Supplementary Material

A Omitted Technical Preliminaries

Here we record definitions and facts that will be used in our proofs.

Definition A.1 (Pairwise Correlation). The pairwise correlation of two distributions with proba-
bility mass functions (pmfs) Dy, Do : {0,1}™ — R, with respect to a distribution with pmf
D : {0,1}™ — R,, where the support of D contains the supports of D; and Dy, is de-

fined as xp(D1,D2) + 1 ef > wefo,1pm D1(x)D2()/D(x). We say that a collection of s dis-

tributions D = {D1,..., Dy} over {0,1}* is (v, B)-correlated relative to a distribution D if
IXxp(D;, Dj)| < ~yforalli # j,and |xp(D;, D;)| < pfori=j.

The following notion of dimension effectively characterizes the difficulty of the decision problem.

Definition A.2 (SQ Dimension). For v, 3 > 0, a decision problem 5(D, D), where D is fixed and
D is a family of distributions over {0, 1}, let s be the maximum integer such that there exists
Dp C D such that Dp is (v, §)-correlated relative to D and |Dp| > s. We define the Statistical
Query dimension with pairwise correlations (v, ) of B to be s and denote it by SD(B, v, 3).

The connection between SQ dimension and lower bounds is captured by the following lemma.

Lemma A.3 ([EGR™17]). Let B(D, D) be a decision problem, where D is the reference distribution
and D is a class of distributions over {0, 1}M. For v, 3 > 0, let s = SD(B,~, B). Any SQ algorithm
that solves 1B with probability at least 2 /3 requires at least s -~/ 3 queries to the STAT (\/27) oracles.

We have the following fact about the chi-squared inner product in the discrete setting.
Fact Ad. For distributions P,Q over {0,1}, we have that 1 + Xy, (P,Q) =
2repn P(TDQ(T).

We will also use the following standard fact:

Fact A.5. Let m,M € 7, with m < M. For any constant 0 < ¢ < 1 and M > 2m/c, there
exists a collection C of 2°%<(™) subsets S C [M] such that any pair S, S’ € C, with S # S, satisfies
SN S| < cem.

In fact, an appropriate size set of random subsets satisfies the above statement with high proba-
bility.

The following correlation lemma states that the distributions Pg‘ are nearly orthogonal as long
as A satisfies the nearly moment-matching condition.

Lemma A.6 (Correlation Lemma [DKS22|)). Let k,m, M € Z with k < m < M. If the distribu-
tion A on [m] U {0} satisfies Condition[3.3] then for all S, S’ C [M] with |S| = |S’| = m, we have
that

Ixv,, (P2, Pa)| < (1SN S| /m)T1x%(A, Bin(m, 1/2)) + kv? . ()

B Omitted Proofs from Section

B.1 Proof of Proposition 3.5]
Let C be a collection of s = 2™ subsets S C [M] with |S| = m whose pairwise intersections

are all less than m /2. By Fact (taking the local parameter ¢ = 1/2), such a set is guaranteed to
exist. We then need to show that for S, S’ € C, we have that [xyr, (Pé”fgp, P’é,ii’ﬂ is small. Since
Uty Pg,’f P, and P’;,’ﬁ:b all assign y = 1 with probability p, it is not hard to see that

AB.p pA,B, A,B, A,B,
xvy, (Psias s Plal) = P XU, y=1 ((Ps,a,bp ly=1),Pgay ly= 1)) +

A,B, A,B,
(1-7) XUply=-1 ((PS,yu,bp ly=—-1), (PS’,a,f ly= *1)>
= pxwu (P5.P§) + (1 - p) xv,, (PE.PS).
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By LemmalA.6] for S, 5" € C with S # S, it holds that
Xur, (PGl Pylihy < kv + 27 (x*(A, Bin(m, 1/2)) + x*(B, Bin(m, 1/2))) < 7.
If S = 5’, a similar computation shows that
xup, (g’ Paii’) = X*(Pg il URy) < X°(A, Bin(m, 1/2)) + x*(B, Bin(m, 1/2)) .

Lety = 7 and 8 = x2(4, Bin(m, 1/2)) + x2(B, Bin(m, 1/2)). We have that the Statistical Query
dimension of this testing problem with correlations (v, 3) is at least s. Then applying Lemma
with (-, 8) completes the proof.

B.2 Proof of Lemma[3.8]

The conditions on p define a linear program (LP). We will show that this LP is feasible by showing
that the dual LP is infeasible. The dual LP asks for a degree at most k real polynomial g(x) such that

s—1

l9(0)] = (1/11) Z la()] -

? —S

Consider the parameterization p(6) = ¢(ssin(f)). We will leverage the fact that p(f) is a degree-k
polynomial in €'’ and e =%, In particular, p(f) can be written as

k
p0) = Y a;ei’,
j=—k

for some complex coefficients a; € C. By normalizing, we can assume that Z?:_ e lag |2 = 1. Then,
for any 6, we have that

k
p@)| < Y layl = O(VE),

j=—Fk

where the final inequality follows from the Cauchy-Schwarz. In particular, |¢(0)| = |p(0)| = O(Vk).
In addition, for any 6, by Cauchy-Schwarz, we have that

k k
PO =] ja;e?? < > illa;] <

j==k j==k
Finally, we note that
1 2m k
2 Z 2

j=—k

Combining the latter with the fact that |p(8)| = O(v/k), we obtain that

| @i =),

For any 6 € [0, 27], let n(6) be the closest ¢ € [0, 27| such that ssin(¢) is an integer in {1 — 5,2 —
s,...,5 — 1}. Itis not hard to see that |n(f) — 6] = O(s~'/?) for all such 6. Furthermore, we have
that

[p(n(60)) = p(0)] < |n(6) = 6] sup |p/(6")] < O(KY?s71/2).
0’€[0,27]

‘We can thus write

Q(k1/?) = / " p(0)]d < / " p(n(0))]d0 + O(k*254/2) |
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Therefore,

/27r [p(n(6))]d8 > Q(k~/?) .
0

On the other hand, each value of p(n(6)) is equal to the value of ¢ evaluated at some integer between
1 — s and s — 1. Furthermore, it is not hard to see that each such integer occurs for at most a total of
O(s~1/2) range of 0’s. Therefore, we get that

s—1

O(s™2) > g(i)| = Qk™/?) .

i=1—s

Combining with the fact that |¢(0)| = O(k'/?), this shows that it is impossible that

9O >1/4 3 lafi)] -

1=1—s

This completes our proof.

C Omitted Proofs from Section 4]

C.1 Proof of Claim 4.2

For a vg the vector whose i’ coordinate is 1 if i € S and 0 otherwise, let g : {0,1}" — {£1} be
defined as g(x) = —1 if and only if vix € J. In this way, we are able to write g as a degree-2d
PTF, i.e., g(x) = sign([ ], ;(vix — 2)?). Therefore, there exists some LTF L : R™ — {41} such
that g(x) = L(x') = L(Va24(x)) for all x. We now bound the error for LTF L under the distribution
(X', Y”). By the law of total probability, we have that

Prexy [V # LX) = Prx v [Y # g(X)]
<Prx Y #9(X) | Y =1+ Prx Y #9X) | Y = -1].

We note that our hard distribution returns (x',y’) with y* = L(x'), unless it picked a sample
corresponding to a sample of D_ coming from J, therefore,

Prix yny [V # LX) < Prxy)[Y #9(X) |V =-1] <,

which implies that OP Tyjass < ¢ < exp(—Q(log(M)3/?)). We then show that (X', Y”) is a Massart
LTF distribution with noise rate upper bound of 7 = 1/3. For any fixed x’ € R, we have that

PI‘(X/7yx)[Y' =1 | X' = X/] . Pr(xﬁy)[Y =1 ‘ X = X]
PI‘(X/’Y/)[Y/ =—-1 | X/ = X/] o Pr(XA,Y) [Y =1 | X = X]
Prx vV =1 -Prxy)X=x|Y =1] D41 - PS*(x) _ Dy (vEx)
T

Prxy)[Y = -1] - Prx )X =x[Y=-1 |p_|,-P] (x) D-(vix)’

Therefore, if vgx € J, the above ratio will be 0 and L(x') = —1, which means that the noise rate
n(x’") = 0; otherwise the above ratio will be at least 2 (since D, > 2D_ on J by property 1(b) of
Proposition [3.6) and L(x’) = 1, which means that 7(x’) < 1/3. This completes the proof of the
claim.

C.2 Proof of Claim 4.3

Let v be the vector whose i coordinate is 1 if i € S and 0 otherwise. By Lemma [4.4] there
is a real univariate polynomial p of degree O(d) such that p(vix) = 1,vix € J and p(vix) <
0,vix ¢ J. Let g(x) := ReLU(p(vix)). Since the absolute value of every coefficient of p is
at most mP(@ = poly (M), by our definition, the total weight of the corresponding neuron g is
at most mP@ = poly(M). Therefore, there exists some ReLU function L : R™ — R such

16



that g(x) = L(x') = L(Vp(a)(x)) for all x. We now bound the error for L under the distribution
(X',Y"). By the law of total expectation, we have that

Ex ) [ = LX))*] = Ex,y) [(V = 9(X))’]
<Exy) [(Y —9X)? Y =1]+Exy) [(Y —g(X)* | Y =-1] .

We note that our hard distribution returns (X', Y") with Y’ = L(X’), unless it picked a sample
corresponding to a sample of D_ coming from J, therefore,

E(X/yy/) [(Y/ — L(X/))z] S E(X,Y) [(Y - g(X))2 | Y = 1] S 4C :

which implies that OPTyp.es < 4¢ < exp(—Q(log(M)®/?)). We then show that (X', Y”) is a

Massart single neuron distribution with ReLU activation and with noise rate upper bound of n = 1/3.
For any fixed x’ € RM, we have that

Prix/y)[Y'=-1|X'=x'] PrxyY =-1|X=x]

Pr(xl)yl)[yl =1 | X/ = X/] o Pr(x7y) [Y =1 ‘ X = X]
D
_ Pr(xvy)[y = —].] . PI‘(X,y)[X =X ‘ Y = —1] _ “D+||1 . PSJr(X) _ D+(V§X)
Prx )Y =1] - Prxv)[X=x|Y =1] ID_|,- Py (x) D-(v§x)
Therefore, if vix € J, the above ratio will be 0 and L(x’) = —1, which means that the noise rate

n(x’) = 0; otherwise the above ratio will be at least 2 (since D, > 2D_ on J by property 1(b) of
Proposition and L(x’) = 1, which means that n(x’) < 1/3. This completes the proof of the
claim.

D SQ Hardness of Learning a Single Neuron with L,-Massart Noise

In this section, we prove our SQ hardness result of learning a single neuron with fast convergent
activations and Lo-Massart noise. Without loss of generality, we consider activations which converge
on the negative side. For such an activation f, let f_ := f(—o0) and ¢ be a constant such that
f(ey) # f—. The main theorem of this section is the following.

Theorem D.1 (SQ Hardness of Ly-Massart Learning). Let f : R — R be a fast convergent activation.
Any SQ algorithm that learns a single neuron with activation f on RM, in the presence of 1-Lo-

. _ 2
Massart noise with n = w to squared error better than 1/poly(log(M)) requires either

queries of accuracy better than 7 := exp(—Q(log(M)*9%)) or at least 1/ statistical queries. This
holds even if:

1. The optimal neuron has squared error OPTypass 12 < exp(—Q(log(M)3/9)),

2. The X values are supported on {0,1}M, and

3. The total weight of the neuron is poly(M).

Proof. Our proof will make use of the SQ framework of Section [3.1]and will crucially rely on the
one-dimensional construction of Proposition In this section, we fix the labels a = f_,b = f(c4),
and apply the construction in Section [3.3]to obtain the joint distributions (X,Y") and (X', Y”). Note
that y = ¢ and there is a known 1-1 mapping between x and x’, therefore finding a hypothesis that
predicts ¢’ given x’ is equivalent to finding a hypothesis for y given x.

Claim D.2. The distribution (X',Y") on {0,1}M x {f_, f(c4)} is an La-Massart single neu-
ron distribution with respect to activation f, it has optimal squared error OPT\jass-120 <

exp(—Q(log(M)8/?)) and Lo-Massart noise rate upper bound of 1 = W.

Proof. We assume M > |c, | to be sufficiently large. Let vg be the vector whose i*" coordinate

is 1if ¢ € S and 0 otherwise. By Lemma there is a real univariate polynomial g(z) of degree
O(d) such that g(x) = 1,V € J and ¢(z) < 0,Vz € J. Let p(x) = (¢4 + M)q(xz) — M and
g(x) = f(p(vEx)). By definition, we have that p(z) = ¢, forz € J and p(z) < —M forz € J.
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Since the absolute value of every coefficient of p is at most mP(4) = poly(M), the weight of the
corresponding neuron g is at most m©(® = poly(M). Therefore, there exists some fast convergent
activation L : R™ — R such that g(x) = L(x’) = L(V(a)(x)) for all x. We now bound the error
for L under the distribution (X', Y”). We note that conditional on Y = f_, we will always have that
vEx ¢ J and conditional on Y = f(c; ), we will have that vix ¢ .J with probability at most C.
Therefore, by the law of total expectation, we have that

Ex/ v (Y = L(X))?] = Egx,y) [(Y — 9(X))?]

<Expl(Y —9(X)? |V = f-]+ Ex (Y — 9(X))* | Y = f(cs)]
SExyl(f- —9(X)? Y = f] + 20Ex ) [(f- = fle) + (f- = g(X)? | vEX ¢ JY = f(cy)]
< 1/poly(M) +2¢ - (1/poly (M) + (f- — f(c+))?)

9

< exp(—Q(log(M)*?)) + exp(=Q(log(M)*?)) - (1/poly (M) + (f- = f(c+))?)

< exp(—Q(log(M)¥?))
where the third inequality follows from the definition of fast convergent activation. Therefore, we
have that OP Tyjass 1.2 < exp(—Q(log(M)3/?)). We then show that (X', Y”) is a Lo-Massart single
neuron distribution with activation f and with noise rate upper bound of n = M. Note
that for any x € R™ , if vix € J, then g(x) = f(p(vLx)) = f(cy) and Y will always be f(c, ),
which implies that the error will always be 0. Hence, we assume that vix ¢ J and have that

Pr(xvy) [Y = f, | X = X] _ PI‘(X,y) [Y = f,] . Pr(x_’y) [X =X | Y = f,]
Prxw)[Y = flcr) | X =x]  Prxy)[Y = flcy)] - Prxy)[X=x|Y = f(cy)]
D] -Pet (%) Di(vEX)
Dl PG (x) D-(vix) ~

which implies that Pr(x y)[Y = f(cy) | X = x| < 1/3. Therefore,

Ex yn[(Y = L(X)? [ X' = x| = Ex ) [(Y —9(X))* | X = %]
= (fley) —9(x)*Prx v)[Y = fleg) | X =x] + (f- —9(x)*Prx )Y = f- | X =%
(fley) —g(x))? 2((fleq) = [+ (f- —9(x))?)

< 2 +(f- —9(x))? < 3 +(f- — 9(x))?
2 —f-)? 8 —f)?
where the third inequality follows from v x ¢ J and the definition of fast convergent activation.
This completes the proof of the claim. O

We now show that the (D, D_, f_, f(cs), m’)-Hidden Junta Testing Problem efficiently re-
duces to our learning task. In more detail, we show that any SQ algorithm that computes a hypothesis

R satistying Ex/ v [(F/(X') = Y")?] < p(1—p)(f- — f(c4+))? —2/27 can be used as a black-box

D+,

to distinguish between P g D= for some unknown subset S C [m/] with | S| = m, and UP,. Since

there is a 1-1 mapping between x € {0,1}™ and x’ € {0,1}™, we denote h : {0,1}"™ — R to be
h(x) = h/(x"). We note that we can (with one additional query to estimate the E[(h/(X’) — Y)?]

within error v/27) distinguish between (i) the distribution P?;:bp’ P and (ii) the distribution ur,.
This is because for any h we have that
Ex y)~ue, [(h(X) = Y)’] = Exx yyaor, [MX)?] = 2Ex yyour, IMX)]Ex v)~oe, [Y]
+Exy)~ur, [Y?]
> Ex y)~ur, [h(X)]? — 2E (X,Y)~UP, [h(X)]E(X,Y)NUf;/ [Y]
+Ex vz, [V ]

> Ex,y)~ur, [Y? - Exy)~ur, [Y]? = p(1 —p)(f- — fleq))?
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Applying Proposition[3.5] we determine that any SQ algorithm which, given access to a distribution
P so that either P = U?,, or P is given by P?_:;f”p for some unknown subset S C [m/] with
|S| = m, correctly distinguishes between these two cases with probability at least 2/3 must either
make queries of accuracy better than /27 or must make at least 2™ 7 /(x?(A, Bin(m, 1/2)) +
x%(B, Bin(m, 1/2))) statistical queries. Therefore, it is impossible for an SQ algorithm to learn a hy-
pothesis with error better than p(1—p)(f_ — f(c4))?>—2v27 = O(1/s) —O(y/7) = 1/polylog(M)
without either using queries of accuracy better than 7 or making at least 2°*(") 7 /polylog(M) > 1/
many queries. This completes the proof of Theorem[D.1]
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