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A Compare to SOTA in RobustBench

In this section, we list the quantitative result of the baselines in RobustBench [14] . Table A, C and D
correspond to Fig.6(a), (b) and (c) of the main paper, respectively. Table B shows the baselines under
Autoattack with ϵ2 = 0.5. The index displayed in each table corresponds to the index shown in Fig.6
in the main paper. The baselines of each table are grouped into No defense (first block), Adversarially
trained defense in RobustBench (second block), Transformation based defense (third block) and
DISCO (last block). The results of adversarially trained baselines are copied from RobustBench, while
the results of transformation-based defenses are obtained with our implementation. For STL [60],
models with different sparse constraints λ are used from the publicly available STL github1. DISCO
is also combined with various classifiers for evaluation. More discussion can be found in Sec. 4.1 of
the paper.

ID Method Standard Acc. Robust Acc. Avg. Acc. Model ID Method Standard Acc. Robust Acc. Avg. Acc. Model
0 No Defense 94.78 0 47.39 WRN28-10
1 Rebuffi et al. [48] 92.23 66.58 79.41 WRN70-16 2 Gowal et al. [25] 88.74 66.11 77.43 WRN70-16
3 Gowal et al. [24] 91.1 65.88 78.49 WRN70-16 4 Rebuffi et al. [48] 88.5 64.64 76.57 WRN106-16
5 Rebuffi et al. [48] 88.54 64.25 76.4 WRN70-16 6 Kang et al. [31] 93.73 71.28 82.51 WRN70-16
7 Gowal et al. [25] 87.5 63.44 75.47 WRN28-10 8 Pang et al. [41] 89.01 63.35 76.18 WRN70-16
9 Rade et al. [47] 91.47 62.83 77.15 WRN34-10 10 Sehwag et al. [53] 87.3 62.79 75.05 ResNest152
11 Gowal et al. [24] 89.48 62.8 76.14 WRN28-10 12 Huang et al. [27] 91.23 62.54 76.89 WRN34-R
13 Huang et al. [27] 90.56 61.56 76.06 WRN34-R 14 Dai et al. [18] 87.02 61.55 74.29 WRN28-10
15 Pang et al. [41] 88.61 61.04 74.83 WRN28-10 16 Rade et al. [47] 88.16 60.97 74.57 WRN28-10
17 Rebuffi et al. [48] 87.33 60.75 74.04 WRN28-10 18 Wu et al. [66] 87.67 60.65 74.16 WRN34-15
19 Sridhar et al. [59] 86.53 60.41 73.47 WRN34-15 20 Sehwag et al. [54] 86.68 60.27 73.48 WRN34-10
21 Wu et al. [67] 88.25 60.04 74.15 WRN28-10 22 Sehwag et al. [54] 89.46 59.66 74.56 WRN28-10
23 Zhang et al. [77] 89.36 59.64 74.5 WRN28-10 24 Yair et al. [8] 89.69 59.53 74.61 WRN28-10
25 Gowal et al. [25] 87.35 58.63 72.99 PreActRes18 26 Addepalli et al. [1] 85.32 58.04 71.68 WRN34-10
27 Chen et al. [10] 86.03 57.71 71.87 WRN34-20 28 Rade et al. [47] 89.02 57.67 73.35 PreActRes18
29 Gowal et al. [24] 85.29 57.2 71.25 WRN70-16 30 Sehwag et al. [55] 88.98 57.14 73.06 WRN28-10
31 Rade et al. [47] 86.86 57.09 71.98 PreActRes18 32 Chen et al. [10] 85.21 56.94 71.08 WRN34-10
33 Gowal et al. [24] 85.64 56.86 71.25 WRN34-20 34 Rebuffi et al. [48] 83.53 56.66 70.1 PreActRes18
35 Wang et al. [63] 87.5 56.29 71.9 WRN28-10 36 Wu et al. [67] 85.36 56.17 70.77 WRN34-10
37 Alayrac et al. [3] 86.46 56.03 71.25 WRN28-10 38 Sehwag et al. [54] 84.59 55.54 70.07 Res18
39 Dan et al. [26] 87.11 54.92 71.02 WRN28-10 40 Pang et al. [43] 86.43 54.39 70.41 WRN34-20
41 Pang et al. [44] 85.14 53.74 69.44 WRN34-20 42 Cui et al. [17] 88.7 53.57 71.14 WRN34-20
43 Zhang et al. [76] 84.52 53.51 69.02 WRN34-10 44 Rice et al. [49] 85.34 53.42 69.38 WRN34-20
45 Huang et al. [28] 83.48 53.34 68.41 WRN34-10 46 Zhang et al. [74] 84.92 53.08 69 WRN34-10
47 Cui et al. [16] 88.22 52.86 70.54 WRN34-10 48 Qin et al. [46] 86.28 52.84 69.56 WRN40-8
49 Chen et al. [12] 86.04 51.56 68.8 Res50 50 Chen et al. [11] 85.32 51.12 68.22 WRN34-10
51 Addepalli et al. [2] 80.24 51.06 65.65 Res18 52 Chawin et al. [58] 86.84 50.72 68.78 WRN34-10
53 Engstrom et al. [22] 87.03 49.25 68.14 Res50 54 Sinha et al. [57] 87.8 49.12 68.46 WRN34-10
55 Mao et al. [38] 86.21 47.41 66.81 WRN34-10 56 Zhang et al. [71] 87.2 44.83 66.02 WRN34-10
57 Madry et al. [36] 87.14 44.04 65.59 WRN34-10 58 Maksym et al. [4] 79.84 43.93 61.89 PreActRes18
59 Pang et al. [42] 80.89 43.48 62.19 Res32 60 Wong et al. [64] 83.34 43.21 63.28 PreActRes18
61 Shafahi et al. [56] 86.11 41.47 63.79 WRN34-10 62 Ding et al. [19] 84.36 41.44 62.9 WRN28-4
63 Souvik et al. [33] 87.32 40.41 63.87 Res18 64 Matan et al. [6] 81.3 40.22 60.76 Res18
65 Moosavi-Dezfooli et al. [39] 83.11 38.5 60.81 Res18 66 Zhang et al. [72] 89.98 36.64 63.31 WRN28-10
67 Zhang et al. [73] 90.25 36.45 63.35 WRN28-10 68 Jang et al. [29] 78.91 34.95 56.93 Res20
69 Kim et al. [32] 91.51 34.22 62.87 WRN34-10 70 Zhang et al. [75] 44.73 32.64 38.69 5 layer CNN
71 Wang et al. [62] 92.8 29.35 61.08 WRN28-10 72 Xiao et al. [68] 79.28 18.5 48.89 DenseNet121
73 Jin et al. [30] 90.84 1.35 46.1 Res18 74 Aamir et al. [40] 89.16 0.28 44.72 Res110
75 Chan et al. [9] 93.79 0.26 47.03 WRN34-10
76 Bit Reduction [70] 92.66 1.04 46.85 WRN28-10 77 Jpeg [21] 83.9 50.73 67.32 WRN28-10
78 Input Rand. [69] 94.3 8.59 51.45 WRN28-10 79 LIIF [13] 94.85 0.22 47.54 WRN28-10
80 AutoEncoder 76.54 67.41 71.98 WRN28-10 81 STL [60] (k=64 s=8 λ=0.1) 90.65 57.28 73.97 WRN28-10
82 STL [60] (k=64 s=8 λ=0.15) 86.77 66.94 76.86 WRN28-10 83 STL [60] (k=64 s=8 λ=0.2) 82.22 67.92 75.07 WRN28-10
84 Median Filter 79.67 42.49 61.08 WRN28-10
85 DISCO 89.26 85.56 ± 0.02 87.41 WRN28-10

Table A: Cifar10 baselines and DISCO under Autoattack (ϵ∞ = 8/255). This table corresponds to
Fig. 6(a) in the main paper.
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ID Method Standard Acc. Robust Acc. Avg. Acc. Model ID Method Standard Acc. Robust Acc. Avg. Acc. Model
0 No Defense 94.78 0 47.39 WRN28-10
1 Rebuffi et al. [48] 95.74 82.32 89.03 WRN70-16 2 Gowal et al. [24] 94.74 80.53 87.64 WRN70-16
3 Rebuffi et al. [48] 92.41 80.42 86.42 WRN70-16 4 Rebuffi et al. [48] 91.79 78.8 85.30 WRN28-10
5 Augustin et al. [7] 93.96 78.79 86.38 WRN34-10 6 Sehwag et al. [53] 90.93 77.24 84.09 WRN34-10
7 Augustin et al. [7] 92.23 76.25 84.24 WRN34-10 8 Rade et al. [47] 90.57 76.15 83.36 PreActRes18
9 Rebuffi et al. [48] 90.33 75.86 83.10 PreActRes18 10 Gowal et al. [24] 90.9 74.5 82.70 WRN70-16
11 Sehwag et al. [53] 89.76 74.41 82.09 Res18 12 Wu et al. [67] 88.51 73.66 81.09 WRN34-10
13 Augustin et al. [7] 91.08 72.91 82.00 Res50 14 Engstrom et al. [22] 90.83 69.24 80.04 Res50
15 Rice et al. [49] 88.67 67.68 78.18 PreActRes18 16 Rony et al. [50] 89.05 66.44 77.75 WRN28-10
17 Ding et al. [19] 88.02 66.09 77.06 WRN28-4
18 Bit Reduction [70] 92.66 3.8 48.23 WRN28-10 19 Jpeg [21] 83.9 69.85 76.88 WRN28-10
20 Input Rand. [69] 94.3 25.71 60.01 WRN28-10 21 LIIF [13] 94.85 0.22 47.54 WRN28-10
22 AutoEncoder 76.54 71.71 74.13 WRN28-10 23 STL [60] (k=64 s=8 λ=0.1) 90.65 75.55 83.1 WRN28-10
24 STL [60] (k=64 s=8 λ=0.15) 86.77 76.45 81.61 WRN28-10 25 STL [60] (k=64 s=8 λ=0.2) 82.22 74.33 78.28 WRN28-10
26 Median Filter 79.67 63.94 71.81 WRN28-10
27 DISCO 89.26 88.47 ± 0.16 88.87 WRN28-10

Table B: Cifar10 baselines and DISCO under Autoattack (ϵ2 = 0.5).

ID Method Standard Acc. Robust Acc. Avg. Acc. Model ID Method Standard Acc. Robust Acc. Avg. Acc. Model
0 No Defense 80.37 0 41.78 WRN28-10
1 Gowal et al. [24] 69.15 36.88 53.02 WRN70-16 2 Rebuffi et al. [48] 63.56 34.64 49.1 WRN70-16
3 Pang et al. [41] 65.56 33.05 49.31 WRN70-16 4 Rebuffi et al. [48] 62.41 32.06 47.24 WRN28-10
5 Sehwag et al. [53] 65.93 31.15 48.54 WRN34-10 6 Pang et al. [41] 63.66 31.08 47.37 WRN28-10
7 Chen et al. [10] 64.07 30.59 47.33 WRN34-10 8 Addepalli et al. [2] 65.73 30.35 48.04 WRN34-10
9 Cui et al. [17] 62.55 30.2 46.38 WRN34-20 10 Gowal et al. [24] 60.86 30.03 45.45 WRN70-16
11 Cui et al. [17] 60.64 29.33 44.99 WRN34-10 12 Rade et al. [47] 61.5 28.88 45.19 PreActRes18
13 Wu et al. [67] 60.38 28.86 44.62 WRN34-10 14 Rebuffi et al. [48] 56.87 28.5 42.69 PreActRes18
15 Dan et al. [26] 59.23 28.42 43.83 WRN28-10 16 Cui et al. [17] 70.25 27.16 48.71 WRN34-10
17 Addepalli et al. [2] 62.02 27.14 44.58 PreActRes18 18 Chen et al. [11] 62.15 26.94 44.55 WRN34-10
19 Chawin et al. [58] 62.82 24.57 43.7 WRN34-10 20 Rice et al. [49] 53.83 18.95 36.39 PreActRes18
21 Bit Reduction [70] 76.86 3.78 40.32 WRN28-10 22 Jpeg [21] 61.89 39.59 50.74 WRN28-10
23 Input Rand. [69] 73.57 3.31 38.44 WRN28-10 24 LIIF [13] 80.3 3.36 41.83 WRN28-10
25 AutoEncoder 58.79 48.36 53.575 WRN28-10 26 STL [60] (k=64 s=8 λ=0.1) 74.28 30.05 52.17 WRN28-10
27 STL [60] (k=64 s=8 λ=0.15) 70.3 41.82 56.06 WRN28-10 28 STL [60] (k=64 s=8 λ=0.2) 67.41 46.07 56.74 WRN28-10
29 Median Filter 65.78 34.52 50.15 WRN28-10
30 DISCO 72.07 67.93±0.17 70 WRN28-10 31 DISCO 71.62 69.01 ±0.19 70.32 WRN34-10

Table C: Cifar100 baselines and DISCO under Autoattack (ϵ∞ = 8/255). This table corresponds to
Fig. 6(b) in the main paper.

ID Method Standard Acc. Robust Acc. Avg. Acc. Model ID Method Standard Acc. Robust Acc. Avg. Acc. Model
0 No Defense 76.52 0 38.26 Res50
1 Hadi et al. [51] 68.46 38.14 53.3 WRN50-2 2 Hadi et al. [51] 64.02 34.96 49.49 Res50
3 Engstrom et al. [22] 62.56 29.22 45.89 Res50 4 Wong et al. [64] 55.62 26.24 40.93 Res50
5 Hadi et al. [51] 52.92 25.32 39.12 Res18
6 Bit Reduction [70] 67.64 4.04 35.84 Res18 7 Bit Reduction [70] 73.82 1.86 37.84 Res50
8 Bit Reduction [70] 75.06 4.96 40.01 WRN50-2 9 Jpeg [21] 67.18 13.08 40.13 Res18
10 Jpeg [21] 73.64 33.42 53.53 Res50 11 Jpeg [21] 75.42 24.9 50.16 WRN50-2
12 Input Rand. [69] 64 17.78 40.89 Res18 13 Input Rand.. [69] 74.02 18.84 46.43 Res50
14 Input Rand. [69] 71.7 23.58 47.64 WRN50-2 15 STL [60] (k=64 s=8 λ=0.1) 67.5 18.5 43 Res18
16 STL [60] (k=64 s=8 λ=0.2) 65.64 32.9 49.27 Res18 17 STL [60] (k=64 s=8 λ=0.1) 72.56 32.7 52.63 Res50
18 STL [60] (k=64 s=8 λ=0.2) 68.3 50.16 59.23 Res50 19 Median Filter 66.1 10.34 38.22 Res18
20 Median Filter 71.68 17.36 44.52 Res50
21 DISCO 67.98 60.88±0.17 64.43 Res18 22 DISCO 72.64 68.2±0.29 70.42 Res50
23 DISCO 75.1 69.5±0.23 72.3 WRN50-2

Table D: ImageNet baselines and DISCO under Autoattack (ϵ∞ = 4/255). This table corresponds to
Fig. 6(c) in the main paper.

1https://github.com/GitBoSun/AdvDefense_CSC
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B Defense Transfer

In this section, we discuss the qualitative results of DISCO transferability across attacks. Table E, F
and G represents the results for Cifar10, Cifar100 and ImageNet, respectively. The corresponding
plots are illustrated in Fig. A, B and C. More discussion can be found in Sec. 4.1 of the paper.

Table E: Defense Transfer across L∞ attacks (ϵ∞ = 8/255)
on Cifar10.

Method Rebuffi et al. [48] Gowal et al. [24] DISCO
Classifier WRN70-16 WRN28-10 WRN28-10

FGSM [23] 75.66 70.91 64.08
PGD [37] 69.93 66.02 82.99
BIM [34] 69.84 65.95 80.46

RFGSM [61] 69.8 65.95 81.2
EotPgd [35] 70.68 66.58 76.84
TPgd [74] 82.32 80.48 81.61

FFgsm [65] 78.04 73.37 70.1
MiFgsm [20] 73.22 68.82 45.49

APgd [15] 69.46 65.69 85.79
Jitter [52] 70.15 64.84 80.49

Avg. 72.72 68.69 75.88
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Figure A: Defense Transfer across L∞
attacks on Cifar10.

Table F: Defense Transfer across L∞ attacks (ϵ∞ = 8/255)
on Cifar100.

Method Gowal et al. [24] Rebuffi et al. [48] DISCO
Classifier WRN70-16 WRN28-10 WRN28-10

FGSM [23] 44.53 38.57 50.4
PGD [37] 40.46 36.09 74.51
BIM [34] 40.38 36.03 72.25

RFGSM [61] 40.42 35.99 72.1
EotPgd [35] 41.07 36.45 74.8
TPgd [74] 57.52 52.01 74.06

FFgsm [65] 47.61 41.47 64.29
MiFgsm [20] 42.37 37.31 44.14

APgd [15] 39.99 35.64 77.33
Jitter [52] 38.38 33.04 73.75

Avg. 43.27 38.26 67.76
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Figure B: Defense Transfer across L∞
attacks on Cifar100.

Table G: Defense Transfer across L∞ attacks (ϵ∞ = 4/255)
on ImageNet.

Method Hadi et al. [51] Engstrom et al. [22] DISCO
Classifier Res50 Res50 Res50

Clean 64.1 62.54 72.64
FGSM [23] 43.48 39.96 55.72
PGD [37] 39.28 33.32 66.32
BIM [34] 39.26 33.2 66.4

RFGSM [61] 39.28 33.16 66.4
EotPgd [35] 41.2 37.24 69.32
TPgd [74] 53.82 49.64 69.94

FFgsm [65] 43.58 40.1 57
MiFgsm [20] 40.56 35.6 52.38

APgd [15] 38.42 32.22 68.3
Jitter [52] 36.26 31.36 67.04

Avg. 41.51 36.58 63.88
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Figure C: Defense Transfer across L∞
attacks on ImageNet.

C Improving Cifar10 and Cifar100 SOTA on RobustBench

Sec. 4.1 in the main paper shows that DISCO can improve the prior SOTA defenses on the ImageNet
dataset. In Table H, we further investigate the gain of applying DISCO on SOTA Cifar10 and Cifar100
defenses. The first and second block of Table H show the gains of applying DISCO on [48], which is
the prior SOTA defense against L2 and L∞ Autoattack on Cifar10. DISCO also improves the prior
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Table H: Improving SOTA defenses on RobustBench [14] for Cifar10 (L2 and L∞) and Cifar100
(L∞) dataset.

Method Dataset Norm SA RA Avg.
Rebuffi et al. [48] Cifar10 L∞ 92.23 66.58 79.41

w/ DISCO Cifar10 L∞ 91.95 70.71 81.33
Rebuffi et al. [48] Cifar10 L2 95.74 82.32 89.03

w/ DISCO Cifar10 L2 95.24 84.15 89.7
Gowal et al. [24] Cifar100 L∞ 69.15 36.88 53.02

w/ DISCO Cifar100 L∞ 68.56 39.77 54.17

SOTA defense [24] on Cifar100 by 2.89%. These results indicate that, beyond being a robust defense
by itself, DISCO can also be applied to existing defenses to improve their robustness.

D Kernel Size s

Table I: Ablation on various kernel size s.
s SA RA Avg.
1 71.22 69.52 70.37
3 72.64 68.2 70.42
5 74.22 60.1 67.16

In this section, we ablate the kernel size used to train DISCO on ImageNet. The kernel size s
controls the feature neighborhood forwarded to the local implicit module. Table I shows that s = 3
achieves the best performance, which degrades for s = 5 by a significant margin (3.26%). This
shows that while tasks like classification require large and global receptive fields, the projection of
adversarial images into the natural image manifold can be done on small neighborhoods. Given that
the complexity of modeling the manifold increases with the neighborhood size, it is not surprising
that larger s lead to weaker performance. This is consistent with the well known complexity of
synthesizing images with global models, such as GANs. What is somewhat surprising is that even
s = 1 is sufficient to enable a robust defense. By default, we use s = 3 in all our experiments.

E Computation Time for STL and DISCO

Table J: Computation time between of STL [60] and DISCO for different image sizes. Note that STL
requires a 36.34× larger inference time when image size increases from 32 to 224.

Dataset Image STL [60] DISCO
Size (K=1) (K=2) (K=3) (K=4) (K=5)

Cifar10 32 0.65 0.011 0.021 0.031 0.037 0.048
ImageNet 224 23.71 0.027 0.081 0.134 0.191 0.251

Time Increase ×36.34 ×2.41 ×3.86 ×4.35 ×5.14 ×5.19

Table J compares the inference time of STL [60], DISCO and cascade DISCO (from K = 2 to 5) on
Cifar10 and ImageNet. For a single image Cifar10 of size 32x32, STL requires an Cifar10 5.9× (0.65
vs 0.011) larger than that of DISCO (K=1). When cascade DISCO is used, inference time increases
approximately linearly with K.

For a single ImageNet image of size 224, STL requires 23.71 seconds while DISCO (K=1) only
requires 0.027. The inference time difference increases to 878.15× (23.71 vs 0.027) on ImageNet ,
which is significantly larger than that of Cifar10 (5.9×). This shows that DISCO is a better defense in
the sense that it can handle widely varying input image sizes with minor variations of computing cost.
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F Training Details

On Cifar10 and Cifar100, we train the DISCO for 40 epochs. On ImageNet, DISCO is only trained
for 3 epochs because ImageNet images are larger and produce more random crops. The learning rate
is set to 0.0001 and the Adam optimizer is used in all experiments. All experiments are conducted
using Pytorch [45]. All time measurements, for both baselines and DISCO, are made on a single
Nvidia Titan Xp GPU with Intel Xeon CPU E5-2630, with batch size 1 and averaged over 100 images.

G Adopted Code and Benchmark

In this section, we list the url links that are used for training and evaluating DISCO. To create the
adversarial-clean training pairs, we adopt the code from TorchAttack2 and Ares3, which support
the multiple attack methods. These attack methods are then used to attack pretrained classifiers
on Cifar10, Cifar100 and ImageNet. We use the ResNet18 classifiers from Ares3 for Cifar10, the
WideResNet Cifar100 classifiers from this repository 4 and the ResNet18 ImageNet classifiers of
Pytorch [45].

To evaluate DISCO, we adopt Autoattack from RobustBench [14]5 and compare to the pretrained
defenses on the RobustBench leaderboard. In addition to Autoattack, we use the AdverTorch6 library
to implement the BPDA attack [5] and the TorchAttack7 library for other attacks, like FGSM [23]
and BIM [34].

For the adversarially trained defense baselines, we adopt the pretrained weights from Robust-
Bench [14]8, while the codes for transformation based baselines are adopted from Ares3, Cifar
autoencoder 9 and STL1 [60]. To implement DISCO, we use code from LIIF10 [13].

H DCT Analysis

The effectiveness of perturbation removal can be analyzed in the frequency domain using the discrete
cosine transform (DCT). Consider an image xi and the corresponding clean image xi

cln. The average
normalized difference (ND) between DCTs over M images is defined as

ND(X ) = log

(
1

M

M∑
i=1

∣∣∣∣DCT (xi)−DCT (xi
Cln)

DCT (xi
Cln)

∣∣∣∣
)
, (1)

where X = {xi} can contain adversarial images XAdv , the outputs of DISCO XDef or the outputs of
cascade DISCO XCDef . Fig. D(a), (b) and (c) shows the ND obtained for XAdv , XDef and XCDef ,
for M = 100 images. Darker areas indicate higher similarity between clean and input images, at a
specific frequency. Take Fig. D(a) for example. The dark area concentrates on the low frequency area
(upper left corner), while the bright area concentrates on the high frequency area (lower right corner)
showing that adversarial noise is mostly of high frequency. Fig. D(b) shows that, after the adversarial
image is forwarded through DISCO, the high frequency area becomes darker. Fig. D(d) further
highlights the difference between Fig. D(a) and (b), by illustrating U(ND(XAdv)−ND(XDef )),
where U is a unit step function. The white area of Fig. D(d) indicates that most of the high frequency
perturbations are removed from the adversarial image by DISCO. Similarly, Fig. D(e) demonstrates
that cascade DISCO further removes high frequency perturbations when comparing to Fig D(b) and
(c).

2https://adversarial-attacks-pytorch.readthedocs.io/en/latest/
3https://github.com/thu-ml/ares
4https://github.com/xternalz/WideResNet-pytorch
5https://github.com/RobustBench/robustbench
6https://github.com/BorealisAI/advertorch
7https://adversarial-attacks-pytorch.readthedocs.io/en/latest/
8https://github.com/RobustBench/robustbench
9https://github.com/chenjie/PyTorch-CIFAR-10-autoencoder

10https://github.com/yinboc/liif
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Figure D: (a), (b) and (c) show ND plots for XAdv , XDef and XCDef , respectively. (d) and (e) show
the difference between (a)/(b) and (b)/(c), respectively. See text for more details.

I Visualizations

DISCO defense outputs against FGSM [23], BIM [34] and PGD [37] attacks are visualized in
Fig. E, F and G, respectively. Take Fig. E for example. The first and second rows show the clean
and adversarial images, while rows 3-5 show the output of DISCO and cascade DISCO (K = 2
and K = 3). Clearly, both DISCO and its cascade version can effectively remove the adversarial
perturbation. In addition, Fig. H shows the DISCO output for various images sizes, from 128x128 to
512x512. Note that these images are produced from the same DISCO model without retraining for
any output size or attack.
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Figure E: Comparison of Clean image, Adversarial image and DISCO output from K = 1 to 3 under
FGSM attack.
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Figure F: Comparison of Clean image, Adversarial image and DISCO output from K = 1 to 3 under
BIM attack.
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Figure G: Comparison of Clean image, Adversarial image and DISCO output from K = 1 to 3 under
PGD attack.
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Figure H: Multiple output sizes (128, 256 and 512) of DISCO without re-training.
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