Supplementary Material

A Omitted Technical Preliminaries

Here we record definitions and facts that will be used in our proofs.

Definition A.1 (Pairwise Correlation). The pairwise correlation of two distributions with probability mass functions (pmfs) $D_1, D_2 : \{0, 1\}^M \rightarrow \mathbb{R}_+$ with respect to a distribution with pmf $D : \{0, 1\}^M \rightarrow \mathbb{R}_+$, where the support of D contains the supports of D_1 and D_2, is defined as $\chi_D(D_1, D_2) = \sum_{x \in \{0, 1\}^M} D_1(x) D_2(x)/D(x)$. We say that a collection of s distributions $\mathcal{D} = \{D_1, \ldots, D_s\}$ over $\{0, 1\}^M$ is (γ, β)-correlated relative to a distribution D if $|\chi_D(D_i, D_j)| \leq \gamma$ for all $i \neq j$ and $|\chi_D(D_i, D_j)| \leq \beta$ for $i = j$.

The following notion of dimension effectively characterizes the difficulty of the decision problem.

Definition A.2 (SQ Dimension). For $\gamma, \beta > 0$, a decision problem $\mathcal{B}(\mathcal{D}, D)$, where D is fixed and \mathcal{D} is a family of distributions over $\{0, 1\}^M$, let s be the maximum integer such that there exists $\mathcal{D}_D \subseteq \mathcal{D}$ such that \mathcal{D}_D is (γ, β)-correlated relative to D and $|\mathcal{D}_D| \geq s$. We define the Statistical Query dimension with pairwise correlations (γ, β) of \mathcal{B} to be s and denote it by $\text{SD}(\mathcal{B}, \gamma, \beta)$.

The connection between SQ dimension and lower bounds is captured by the following lemma.

Lemma A.3 ([FGR+17]). Let $\mathcal{B}(\mathcal{D}, D)$ be a decision problem, where D is the reference distribution and \mathcal{D} is a class of distributions over $\{0, 1\}^M$. For $\gamma, \beta > 0$, let $s = \text{SD}(\mathcal{B}, \gamma, \beta)$. Any SQ algorithm that solves \mathcal{B} with probability at least $2/3$ requires at least $s \cdot \gamma/\beta$ queries to the $\text{STAT}(\sqrt{2\gamma})$ oracles.

We have the following fact about the chi-squared inner product in the discrete setting.

Fact A.4. For distributions P, Q over $\{0, 1\}^M$, we have that $1 + \chi_M(P, Q) = \sum_{T \subseteq [M]} \tilde{P}(T) \tilde{Q}(T)$.

We will also use the following standard fact:

Fact A.5. Let $m, M \in \mathbb{Z}_+$ with $m \leq M$. For any constant $0 < c < 1$ and $M > 2m/c$, there exists a collection C of $2^{\Omega(m)}$ subsets $S \subseteq [M]$ such that any pair $S, S' \in C$, with $S \neq S'$, satisfies $|S \cap S'| < cm$.

In fact, an appropriate size set of random subsets satisfies the above statement with high probability.

The following correlation lemma states that the distributions P_S^A are nearly orthogonal as long as A satisfies the nearly moment-matching condition.

Lemma A.6 (Correlation Lemma [DKS22]). Let $k, m, M \in \mathbb{Z}_+$ with $k \leq m \leq M$. If the distribution A on $[m] \cup \{0\}$ satisfies Condition 3.3, then for all $S, S' \subseteq [M]$ with $|S| = |S'| = m$, we have that

$$|\chi_M(P_S^A, P_{S'}^A)| \leq (|S \cap S'|/m)^{k+1} \chi^2(A, \text{Bin}(m, 1/2)) + ku^2.$$ (1)

B Omitted Proofs from Section 3

B.1 Proof of Proposition 3.5

Let \mathcal{C} be a collection of $s = 2^{\Omega(m)}$ subsets $S \subseteq [M]$ with $|S| = m$ whose pairwise intersections are all less than $m/2$. By Fact A.5, taking the local parameter $c = 1/2$, such a set is guaranteed to exist. We then need to show that for $S, S' \in \mathcal{C}$, we have that $|\chi_M(P_{S,a,b}^A, P_{S',a,b}^A)|$ is small. Since $U_m^p, P_{S,a,b}^A, P_{S',a,b}^A$, and $P_{S,a,b}^{A,B,p}$ all assign $y = 1$ with probability p, it is not hard to see that

$$\chi_M(U_m^p(P_{S,a,b}^A, P_{S',a,b}^A) = p \chi_M(U_m|y=1\left[P_{S,a,b}^{A,B,p} | y = 1\right], \left[P_{S,a,b}^{A,B,p} | y = 1\right]) + (1-p) \chi_M(U_m|y=-1\left[P_{S,a,b}^{A,B,p} | y = -1\right], \left[P_{S,a,b}^{A,B,p} | y = -1\right]),$$

$$= p \chi_M(P_S^A, P_{S'}^A) + (1-p) \chi_M(P_S^B, P_{S'}^B).$$
By Lemma A.6, for $S, S' \in C$ with $S \neq S'$, it holds that
\[
\chi_{U_m^p}(P_{S,a,b}^{A,B,p}, P_{S',a,b}^{A,B,p}) \leq k\tau^2 + 2^{-k}(\chi^2(A, \text{Bin}(m, 1/2)) + \chi^2(B, \text{Bin}(m, 1/2))) \leq \tau.
\]
If $S = S'$, a similar computation shows that
\[
\chi_{U_m^p}(P_{S,a,b}^{A,B,p}, P_{S',a,b}^{A,B,p}) = \chi^2(P_{S,a,b}^{A,B,p}, U_m^p) \leq \chi^2(A, \text{Bin}(m, 1/2)) + \chi^2(B, \text{Bin}(m, 1/2)).
\]
Let $\gamma = \tau$ and $\beta = \chi^2(A, \text{Bin}(m, 1/2)) + \chi^2(B, \text{Bin}(m, 1/2))$. We have that the Statistical Query dimension of this testing problem with correlations (γ, β) is at least s. Then applying Lemma A.3 with (γ, β) completes the proof.

B.2 Proof of Lemma 3.8

The conditions on μ define a linear program (LP). We will show that this LP is feasible by showing that the dual LP is infeasible. The dual LP asks for a degree at most k real polynomial $q(x)$ such that
\[
|q(0)| \geq (1/11) \sum_{i=1-s}^{s-1} |q(i)|.
\]
Consider the parameterization $p(\theta) = q(s \sin(\theta))$. We will leverage the fact that $p(\theta)$ is a degree-k polynomial in $e^{i\theta}$ and $e^{-i\theta}$. In particular, $p(\theta)$ can be written as
\[
p(\theta) = \sum_{j=-k}^{k} a_j e^{ij\theta},
\]
for some complex coefficients $a_j \in \mathbb{C}$. By normalizing, we can assume that $\sum_{j=-k}^{k} |a_j|^2 = 1$. Then, for any θ, we have that
\[
|p(\theta)| \leq \sum_{j=-k}^{k} |a_j| = O(\sqrt{k}) ,
\]
where the final inequality follows from the Cauchy-Schwarz. In particular, $|q(0)| = |p(0)| = O(\sqrt{k})$. In addition, for any θ, by Cauchy-Schwarz, we have that
\[
|p'(\theta)| = \left\| \sum_{j=-k}^{k} ja_j e^{ij\theta} \right\| \leq \sum_{j=-k}^{k} |j| |a_j| \leq \sqrt{\sum_{j=-k}^{k} j^2} = O(k^{3/2}) .
\]
Finally, we note that
\[
\frac{1}{2\pi} \int_0^{2\pi} |p(\theta)|^2 d\theta = \sum_{j=-k}^{k} |a_j|^2 = 1 .
\]
Combining the latter with the fact that $|p(\theta)| = O(\sqrt{k})$, we obtain that
\[
\int_0^{2\pi} |p(\theta)| d\theta = \Omega(k^{-1/2}) .
\]
For any $\theta \in [0, 2\pi)$, let $n(\theta)$ be the closest $\phi \in [0, 2\pi]$ such that $s \sin(\phi)$ is an integer in $\{1 - s, 2 - s, \ldots, s - 1\}$. It is not hard to see that $|n(\theta) - \theta| = O(s^{-1/2})$ for all such θ. Furthermore, we have that
\[
|p(n(\theta)) - p(\theta)| \leq |n(\theta) - \theta| \sup_{\theta' \in [0, 2\pi]} |p'(\theta')| \leq O(k^{3/2} s^{-1/2}) .
\]
We can thus write
\[
\Omega(k^{-1/2}) = \int_0^{2\pi} |p(\theta)| d\theta \leq \int_0^{2\pi} |p(n(\theta))| d\theta + O(k^{3/2} s^{-1/2}) .
\]
Therefore,

\[
\int_{0}^{2\pi} |p(n(\theta))|d\theta \geq \Omega(k^{-1/2}).
\]

On the other hand, each value of \(p(n(\theta)) \) is equal to the value of \(q \) evaluated at some integer between \(1 - s \) and \(s - 1 \). Furthermore, it is not hard to see that each such integer occurs for at most a total of \(O(s^{-1/2}) \) range of \(\theta' \)'s. Therefore, we get that

\[
O(s^{-1/2}) \sum_{i=1-s}^{s-1} |q(i)| \geq \Omega(k^{-1/2}).
\]

Combining with the fact that \(|q(0)| = O(k^{1/2}) \), this shows that it is impossible that

\[
|q(0)| \geq 1/4 \sum_{i=1-s}^{s-1} |q(i)|.
\]

This completes our proof.

C Omitted Proofs from Section 4

C.1 Proof of Claim 4.2

For a \(v_S \) the vector whose \(i^{th} \) coordinate is 1 if \(i \in S \) and 0 otherwise, let \(g : \{0,1\}^{m'} \rightarrow \{\pm 1\} \) be defined as \(g(x) = -1 \) if and only if \(v_S^T x \in J \). In this way, we are able to write \(g \) as a degree-2d PTF; i.e., \(g(x) = \text{sign}(\prod_{j \in J} (v_S^T x - z_j^2)) \). Therefore, there exists some LTF \(L : \mathbb{R}^M \rightarrow \{\pm 1\} \) such that \(g(x) = L(x') = L(V_{2d}(x)) \) for all \(x \). We now bound the error for LTF \(L \) under the distribution \((X',Y') \). By the law of total probability, we have that

\[
\Pr_{(X,Y')}[Y' \neq L(X')] = \Pr_{(X,Y)}[Y \neq g(X)]
\]

\[
\leq \Pr_{(X,Y)}[Y \neq g(X) | Y = 1] + \Pr_{(X,Y)}[Y \neq g(X) | Y = -1].
\]

We note that our hard distribution returns \((x',y') \) with \(y' = L(x') \), unless it picked a sample corresponding to a sample of \(D_- \) coming from \(J \), therefore,

\[
\Pr_{(X,Y')}[Y' \neq L(X')] \leq \Pr_{(X,Y)}[Y \neq g(X) | Y = -1] \leq \zeta,
\]

which implies that \(\text{OPT}_{\text{Mass}} \leq \zeta \leq \exp(-\Omega(\log(M)^{8/9})) \). We then show that \((X',Y') \) is a Massart LTF distribution with noise rate upper bound of \(\eta = 1/3 \). For any fixed \(x' \in \mathbb{R}^M \), we have that

\[
\frac{\Pr_{(X',Y')}[Y' = 1 | X' = x']}{\Pr_{(X',Y')}[Y' = -1 | X' = x']} = \frac{\Pr_{(X,Y')}[Y = 1 | X = x]}{\Pr_{(X,Y')}[Y = -1 | X = x]}
\]

\[
= \frac{\Pr_{(X,Y)}[Y = 1] \cdot \Pr_{(X,Y)}[X \in X' | Y = 1]}{\Pr_{(X,Y)}[Y = -1] \cdot \Pr_{(X,Y)}[X \in X' | Y = -1]} = \frac{\|D_+\|_1 \cdot \Pr_{S}^{D_+}(x)}{\|D_-\|_1 \cdot \Pr_{S}^{D_-}(x)} = \frac{D_+(v_S^T x)}{D_-(v_S^T x)}.
\]

Therefore, if \(v_S^T x \in J \), the above ratio will be 0 and \(L(x') = -1 \), which means that the noise rate \(\eta(x') = 0 \); otherwise the above ratio will be at least 2 (since \(D_+ > 2D_- \) on \(J \) by property 1(b) of Proposition 3.6) and \(L(x') = 1 \), which means that \(\eta(x') \leq 1/3 \). This completes the proof of the claim.

C.2 Proof of Claim 4.5

Let \(v_S \) be the vector whose \(i^{th} \) coordinate is 1 if \(i \in S \) and 0 otherwise. By Lemma 4.4 there is a real univariate polynomial \(p \) of degree \(O(d) \) such that \(p(v_S^T x) = 1 \) if \(v_S^T x \in J \) and \(p(v_S^T x) \leq 0 \), \(v_S^T x \notin J \). Let \(g(x) := \text{ReLU}(p(v_S^T x)) \). Since the absolute value of every coefficient of \(p \) is at most \(m^{O(d)} = \text{poly}(M) \), by our definition, the total weight of the corresponding neuron \(g \) is at most \(m^{O(d)} = \text{poly}(M) \). Therefore, there exists some \(\text{ReLU} \) function \(L : \mathbb{R}^M \rightarrow \mathbb{R} \) such
that \(g(x) = L(x') = L(V_{O(d)}(x)) \) for all \(x \). We now bound the error for \(L \) under the distribution \((X', Y')\). By the law of total expectation, we have that

\[
E_{(X', Y')}[(Y' - L(X'))^2] = E_{(X, Y)}[(Y - g(X))^2] \\
\leq E_{(X, Y)}[(Y - g(X))^2 \mid Y = 1] + E_{(X, Y)}[(Y - g(X))^2 \mid Y = -1].
\]

We note that our hard distribution returns \((X', Y')\) with \(Y' = L(X') \), unless it picked a sample corresponding to a sample of \(D_- \) coming from \(J \), therefore,

\[
E_{(X', Y')}[(Y' - L(X'))^2] \leq E_{(X, Y)}[(Y - g(X))^2 \mid Y = 1] \leq 4\zeta,
\]

which implies that \(\text{OPT}_{\text{Mass}} \leq 4\zeta \leq \exp(-\Omega(\log(M)^{8/9})) \). We then show that \((X', Y')\) is a Massart single neuron distribution with \(\text{ReLU} \) activation and with noise rate upper bound of \(\eta = 1/3 \). For any fixed \(x' \in \mathbb{R}^M \), we have that

\[
\frac{\Pr_{(X', Y')}(Y' = -1 \mid X' = x')}{\Pr_{(X', Y')}(Y' = 1 \mid X' = x')} = \frac{\Pr_{(X, Y)}(Y = -1 \mid X = x)}{\Pr_{(X, Y)}(Y = 1 \mid X = x)}
\]

\[
= \frac{\Pr_{(X, Y)}(Y = -1 \mid X = x \mid Y = -1)}{\Pr_{(X, Y)}(Y = 1 \mid X = x \mid Y = 1)} = \frac{\|D_+\|_1 : P^D_S(x)}{\|D_-\|_1 : P^D_S(x)} = \frac{D_+(v_S^T x)}{D_-(v_S^T x)}.
\]

Therefore, if \(v^T_S x \in J \), the above ratio will be 0 and \(L(x') = -1 \), which means that the noise rate \(\eta(x') = 0 \); otherwise the above ratio will be at least 2 (since \(D_+ > 2D_- \) on \(J \) by property 1(b) of Proposition 3.6) and \(L(x') = 1 \), which means that \(\eta(x') \leq 1/3 \). This completes the proof of the claim.

D SQ Hardness of Learning a Single Neuron with \(L_2 \)-Massart Noise

In this section, we prove our SQ hardness result of learning a single neuron with fast convergent activations and \(L_2 \)-Massart noise. Without loss of generality, we consider activations which converge on the negative side. For such an activation \(f \), let \(f_-= f(-\infty) \) and \(c_+ \) be a constant such that \(f(c_+) \neq f_- \). The main theorem of this section is the following.

Theorem D.1 (SQ Hardness of \(L_2 \)-Massart Learning). Let \(f : \mathbb{R} \to \mathbb{R} \) be a fast convergent activation. Any SQ algorithm that learns a single neuron with activation \(f \) on \(\mathbb{R}^M \), in the presence of \(\eta \)-\(L_2 \)-Massart noise with \(\eta = \frac{2(1+c_+)-f_-}{b} \), to squared error better than \(1/\text{poly}(\log(M)) \) requires either queries of accuracy better than \(\tau := \exp(-\Omega(\log(M)^{1.05})) \) or at least \(1/\tau \) statistical queries. This holds even if:

1. The optimal neuron has squared error \(\text{OPT}_{\text{Mass} - L_2} \leq \exp(-\Omega(\log(M)^{8/9})) \).
2. The \(X \) values are supported on \(\{0, 1\}^M \), and
3. The total weight of the neuron is \(\text{poly}(M) \).

Proof. Our proof will make use of the SQ framework of Section 3.1 and will crucially rely on the one-dimensional construction of Proposition 3.6. In this section, we fix the labels \(a = f_- \), \(b = f(c_+) \), and apply the construction in Section 3.3 to obtain the joint distributions \((X, Y)\) and \((X', Y')\). Note that \(y = y' \) and there is a known 1-1 mapping between \(x \) and \(x' \), therefore finding a hypothesis that predicts \(y' \) given \(x' \) is equivalent to finding a hypothesis for \(y \) given \(x \).

Claim D.2. The distribution \((X', Y')\) on \(\{0, 1\}^M \times \{f_-, f(c_+)\} \) is an \(L_2 \)-Massart single neuron distribution with respect to activation \(f \), it has optimal squared error \(\text{OPT}_{\text{Mass} - L_2} \leq \exp(-\Omega(\log(M)^{8/9})) \) and \(L_2 \)-Massart noise rate upper bound of \(\eta = \frac{2(f(c_+)-f_-)}{b} \).

Proof. We assume \(M > |c_+| \) to be sufficiently large. Let \(v_S \) be the vector whose \(i \)th coordinate is 1 if \(i \in S \) and 0 otherwise. By Lemma 5.4, there is a real univariate polynomial \(q(x) \) of degree \(O(d) \) such that \(q(x) = 1, \forall x \in J \) and \(q(x) \leq 0, \forall x \in J \). Let \(p(x) = (c_+ + M)q(x) - M \) and \(g(x) = f(p(v_S^T x)) \). By definition, we have that \(p(x) = c_+ \) for \(x \in J \) and \(p(x) \leq -M \) for \(x \in J \).
Since the absolute value of every coefficient of \(p \) is at most \(m^{O(d)} = \text{poly}(M) \), the weight of the corresponding neuron \(g \) is at most \(m^{O(d)} = \text{poly}(M) \). Therefore, there exists some fast convergent activation \(L : \mathbb{R}^M \to \mathbb{R} \) such that \(g(x) = L(x') = L(V_{O(d)}(x)) \) for all \(x \). We now bound the error for \(L \) under the distribution \((X', Y') \). We note that conditional on \(Y = f_\cdot \), we will always have that \(v_S^2 \notin J \) and conditional on \(Y = f(c_+) \), we will have that \(v_S^2 \notin J \) with probability at most \(\frac{\zeta}{2} \). Therefore, by the law of total expectation, we have that

\[
E_{(X', Y')}[(Y' - L(X))^2] = E_{(X, Y)}[(Y - g(X))^2]
\]

\[
\leq E_{(X, Y)}[(Y - g(X))^2 \mid Y = f_\cdot] + E_{(X, Y)}[(Y - g(X))^2 \mid Y = f(c_+)]
\]

\[
\leq E_{(X, Y)}[(f_\cdot - g(X))^2 \mid Y = f_\cdot] + 2\epsilon E_{(X, Y)}[(f_\cdot - f(c_+))^2] + (f_\cdot - g(X))^2 \mid v_S^2 \notin J, Y = f(c_+)
\]

\[
\leq (\epsilon/\text{poly}(M)) + 2\epsilon (1/\text{poly}(M)) + (f_\cdot - f(c_+))^2
\]

\[
= \exp(-\Omega(\log(M)^{8/9})) + \exp(-\Omega(\log(M)^{8/9})) \cdot (1/\text{poly}(M)) + (f_\cdot - f(c_+))^2
\]

\[
\leq \exp(-\Omega(\log(M)^{8/9})�\),
\]

where the third inequality follows from the definition of fast convergent activation. Therefore, we have that \(\text{OPT}_{\text{Mass}} - L_2 \leq \exp(-\Omega(\log(M)^{8/9})) \). We then show that \((X', Y') \) is a \(L_2 \)-Massart single neuron distribution with activation \(f \) and with noise rate upper bound of \(\eta = \frac{2(f(c_+) - f_\cdot)^2}{9} \). Note that for any \(x \in \mathbb{R}^m \), if \(v_S^2 \notin J \), then \(g(x) = \{p(v_S^2 x)\} = f(c_+) \) and \(Y \) will always be \(f(c_+) \), which implies that the error will always be 0. Hence, we assume that \(v_S^2 \notin J \) and have that

\[
\frac{\Pr_{(X, Y)}[Y = f_\cdot \mid X = x]}{\Pr_{(X, Y)}[Y = f(c_+) \mid X = x]} = \frac{\Pr_{(X, Y)}[Y = f_\cdot \mid X = x]}{\Pr_{(X, Y)}[Y = f(c_+) \mid X = x]} = \frac{\mathbb{D}_+ \cdot P_{S}^+(x)}{\mathbb{D}_- \cdot P_{S}^-(x)} = \frac{\mathbb{D}_+(v_S^2 x)}{\mathbb{D}_-(v_S^2 x)} \geq 2,
\]

which implies that \(\Pr_{(X, Y)}[Y = f(c_+) \mid X = x] \leq 1/3. \) Therefore,

\[
E_{(X', Y')}[(Y' - L(X'))^2 \mid X' = x'] = E_{(X', Y')}[(Y' - L(X'))^2 \mid X' = x']
\]

\[
= (f(c_+) - f_\cdot)^2 \Pr_{(X, Y)}[Y = f(c_+) \mid X = x] + (f_\cdot - f(c_+))^2 \Pr_{(X, Y)}[Y = f_\cdot \mid X = x]
\]

\[
\leq \frac{(f(c_+) - f_\cdot)^2}{3} + (f_\cdot - f(c_+))^2 \leq \frac{2((f(c_+) - f_\cdot)^2 + (f_\cdot - f(c_+))^2)}{3} + (f_\cdot - f(c_+))^2
\]

\[
\leq 2(f(c_+) - f_\cdot)^2 + 1/\text{poly}(M) \leq \frac{8(f(c_+) - f_\cdot)^2}{9}.
\]

where the third inequality follows from \(v_S^2 \notin J \) and the definition of fast convergent activation. This completes the proof of the claim. \(\square \)

We now show that the \((D_+, D_-, f_\cdot, f(c_+), m') \)-Hidden Junta Testing Problem efficiently reduces to our learning task. In more detail, we show that any SQ algorithm that computes a hypothesis \(h' \) satisfying \(E_{(X', Y')}[(h'(X') - Y')^2] < p(1 - p)(f_\cdot - f(c_+))^2 - 2\sqrt{\tau} \) can be used as a black-box to distinguish between \(\mathbb{P}_{S_{a,b}, D_+, D_-} \), for some unknown subset \(S \subseteq [m'] \) with \(|S| = m \), and \(U_{m'} \). Since there is a 1-1 mapping between \(\mathbb{E} \in \{0, 1\}^m \) and \(\mathbb{X}_c \in \{0, 1\}^M \), we denote \(h : \{0, 1\}^m \to \mathbb{R} \) to be \(h(x) = h'(x') \). We note that we can (with one additional query to estimate the \(E[(h'(X') - Y')^2] \) within error \(\sqrt{\tau} \)) distinguish between (i) the distribution \(\mathbb{P}_{S_{a,b}, D_+, D_-} \), and (ii) the distribution \(U_{m'} \). This is because for any \(h(x) \) we have that

\[
E_{(X, Y) \sim U_{m'}}[(h(X) - Y)^2] = E_{(X, Y) \sim U_{m'}}[h(X)^2] - 2E_{(X, Y) \sim U_{m'}}[h(X)]E_{(X, Y) \sim U_{m'}}[Y]
\]

\[
+ E_{(X, Y) \sim U_{m'}}[Y^2]
\]

\[
\geq E_{(X, Y) \sim U_{m'}}[h(X)]^2 - 2E_{(X, Y) \sim U_{m'}}[h(X)]E_{(X, Y) \sim U_{m'}}[Y]
\]

\[
+ E_{(X, Y) \sim U_{m'}}[Y^2]
\]

\[
\geq E_{(X, Y) \sim U_{m'}}[Y^2] - E_{(X, Y) \sim U_{m'}}[Y^2] = p(1 - p)(f_\cdot - f(c_+))^2.
\]
Applying Proposition 3.5, we determine that any SQ algorithm which, given access to a distribution \(P \) so that either \(P = U_{m'} \), or \(P \) is given by \(P_{S,a,b}^{D_+,D_-} \) for some unknown subset \(S \subseteq [m'] \) with \(|S| = m \), correctly distinguishes between these two cases with probability at least \(2/3 \) must either make queries of accuracy better than \(\sqrt{2\tau} \) or must make at least \(2^{\Omega(m)} \frac{\tau}{\chi^2(A, \text{Bin}(m, 1/2)) + \chi^2(B, \text{Bin}(m, 1/2))} \) statistical queries. Therefore, it is impossible for an SQ algorithm to learn a hypothesis with error better than \(p(1-p)(f_- - f_+)^2 - 2\sqrt{2\tau} = \Theta(1/s) - \Theta(\sqrt{\tau}) = 1/polylog(M) \) without either using queries of accuracy better than \(\tau \) or making at least \(2^{\Omega(m)} \frac{\tau}{polylog(M)} > 1/\tau \) many queries. This completes the proof of Theorem D.1. \qed