US: Curious Exploration using Epistemic Uncertainty via Structured Models that
achieves sample-efficient and interaction-rich exploration in multi-object manipulation environments.
To our knowledge, we are the first to use GNN ensemble disagreement for computing intrinsic
motivation signals in RL. A further major contribution of our method is to combine GNN-based
epistemic uncertainty with planning methods in a task-agnostic setting and demonstrate zero-shot
generalization to challenging object manipulation tasks. We provide a brief comparison to related
work in Table 1 and provide more details in Sec. 4.

Table 1: Comparison of CEE-US with baselines in terms of differences in paradigms.

Method Observation type
Planner

or policy
Learns

dynamics
Zero-shot task
generalization

Combinatorial
generalization

CEE-US Proprioceptive Planner ✓ ✓ ✓
MLP + iCEM Proprioceptive Planner ✓ ✓ ✗
Disagreement [16] Propr. + Image Policy ✓ ✗ ✗
RND [17] Propr. + Image Policy ✗ ✗ ✗
ICM [6] Propr. + Image Policy ✓ ✗ ✗
Plan2Explore [18] Image Policy ✓ ✓(offline RL) ✗
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2 Method

We focus on intrinsically motivated learning to prepare for future tasks. Thus, we have a task-agnostic
RL setting without extrinsic rewards or any other information regarding future tasks/goals during the
initial play phase. Our approach trains a structured world model to capture the forward dynamics of
the environment from active exploration data. In particular, we are using a Graph Neural Network
(GNN) where the nodes correspond to objects. We rely on our model’s epistemic uncertainty to direct
exploration during free play. Our focus is on compositional multi-object environments, where an
actuated agent can independently manipulate different objects. The terms (actuated) agent and robot
are used interchangeably.

2.1 Preliminaries

In this work, we consider a fully observable Markov Decision Process (MDP) setting, The MDP is
given by M = (S,A, P a

ss′ , R
a
ss′), with the continuous state-space S ∈ Rns , the continuous action-

space A ∈ Rna , the transition kernel P a
ss′ , and the reward function Ra

ss′ . Furthermore, we consider
an object-oriented state representation, i.e. the state-space factorizes into the different entities in the
environment S = S1 × S2 · · · × SN × Sagent, where N denotes the number of objects.

In the typical RL setting, the agent’s goal is to learn a policy a ∼ π(· | s) that maximizes the future
(discounted) cumulative reward Gt =

∑∞
k=0 γ

k ·Rt+k, with the discount factor 0 < γ ≤ 1. Such a
policy can be learned as a neural network with RL algorithms, or a planning method can be used to
maximize the same quantity.

2.1.1 Planning and Model Predictive Control

Planning methods use a model f of the transition kernel P a
ss′ and a reward function Ra

ss′ to optimize
a sequence of actions on the fly. The potential advantage of planning methods is that they can
optimize for different reward functions without further adaptation. For this to be successful, a good
transition model f needs to be learned, and the reward function needs to be known or discovered.
More formally, for a fixed planning horizon H , the action sequence at = (at+h)

H−1
h=0 is optimized to

maximize

a⋆t = argmax
at

H−1∑
h=0

R(st+h, at+h, st+h+1), (1)

where st+h are imagined states visited by rolling out the actions using f , which is assumed to be
deterministic. For this procedure to optimize the same infinite horizon reward with discounting, γ
and a value function V (st+H) could be added to Eq. 1, sacrificing the flexibility in exchanging R.

We use zero-order trajectory optimization to find actions according to Eq. 1 and model predictive
control (MPC) to convert the open-loop planning policy into a closed-loop policy (re-planning
after every step in the environment). In particular, we use the improved Cross-Entropy Method
(iCEM) [14], which was recently proposed as a sample efficient trajectory optimizer.

2.2 World Model with Graph Neural Networks

As the forward dynamics f : S × A → S (world model) is an integral part of the planning
procedure, it needs to be able to capture the true dynamics well. We employ an ensemble of
message-passing GNNs [13]. Each object corresponds to a node in the graph, and the node attributes
{snt ∈ Sn | n = 1, . . . , N} are given by an object’s features such as position, orientation, and
velocity at timestep t. The state representation of the actuated agent sagent ∈ Sagent similarly contains
position and velocity information about the robot.

The agent representation is differentiated from the object nodes as it has a direct cause-and-effect
relationship with the actions. The agent’s state and the generic action are represented as a global
context c. The GNN is fully connected, i.e. there is an edge between all nodes. In GNNs, the node
update function gnode models the dynamics of individual entities, and the edge update function gedge
captures their pairwise interactions.
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Figure 2: Emergent behaviors observed during free play with CEE-US in CONSTRUCTION.
Along the time axis, 2000 transitions correspond to one training iteration of CEE-US, with 20 rollouts
(episodes) of length 100. After only 30 iterations of free play, the robot starts lifting objects.

The node attribute computation for the objects is given by:

c = [sagent
t , at] (2)

e
(i,j)
t = gedge

([
sit, s

j
t , c

])
(3)

ŝit+1 = gnode
([
sit, c, aggri ̸=j

(
e
(i,j)
t

)])
. (4)

where [·, . . .] denotes concatenation, e(i,j)t is the edge attribute between two neighboring nodes (i, j),
and c is the global context information. The permutation-invariant aggregation function is given by
aggr. The gnode and gedge are both Multilayer Perceptrons (MLP).

The context update, i.e. the transition of the agent’s state, is computed using the global aggregation of
all edges similar to the global context formalism in Battaglia et al. [13]:

ŝagent
t+1 = gglobal

([
c, aggri,j

(
e
(i,j)
t

)])
, (5)

where gglobal denotes the global node MLP. By providing all information to the prediction of the
agent, we ensure an accurate modeling of agent-object interactions and their influence on the agent,
which is paramount in object manipulation environments. Using this representation, we found that a
single message passing step is sufficient, thus yielding fast inference times.

Moreover, to make the model focus on capturing the changes accurately, we let the GNN predict
∆ŝt+1 = ŝt+1 − st, instead of the absolute next state, such that f(s, a) = s+GNN(s, a)

2.3 Epistemic Uncertainty as Intrinsic Reward

We train an ensemble of GNNs {(fθm)Mm=1} (Fig. 1), where M denotes the ensemble size. The
epistemic uncertainty, i.e. the uncertainty due to lack of data, can be approximated by the disagreement
of the ensemble members’ predictions measured by the trace of the covariance matrix [15]:

RI(st, at, ·) = tr
(
Cov({ŝmt+1 = fθm(st, at) | m = 1, . . . ,M})

)
. (6)

Connections to Information Gain If more data becomes available from a region where the
ensemble members disagree, then we expect the disagreement in this region to shrink, given enough
capacity of the predictors. By guiding the exploration to regions with large model disagreement or
high epistemic uncertainty, we explicitly aim for maximizing information gain [19–21]. Interestingly,
as we can predict the uncertainty for unvisited states, our approach is more related to predicted
information gain [22].

2.4 The CEE-US Algorithm

CEE-US has two different phases: the intrinsic free-play phase (Alg. 1), where learning occurs with
active exploration, and the extrinsic phase (Alg. 2), where we apply the learned model to solve
downstream tasks zero-shot without any additional training.

Intrinsic Phase In each iteration, the zero-order trajectory optimizer is used to plan for action
sequences with high cumulative epistemic uncertainty in the imagined trajectories of the world model.
The collected rollouts are added to the buffer, and the ensemble members of the world model are
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trained on the observed state transitions (st,at, st+1) for a fixed number of epochs minimizing the
loss function:

Lm = ∥∆st+1 − fθm(st, at)∥22 (7)

for each ensemble member m with independently sampled mini-batches, where ∆st+1 = st+1 − st
denotes the actual change in the next state observation. The total loss function is given by:
L =

∑M
i=0 Lm. Afterwards, the process of data collection and training is repeated. The pseu-

docode for the intrinsic phase is provided in Alg. 1. Lines 3–9 correspond to one training iteration.

Algorithm 1 CEE-US: Free Play in Intrinsic Phase
1: Input: {(fθm)Mm=1}: Randomly initialized ensemble of GNNs

with M members, D: empty dataset, Planner: iCEM planner
with horizon H

2: while explore do ▷ Explore with MPC and intrinsic reward
3: for e = 1 to num_episodes do
4: for t = 1 to T do ▷ Plan to maximize model uncertainty
5: at ← Planner(st, {(fθm)Mm=1}, RI) ▷ Eq. 6
6: st+1 ← env.step(st, at)

7: D ← D ∪ {(st, at, st+1)
T
t=1}

8: for l = 1 to L do ▷ Train models on dataset for L epochs
9: θm ← optimize θm using Lm onD for m = 1, . . . ,M

10: return {(fθm)Mm=1},D

Algorithm 2 CEE-US: Zero-shot Generalization in
Extrinsic Phase
1: Input: {(fθm)Mm=1}: Ensemble of GNNs with m members

learned during intrinsic phase, Planner: iCEM planner with hori-
zon H , Rtask: Reward function of extrinsic task

2: while not done do ▷ Plan to maximize task reward in model
3: at ← Planner(st, {(fθm)Mm=1}, Rtask) ▷ task reward
4: st+1 ← env.step(st, at)

Extrinsic Phase The learned world model is used to perform planning for several downstream
tasks, which we assume to be given in terms of reward functions Rtask(s, a, s

′). The pseudocode is
presented in Alg. 2. Here, no further adaptation to the model is performed, although our method
could be extended to incorporate a potential fine-tuning procedure.

3 Experiments

In our empirical evaluation, we analyze the performance of CEE-US on two different object manipu-
lation environments to answer the questions: How much does the structural inductive bias introduced
by GNNs help model learning and control? Does the free-play phase create rich interaction data that
helps downstream task performance? Can we solve challenging manipulation tasks in a zero-shot
manner? The two environments we consider are:

Playground An actuated spherical agent can slide in the x-y directions and push four different
object types (light cube, heavy cube, pyramid, and cylinder) along the x-y directions and also rotate
them around the z-axis (Fig. 3). Each object has 3 Degrees of Freedom (DoF). Object types are
uniquely identified by their color.

Fetch Pick & Place Construction This is an extension of the Fetch Pick & Place environment [23]
to more cubes [24] (Fig. 2). A 7-DoF robot arm is used to manipulate blocks (each with 6 DoF). The
actions a ∈ R4 control the gripper movement in Cartesian coordinates and the gripper opening/closing.
The robot state sagent ∈ R10 contains the end-effector position and velocity and the gripper-state
(open/close) and gripper-velocity. Each object’s state si ∈ R12 is given by its position, orientation
(in Euler angles), and linear and angular velocities. We replaced the table in front of the robot with
a large plane so that objects cannot fall off during free play. However, they can still be pushed or
thrown outside of the manipulability range of the robot. Originally, each object state contained the
object’s position relative to the gripper. We remove this privileged information from the objects’ state,
as it already introduces a relational bias in the raw state representation.

3.1 Structured vs. Unstructured World Models

We analyze how curious exploration based on minimizing epistemic uncertainty performs when using
ensembles of GNNs and ensembles of MLPs (Fig. 3). MLPs, with their fully connected layers and
monolithic input representations, do not offer isolation of information and incorporate no explicit
relational inductive bias [13], thus constituting a good baseline for our structured world models.
Results in PLAYGROUND show that the GNN ensemble leads much faster to interaction-rich data
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Figure 3: Structured world models lead to more object interactions. In the playground environ-
ment, (left) we compare active exploration with an ensemble of GNNs (top row) vs. an ensemble
of MLPs (bottom row) using epistemic uncertainty as an intrinsic reward (M = 5). Middle: The
heatmaps show the uncertainty of the ensemble members for hypothetical agent positions over a
spatially discretized grid at different training iterations (see Suppl. C.6). Right: The relative time (the
fraction of time steps) the agent spends moving the different objects in the playground is illustrated
throughout free play.

than its MLP counterpart. As visualized in Fig. 3, the uncertainty produced by the GNN ensemble
is already localized around objects after 25 training iterations, leading to targeted agent-object and
object-object interactions. For the MLP, it takes more than 100 iterations to start generating useful
uncertainty estimates and therefore object-agent interactions. Also, note the pronounced uncertainty
at the walls for the MLP. A more fine-grained analysis of the interaction times of CEE-US compared
to the baselines will be provided below. In Suppl. D, we also show how the resulting multi-step
dynamics predictions with structured world models are more accurate compared to the MLPs. This is
a key component for the self-reinforcing cycle between good models and good exploration as a better
model means: the agent can plan for more complex behavior earlier and learn from these experiences
faster.

3.2 Interaction-Richness of Generated Exploration Data

We perform an analysis of the data generated during intrinsic free-play. We compare the performance
of our method to the unstructured MLP + iCEM variant (CEE-US without GNNs) as well as other
intrinsic motivation baselines:

Disagreement [16] The one-step disagreement of an MLP ensemble is used as an intrinsic reward
to train an exploration policy.

Random Network Distillation [17] A predictor network, corresponding to the forward model,
tries to match the output of a target network with random weights. The discrepancy between the two
networks is used as an intrinsic reward (a type of state visitation count for continuous domains).

CEE-US MLP + iCEM Disagreement RND ICM
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Figure 4: Interaction rate during intrinsic exploration in the PLAYGROUND environment. The
relative interaction times show that CEE-US quickly starts interacting with the objects. MLP + iCEM
is similar but one order of magnitude less data efficient. The baselines rarely engage in interesting
interactions, mostly staying in free space or at the walls (three independent seeds).
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Figure 5: Rich interactions during free play in CONSTRUCTION by CEE-US. Interaction metrics
of free-play exploration count the relative amount of time steps spent in moving one object (a),
moving two and more objects (b), flipping object(s) (c), and moving objects into the air (d). CEE-US
engages quickly in all sorts of interactions with objects. The ablation with MLPs eventually performs
similarly but is less sample efficient. The RL baselines perform poorly on these timescales. We used
three independent seeds.

ICM [6] The intrinsic reward is defined as the error between an MLP forward model’s next state
prediction and the actual next state. As this method needs access to the true next state, the intrinsic
reward can only be computed retrospectively.

The intrinsic reward is used to train an exploration policy in these methods. We use the implementation
from Laskin et al. [25] that uses DDPG [26]. In Fig. 4, we present different metrics quantifying the
amount and type of interactions that occur during the free play in the PLAYGROUND environment.
It is eminent that CEE-US is only shortly interacting with the walls and then quickly interacts with
one and two objects simultaneously. The next best method is the ablation of our method using MLP
models needing about ten times more interactions, as explained in Fig. 3. The baselines are mainly
moving in free space and interacting with the walls. RND starts interacting with the objects in at least
10% of the times-steps.

In the CONSTRUCTION environment, the situation is even more drastic, as shown in Fig. 5. CEE-US
starts repeatedly moving one object after only eight iterations (each 2000 environment steps), picks
up objects after around 30 iterations, and continues with throwing and flipping objects and moving
multiple objects frequently after 50 iterations. In Fig. 2 exemplary behaviors are shown in terms
of snapshots at different stages of learning. We believe this sample efficiency is remarkable. The
ablation of our method with MLP models is also able to engage in interesting and diverse interactions,
but at a much slower rate (Fig. 5). The policy learning baselines rarely interact with objects, even
after 300 iterations with 20 episodes each.

3.3 Zero-Shot Generalization to Downstream Tasks

We demonstrate that after the free-play phase, the learned models can be used for zero-shot solving of
complex downstream tasks without the necessity to generate new data or to perform further training.
Furthermore, thanks to the combinatorial generalization capabilities of GNNs, the model can be used
with a different number of objects in the environment than seen during free play. The only baseline we
consider for the zero-shot generalization performance is MLP + iCEM, as none of the other methods
discussed in the previous section can solve downstream tasks without additional training.

In PLAYGROUND, we consider the task of bringing all objects to a single target location, as shown
in Fig. 6. The reward function is the sum of negative distances of all objects to the target outside a
threshold distance. The target location is sampled randomly at the beginning of each episode. The

(a) t = 0 (b) t = 500

Figure 6: Downstream task in PLAY-
GROUND: move all objects to one place,
as solved by CEE-US.

Table 2: Success rates in the PLAYGROUND envi-
ronment for the downstream task Push objects to one
location, with a variable number of objects after 100
and 250 training iterations of free play. Computed
over three random seeds, each evaluated on 100 roll-
outs.

4 Objs@100 4 Objs@250 3 Objs@250 5 Objs@250
one each one each random random

CEE-US 0.70± 0.04 0.91± 0.06 0.93± 0.03 0.93± 0.04
MLP + iCEM 0.08± 0.01 0.90± 0.03 — —
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success rates for different numbers of objects are shown in Table 2. We define success rate in the
multi-object setup as the fraction of objects solved relative to the total number of objects spawned in
the environment. After 100 training iterations of free play, CEE-US already achieves a 70% success
rate, whereas the MLP version only reaches 8%. After 250 iterations, both methods are on par. Since
CEE-US can also deal with a variable input dimension, we also consider the task with more or less
objects with randomly sampled types.
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2+2
Pick & Place Stacking Throwing Flipping
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Figure 7: Zero-shot performance on down-
stream tasks in CONSTRUCTION for CEE-US
and MLP + iCEM.

In CONSTRUCTION, several challenging manip-
ulation tasks need to be solved: pick & place,
stacking, throwing, and flipping, as shown in
Fig. 1. The reward functions are detailed in
Suppl. C.3.1. In Fig. 7, we present the suc-
cess rates in each of the tasks for CEE-US and
the MLP-based planning baseline MLP + iCEM,
where applicable. We find remarkable success
rates across the board for CEE-US, even in chal-
lenging tasks such as stacking and throwing. For
stacking, we report a success rate of 1 if the
tower with all the objects in the environment is
stacked and 0 otherwise. For the multi-tower
task, denoted by 2 + 2, we consider success 1
only when two towers are stacked. We recommend visiting our website2 for videos of these tasks. In
Suppl. E, we present additional experiments combining RND as intrinsic reward with model-based
planning, similar to Lambert et al. [27], in CONSTRUCTION, where we look at both structured and
unstructured world models. The results showcase the benefits of using the model’s own epistemic
uncertainty estimate to guide exploration, as it is the case with ensemble disagreement, leading to
more accurate and more robust dynamics models and better zero-shot downstream task generalization.

3.4 Offline Learning of Downstream Tasks from Exploratory Data

This experiment investigates the quality of the data collected by the different methods in the free-play
phase for solving downstream tasks via offline RL. This allows us to compare to other baselines that
do not support zero-shot generalization. Additionally, it is one way of obtaining task-specific policies.
In offline RL, a control policy is learned from a fixed dataset, where we repurpose the exploration
data. The results are shown in Table 3. Offline policy learning is performed via CQL [28]3 and
training details can be found in Suppl. C.5. To learn different downstream tasks from the same dataset,
reward relabeling and hindsight experience replay [30] are used.

In accordance with the interaction metrics during the intrinsic phase (Figs. 4,5), CEE-US and
MLP + iCEM achieve the highest performance in all four tasks, supporting the benefit of optimizing
for long-horizon future novelty. Especially in the object manipulation tasks, data from CEE-US shows
a clear advantage. Tasks with more objects could not be solved with the amount of data collected.

Table 3: Success rates on tasks with offline RL trained from exploration data generated during the
intrinsic phase with the respective method. Using CQL and HER on the data for each task, we see
that CEE-US creates much more useful data for offline learning.

Domain Task Disagreement [16] RND [17] ICM [6] MLP + iCEM CEE-US

PLAYGROUND Locomotion 0.05± 0.01 0.35± 0.05 0.01± 0.0 1.0± 0.0 1.0± 0.0
500k datapoints Relocate 1 obj. 0.06± 0.01 0.06± 0.0 0.06± 0.01 0.2± 0.06 0.9± 0.01

CONSTRUCTION Reach 0.09± 0.01 0.19± 0.05 0.2± 0.03 0.65± 0.09 0.94± 0.04
600k datapoints Pick & Place 1 obj. 0.07± 0.0 0.07± 0.0 0.07± 0.01 0.18± 0.06 0.43± 0.07

4 Related Work

Intrinsic motivation in RL Prediction error [5, 6, 31], novelty and Bayesian surprise [20, 32, 33],
learning progress [5, 32, 34], empowerment [35, 36] and count-based metrics [17, 27] are among the
popular intrinsic reward signal definitions used in RL. These intrinsic rewards are either used to aid

2https://martius-lab.github.io/cee-us
3We are using the implementation from the d3rlpy library [29]
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exploration in challenging tasks with sparse task rewards or in a task-agnostic setup where they are the
only rewards. Algorithms using the task-agnostic setting follow two routes to solve downstream tasks:
(i) they re-label the collected data during intrinsic exploration with the downstream task reward and
perform offline RL [18, 27, 37] or (ii) they use snapshots of the exploration policy for bootstrapping
and fine-tune them on downstream tasks [25, 38]. The first variant does not require additional
interaction with the environment, however, additional training of a new policy is still necessary. In
addition, offline RL struggles with the distribution shift, while we show that a good world model can
generalize better. The second variant suffers from another inherent issue: the emerging behaviors of
the exploration policy are lost during training. Although Groth et al. [38] address this problem by
snapshotting and performing hierarchical RL, this is more of a bandaid solution. Many intrinsically
motivated learning systems use a goal-achieving setting with predefined goal spaces [32, 34, 39, 40]
or auxiliary tasks [41]. The differences in the existing paradigms are highlighted in Table 1. Methods
such as ICM [6] rely on retrospective intrinsic motivation (here prediction error), i.e. the agent has
to already be in the next state to assess how novel that state is. In order to accommodate planning
for multi-step intrinsic motivation signals into the future, we need a way to predict them. Haber
et al. [42], for instance, do so by learning a loss model to predict the prediction error at future time
steps. Another line of research, including our method, uses the disagreement of an ensemble of
world models to estimate the predictive information gain as the intrinsic motivation measure [16, 18].
Plan2Explore [18] shares similarities to our approach in the task-agnostic exploration phase, using
multi-step ensemble disagreement as intrinsic reward. It works with a latent dynamics prediction
model and has been applied to domains with image observations. However, Plan2Explore does not
use structured world models and lacks mechanisms to achieve combinatorial generalization that is
beneficial for sample-efficient exploration in object manipulation tasks.

Relational Networks Several works showcase improved dynamics prediction performance in
environments with interacting entities using structured world models [43–45]. Kipf et al. [43] uses a
GNN to learn the latent transition dynamics in simple manipulation tasks with 2D shapes and 3D
blocks from images. However, they use an object-factorized action space and do not tackle exploration
but rely on an external dataset. Sanchez-Gonzalez et al. [44] applies GNNs to learn the dynamics
of physical bodies, where the entities correspond to joints, also without active exploration. Driess
et al. [46] uses GNNs and NERFs to obtain object-centric representations from images and RRT
planners. Biza et al. [47] also utilizes the combinatorial generalization of structured world models to
achieve zero-shot task generalization. However, the policy uses parameterized high-level actions and
the world model is learned on an offline expert dataset, thus sidestepping the exploration challenge.
Outside the model-based paradigm, Li et al. [24] achieves block stacking in CONSTRUCTION using a
GNN policy, attention and tailored learning curriculum. In contrast, we use GNNs for computing
intrinsic rewards and online planning.

Curiosity in Object-Centric RL Watters et al. [48] deploy curious exploration with retrospective
prediction error as an intrinsic reward in an object-centric setting with image inputs and a pre-trained
vision model for object discovery, but without object-object interactions. In Seitzer et al. [49], an
object-centric causal action-influence is used as an intrinsic reward to improve sample efficiency.

5 Discussion

In this work, we present CEE-US that combines the learning of GNNs as structured world models
with curiosity-driven, planning-based exploration. We tackle a significant challenge that is not often
addressed in existing intrinsically motivated RL works: guiding exploration towards potentially useful
components of the environment. By approximating information gain via world models injected with
relational inductive biases, CEE-US focuses on the interactions between entities in the environment.
Maximizing future information gain via multistep forward-planning enables CEE-US to discover
interaction-rich behaviors more efficiently than the exploration-policy-based baselines, as well as
planning-based paradigms without structured world models.

After the intrinsic free-play phase, we use the learned GNNs to solve downstream tasks with
model-based planning and zero-shot without any additional training. CEE-US can achieve zero-
shot generalization without the need for an additional policy learning step, a strength of CEE-US
that is missing from all the baselines. We show that even non-structured MLPs achieve zero-shot
generalization on some tasks, albeit with lower success rates. This indicates that there are benefits
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to learning good world models and utilizing them for control even without any further structural
biases. This also ties into knowledge-based intrinsic motivation, as the experience gathered during
free play is distilled and stored in the learned world models instead of being dismissed. It is important
to note that using model-based planning during the intrinsic phase does not restrict us to model-based
approaches in the extrinsic phase. The learned model could also be used to extract a task policy later
using model-based policy optimization [50] or to perform offline RL on the data generated during
free play, which we demonstrate in Sec. 3.4.

Despite the sample efficiency, there are some limitations to model-based online planning. The
complexity of behaviors discovered in free play is upper-bounded by the finite planning horizon.
The same also applies to the extrinsic phase, where solving tasks like throwing objects or solving
multistep manipulation tasks require longer planning horizons without extensive reward shaping.

Although CEE-US currently uses proprioceptive state information, we do not assume access to any
privileged information such that there are no fundamental limitations prohibiting us from applying it
to real robots. Following Kipf et al. [43] and Watters et al. [48], CEE-US can also be extended to
deal with image inputs and use methods like SCALOR [51] to extract object-centric unsupervised
representations. The differentiation between agent and objects can be identified unsupervised [52].

The demonstrated sample efficiency in the unsupervised learning of capable world models opens
new avenues for learning directly on real hardware. To put the training time into context, 45 training
iterations correspond to 1h of interaction time. So our downstream performance in CONSTRUCTION
was achieved after about 6.5h of free-play from scratch.
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