
Appendix A. Proof of Theorem 1

Here we provide a proof for Theorem 1. For each t ∈ [T ], let jt be the index of the bin that xt

belongs. Conditional on j1, j2, . . . , jT , the total regret can be decomposed as follows:
T∑

t=1

E[rt|j1, j2, . . . , jT ]

=

T∑
t=1

E

[
max
p∈[p,p]

p(bp+ g(xt))− pt(bpt + g(xt))
∣∣j1, j2, . . . , jt]

=

T∑
t=1

E
[
−g(xt)

2b

(
b ·
(
− g(xt)

2b

)
+ g(xt)

)
− pt (bpt + g(xt))

∣∣j1, j2, . . . , jt]

= |b|
T∑

t=1

E

[(
−g(xt)

2b
− pt

)2 ∣∣∣j1, j2, . . . , jt]

≤ 2|b|
T∑

t=1

E

[(
−g(xt)

2b
− p0t

)2

+
(
p0t − pt

)2 ∣∣∣j1, j2, . . . , jt]

≤ 2|b|
T∑

t=1

E

[(
−g(xt)

2b
− put

)2

+
(
p0t − pt

)2 ∣∣∣j1, j2, . . . , jt]

≤ 6|b|
T∑

t=1

E

[(−g(xt) + E[g(x)|x ∈Mjt ]

2b

)2
︸ ︷︷ ︸

regret from discretization error of g(·)

+
(E[g(x)|x ∈Mjt ]

2b
− E[g(x)|x ∈Mjt ]

2b̂t

)2
︸ ︷︷ ︸

regret from estimation error of b

+
(E[g(x)|x ∈Mjt ]− ât,jt

2b̂t

)2
︸ ︷︷ ︸

regret from SAA

+
(
p0t − pt

)2︸ ︷︷ ︸
regret from random shock

∣∣∣∣∣j1, j2, . . . , jt
]
, (3)

where p0t := Proj(put , [p, p]), the first identity holds since xt and pt are independent of jt+1, . . . , jT ,
the first and the third inequalities follow from Cauchy-Schwarz inequality, and the second inequality
is due to − g(xt)

2b ∈ [p, p].

The first term on the RHS of (3) arises from approximating g(·) using a constant in each local bin,
and can be further upper bounded as follows due to Assumption 1:

E
[(−g(xt) + E[g(x)|x ∈Mj ]

2b

)2∣∣∣j1, . . . , jt] ≤ maxx,y∈Mjt
(g(x)− g(y))2

4b
2 ≤ L2dβ

4b
2
M2β

. (4)

The second term on the RHS of (3) is due to the estimation error of price sensitivity b because

E
[(E[g(x)|x ∈Mj ]

2b
− E[g(x)|x ∈Mj ]

2b̂t

)2∣∣∣j1, . . . , jt]
≤

maxx∈[0,1]d(g(x))
2

4b
4 E[(b̂t − b)2|j1, . . . , jt]. (5)

The third term on the RHS of (3) represents the estimation error of E[g(x)|x ∈Mj ] using the SAA
method. We establish the following equation for this term whose proof is deferred to the end of this
section:

E
[(E[g(x)|x ∈Mjt ]− ât,jt

2b̂t

)2∣∣∣j1, . . . , jt] = 1{|Dt,jt |≥1} ×O
(
E
[
(b− b̂t)

2
∣∣j1, . . . , jt]+ 1

|Dt,jt |

)
+ 1{|Dt,jt |=0} ×O(1). (6)

The last term on the RHS of (3) comes from the regret of the random shock added to the greedy
policy for exploration, and can be bounded by O(t−1/2):

E[
(
p0t − pt

)2|j1, . . . , jT ] ≤ 2E[(p0t − pgt )
2 + (pgt − pt)

2|j1, . . . , jT ] ≤ 4δ2t =
4√
t
. (7)
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As seen from Eq. (5) and Eq. (6), the regret bound depends on the estimation error of b. To proceed,
we establish the following upper bound on the estimation error of b, whose proof can be checked at
the end of this section:

E[(b− b̂t)
2|j1, . . . , jt] = O

( 1√
t

)
. (8)

Putting Eq. (3) to Eq. (8) together and after some calculation, we can then establish the following
upper bound on the total expected regret, whose detailed proof is also provided later in this section:

T∑
t=1

E[rt] = O
( T

M2β

)
+O(

√
T ) +O(Md lnT ). (9)

By setting M = ⌈T
1

d+2β ⌉, we obtain the upper bound Õ(
√
T + T

d
d+2β ) = Õ(

√
T ∨ T

d
d+2β ) in

Theorem 1.

Now, it suffices to prove Eqs. (6), (8) and (9).

Proof of Eq. (6). Note that for each t ≥ 1, when |Dt,jt | ≥ 1, we have

E
[(
ât,jt − E[g(x)|x ∈Mjt ]

)2∣∣j1, . . . , jt]
= E

( 1

|Dt,jt |
∑

(xk,pk,dk)∈Dt,jt

(
dk − pk b̂t

)
− E[g(x)|x ∈Mjt ]

)2∣∣∣j1, . . . , jt


= E

( 1

|Dt,jt |
∑

(xk,pk,dk)∈Dt,jt

(
bpk + g(xk) + εk − pk b̂t

)
− E[g(x)|x ∈Mjt ]

)2∣∣∣j1, . . . , jt


≤ 3E

[( 1

|Dt,jt |
∑

(xk,pk,dk)∈Dt,jt

pk(b− b̂t)
)2

+
( 1

|Dt,jt |
∑

(xk,pk,dk)∈Dt,jt

(
g(xk)− E[g(x)|x ∈Mjt ]

))2
+
( 1

|Dt,jt |
∑

(xk,pk,dk)∈Dt,jt

εk

)2∣∣∣j1, . . . , jt]

≤ 3E

[
p2(b− b̂t)

2 +
( 1

|Dt,jt |
∑

(xk,pk,dk)∈Dt,jt

(
g(xk)− E[g(x)|x ∈Mjt ]

))2
+

σ2

|Dt,jt |

∣∣∣j1, . . . , jt],
(10)

where the first identity follows from the definition of ât,jt and the inequality follows from Cauchy-
Schwaz inequality.
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We then bound the second term on the RHS of (10). Denoting the time indices when the feature
vector falls into Mjt by 1 ≤ s1 < s2 < . . . < s|Dt,jt | ≤ t− 1, we have

E
[( 1

|Dt,jt |
∑

(xk,pk,dk)∈Dt,jt

(
g(xk)− E[g(x)|x ∈Mjt ]

))2∣∣∣j1, . . . , jt]

= E
[( 1

|Dt,jt |

|Dt,jt |∑
k=1

(
g(xsk)− E[g(x)|x ∈Mjt ]

))2∣∣∣xsk ∈Mjt ,∀1 ≤ k ≤ |Dt,jt |
]

= Var
[ 1

|Dt,jt |

|Dt,jt |∑
k=1

(
g(xsk)− E[g(x)|x ∈Mjt ]

)∣∣∣xsk ∈Mjt ,∀1 ≤ k ≤ |Dt,jt |
]

=
1

|Dt,jt |
2

|Dt,jt |∑
k=1

Var
[(
g(xk)− E[g(x)|x ∈Mjt ]

)∣∣∣xsk ∈Mjt

]
=

1

|Dt,jt |
Var
[
g(y)− E[g(x)|x ∈Mjt ]

∣∣y ∈Mjt

]
≤ 1

4 |Dt,jt |
max

x,y∈Mjt

(g(x)− g(y))2

≤ 1

4 |Dt,jt |
max

x,y∈[0,1]d
(g(x)− g(y))2, (11)

where the second identity holds since conditional on xsk ∈ Mjt for each 1 ≤ k ≤ |Dt,jt |,
1

|Dt,jt |
∑|Dt,jt |

k=1

(
g(xsk) − E[g(x)|x ∈ Mjt ]

)
is a mean zero random variable, the fourth iden-

tity holds since xs1 , xs2 , . . . , xs|Dt,jt
| are i.i.d. random variables, and the first inequality follows

from Hoeffding’s lemma.

Therefore, we have the following upper bound on the third term of (3):

E
[( ât,jt − E[g(x)|x ∈Mjt ]

2b̂t

)2∣∣∣j1, . . . , jt]
= E

[
1{|Dt,jt |≥1} ×

( ât,jt − E[g(x)|x ∈Mjt ]

2b̂t

)2∣∣∣j1, . . . , jt]+O(1)× 1{|Dt,jt |=0}

≤ 1{|Dt,jt |≥1}
3

4b
2E

[
p2(b− b̂t)

2 +
1
4 maxx,y∈[0,1]d(g(x)− g(y))2 + σ2

|Dt,jt |

∣∣∣j1, . . . , jt]
+ 1{|Dt,jt |=0} ×O(1), (12)

where the first identity holds since if |Dt,jt | = 0, a constant loss is incurred since ât,jt , b̂t and
E[g(x)|x ∈Mjt ] are all bounded, and the inequality follows from (10) and (11) for |Dt,jt | ≥ 1. This
completes the proof of Eq. (6).
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Proof of Eq. (8). We next bound E[(b− b̂t)
2|j1, . . . , jt] and prove Eq. (8). When t ≥ 2, we have

E[(b− b̂t)
2|j1, . . . , jt] = E

[(∑t
s=1 ∆s(bp

g
s + g(xs) + εs)∑t
s=1 δ

2
s

)2∣∣∣j1, . . . , jt]

=
1

(
∑t

s=1 s
− 1

2 )2
E

[( t∑
s=1

∆s(bp
g
s + g(xs) + εs)

)2∣∣∣j1, . . . , jt]

=
1

(
∑t

s=1 s
− 1

2 )2
E

[
t∑

s=1

∆2
s(bp

g
s + g(xs) + εs)

2
∣∣∣j1, . . . , jt]

≤ 3

(
∑t

s=1 s
− 1

2 )2

t∑
s=1

E

[
t∑

s=1

s−
1
2

(
(bpgs)

2 + (g(xs))
2 + ε2s

)
|j1, . . . , jt

]

≤
3
(
b2p2 +maxx∈[0,1]d(g(x))

2 + σ2
)∑t

s=1 s
− 1

2

≤
3
(
b2p2 +maxx∈[0,1]d(g(x))

2 + σ2
)

√
t

, (13)

where the first identity follows from plugging in the definition of b̂t, the second identity holds
since δs = s−

1
2 by its definition, the third identity holds since when s ̸= k, ∆s is independent of

∆k(bp
g
s + g(xs) + εs)(bp

g
k + g(xk) + εk), and from E[∆s] = 0, we have E[∆s∆k(bp

g
s + g(xs) +

εs)(bp
g
k + g(xk) + εk)] = 0, the first inequality follows from ∆s ∈ {−s−

1
4 , s

1
4 } and Cauchy-

Schwarz inequality, and the last inequality holds since when t ≥ 2,
∑t

s=1 s
− 1

2 ≥
∫ t+1

1
s−

1
s ds =

2(
√
t+ 1− 1) ≥

√
t. This completes the proof of Eq. (8).

Proof of Eq. (9). Before we proceed to bound the total regret an prove Eq. (9), we note the following
inequality on the summation for 1{|Dt,jt |≥1}

1
|Dt,jt |

:

T∑
t=1

1{|Dt,jt |≥1}
1

|Dt,jt |
=

Md∑
j=1

T∑
t=1

1{jt=j,|Dt,j |≥1}
1

|Dt,j |
=

Md∑
j=1

|DT,j |∑
k=1

1

k

≤
Md∑
j=1

(1 + log |DT,j |) = Md + log
( Md∏

j=1

|DT,j |
)

≤Md + log
( 1

Md

Md∑
j=1

|DT,j |
)Md

≤Md
(
1 + log T

)
, (14)

where the second inequality holds since geometric mean is less than the arithmetic mean, and the last
inequality holds since

∑Md

j=1 |DT,j | ≤ T .

Combining (12) and (14), we then obtain

T∑
t=1

E
[( ât,jt − E[g(x)|x ∈Mjt ]

2b̂t

)2∣∣∣j1, . . . , jt]

≤ 3

4b
2

T∑
t=1

E
[
p2(b− b̂t)

2
∣∣∣j1, . . . , jt]+ (1

4
max

x,y∈[0,1]d
(g(x)− g(y))2 + σ2

) T∑
t=1

1{|Dt,jt |≥1}
1

|Dt,jt |
+O(Md)

≤ 3

4b
2

T∑
t=1

E
[
p2(b− b̂t)

2
∣∣∣j1, . . . , jt]+ (1

4
max

x,y∈[0,1]d
(g(x)− g(y))2 + σ2

)
Md(1 + lnT ) +O(Md),

(15)

where the first inequality follows from (12) and
∑T

t=1 1{|Dt,jt |=0} ≤Md, and the second inequality
follows from (14).
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Finally, putting Eqs. (3), (4), (7), (12), (13) and (15) together, we obtain the following upper bound
on the total regret conditional on j1, . . . , jT :

T∑
t=1

E[rt|j1, . . . , jT ]

≤ 6|b|

(
c1T

M2β
+ c2

T∑
t=1

E[(b− b̂t)
2|j1, . . . , jt] + 4

T∑
t=1

t−
1
2 + c3(1 + lnT )Md

)
+O(Md)

≤ 6|b|

(
c1T

M2β
+ c4

T∑
t=1

t−
1
2 + c3(1 + lnT )Md

)
+O(Md)

≤ 6|b|
(

c1T

M2β
+ c4(2

√
T − 1) + c3(1 + lnT )Md

)
+O(Md), (16)

where c1 = L2dβ

4b
2 , c2 = 1

4b
2 (maxx∈[0,1]d(g(x))

2 +3p2), c3 = 3

4b
2 (

1
4 maxx,y∈[0,1]d(g(x)− g(y))2 +

σ2) and c4 = 3c2(b
2p2 +maxx∈[0,1]d(g(x))

2 + σ2) + 4. This completes the proof of Eq. (9).

By setting M = ⌈T
1

d+2β ⌉ and taking the expectation with respect to j1, . . . , jT on both sides of (16),
we obtain the following upper bound on the total expected regret:

T∑
t=1

E[rt] ≤ 6|b|
(
(c1 + 2dc3(1 + lnT ))T

d
d+2β + c4(2

√
T − 1)

)
= Õ(

√
T ∨ T

d
d+2β ),

which completes the proof of Theorem 1.

Appendix B. Proof of Theorem 2

The first lower bound Ω(
√
T ) is directly implied from the existing results (e.g., Theorem 1 in [17])

by letting g(x) be a constant function (which belongs to G(β, d)). To show the second lower bound
Ω(T

d
d+2β ), we first need to construct a series of Hölder continuous functions that are “similar” to

each other and therefore difficult to distinguish. We partition the context space [0, 1]d into Md

equally sized bins, denoted as M1,M2, . . . ,MMd , by dividing each dimension of the context space
into M intervals of equal length. We then construct a series of functions gw(·) indexed by a tuple
w ∈ {0, 1}Md

, and the j-th component of w determines the value of gw(x) for x ∈Mj as follows:

gw(x) =


|b| (p+ p) wj = 0

|b| (p+ p) + (D(x, ∂Mj))
β wj = 1 and D(x, ∂Mj) ≤ 1

41/βM

|b| (p+ p) + 1
4Mβ wj = 1 and D(x, ∂Mj) >

1
41/βM

,

(17)

where ∂Mj denotes the boundary of the bin Mj , and D(x,Mj) := inf{∥x− y∥ : y ∈ ∂Mj} denotes
the Euclidean distance between x and ∂Mj . The following lemma shows that each gw is Hölder
continuous, whose proof is more sophisticated than [28] and [8], and deferred to Appendix B.1.

Lemma 1 For each w ∈ {0, 1}Md

, gw(·) defined in (17) belongs to G(β, d) with L = 2.

Let P be a uniform distribution on
⋃Md

j=1{x ∈ Mj : D(x, ∂Mj) > 1
41/βM

}. By setting b = b,
whenever x falls into Mj , the optimal price p∗(x) associated with any function gw(·) is

p∗(x) =

{
p+p

2 wj = 0
p+p

2 + 1
8Mβ |b| wj = 1.

(18)

We then consider two demand functions g(w−j ,wj) for wj = 0, 1, where we use (w−j , wj) to denote
an index w ∈ {0, 1}Md

whose j-th coordinate is wj and the other coordinates are w−j . Eq. (18)
indicates that if the price charged by an algorithm in period t is greater than

p+p

2 + 1
16Mβ |b| , its

gap with the optimal price under demand function g(w−j ,0) is greater than 1
16Mβ |b| ; and if the price
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charged by the algorithm is less than
p+p

2 + 1
16Mβ |b| , its gap with the optimal price under the other

function g(w−j ,1) is still greater than 1
16Mβ |b| . Bretagnolle–Huber inequality (see [6]) guarantees

that the minimal error of making one type of the mistakes depends on how well the algorithm can
distinguish between the two demand functions. This is formalized in the following inequality:

Pπ,t
g(w−j ,0)

(
pt ≥

p+ p

2
+

1

16Mβ |b|

∣∣∣∣xt ∈Mj

)
+ Pπ,t

g(w−j ,1)

(
pt <

p+ p

2
+

1

16Mβ |b|

∣∣∣∣xt ∈Mj

)
≥ 1

2
exp

(
−KL

(
Pπ,t
g(w−j ,0)

,Pπ,t
g(w−j ,1)

))
, (19)

where Pπ,t
g(w−j ,wj)

denotes the probability measure under policy π up to period t when the true demand
function is g(w−j ,wj). We then apply the chain rule of KL divergence to establish the following upper
bound on the KL divergence between Pπ,t

g(w−j ,0)
and Pπ,t

g(w−j ,1)
:

KL(Pπ,t
g(w−j ,0)

,Pπ,t
g(w−j ,1)

) ≤ 1

32σ2Md+2β
t. (20)

With a careful decomposition of the regret, by applying Eqs. (19) and (20) with M = ⌈T
1

d+2β ⌉, we
will obtain the desired lower bound Ω(T

d
d+2β ).

In the subsequent analysis, we fix the price elasticity to be b, the distribution of contexts to be a
uniform distribution on

⋃Md

j=1{x ∈ Mj : D(x, ∂Mj) > 1
41/βM

}, and the distribution of random
noise to be normal distribution. For the ease of presentation, we omit the dependency of the regret
and the expectation on these terms. For any policy π, we establish the following lower bound on its
worst-case regret by restricting to the functions gw(·) constructed in (17):

sup
g∈G(β,d)

Rπ
g (T ) ≥ sup

g∈{gw:w∈{0,1}Md}
Rπ

g (T )

= |b| sup
g∈{gw:w∈{0,1}Md}

T∑
t=1

Eπ
g

[
(p∗(xt)− pt)

2
]

≥ |b|
2Md

∑
w∈{0,1}Md

T∑
t=1

Eπ
gw

[
(p∗(xt)− pt)

2
]

≥ |b|
2Md

∑
w∈{0,1}Md

T∑
t=1

Md∑
j=1

Eπ
gw

[
(p∗(xt)− pt)

2I{xt∈Mj}
]

=
|b|
2Md

Md∑
j=1

∑
w−j∈{0,1}Md−1

∑
wj∈{0,1}

T∑
t=1

Eπ
g(w−j ,wj)

[
(p∗(xt)− pt)

2I{xt∈Mj}
]

=
|b|

2MdMd

Md∑
j=1

∑
w−j∈{0,1}Md−1

∑
wj∈{0,1}

T∑
t=1

Eπ
g(w−j ,wj)

[
(p∗(xt)− pt)

2 | xt ∈Mj

]
,

(21)

where in the second and third identities, we use (w−j , wj) to denote an index w whose j-th coordinate
is wj and the other coordinates are w−j , and in the third identity, we use the fact that Eπ

gw [(p
∗(xt)−

pt)
2I{xt∈Mj}] = Eπ

gw [(p
∗(xt) − pt)

2 | xt ∈Mj ]Pu(xt ∈ Mj) and Pu(xt ∈ Mj) = 1
Md by our

construction.

Noting the expression of the optimal price in Eq. (18), we have the following lower bound on
Eπ
g(w−j ,wj)

[(p∗(xt)− pt)
2 | xt ∈Mj ] in the RHS of (21): for each wj ∈ {0, 1},

Eπ
g(w−j ,0)

[
(p∗(xt)− pt)

2

∣∣∣∣∣xt ∈Mj

]
≥
(

1

16Mβ |b|

)2

Pπ,t
g(w−j ,0)

({
pt ≥

p+ p

2
+

1

16Mβ |b|

} ∣∣∣∣∣xt ∈Mj

)
,

(22)
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Eπ
g(w−j ,1)

[
(p∗(xt)− pt)

2

∣∣∣∣∣xt ∈Mj

]
≥
(

1

16Mβ |b|

)2

Pπ,t
g(w−j ,1)

({
pt ≤

p+ p

2
+

1

16Mβ |b|

} ∣∣∣∣∣xt ∈Mj

)
,

(23)

where Pπ,t
g(w−j ,wj)

denotes the probability measure for X1, P1, d1, . . . , Xt, Pt, dt under policy π and
demand function g(w−j ,wj).

Due to the above Eqs. (22) and (23) and Eq. (19), to further bound the RHS of (21), we next focus
on analyzing the KL-divergence between the two probability measures Pπ,t

g(w−j ,0)
(· | xt ∈Mj) and

Pπ,t
g(w−j ,1)

(· | xt ∈Mj), and prove Eq. (20). Noting the following identity

Pπ,t
g(w−j ,wj)

(X1, P1, d1, · · · , Xt, Pt | xt ∈Mj)

= Pπ,t−1
g(w−j ,0)

(X1, P1, d1, · · · , Xt−1, Pt−1, dt−1)× π(Xt, Pt | xt ∈Mj , X1, P1, d1, · · · , Xt−1, Pt−1, dt−1),

and denoting π(Xt, Pt | xt ∈Mj , X1, P1, d1, · · · , Xt−1, Pt−1, dt−1) as πj
t , we obtain

KL
(
Pπ,t
g(w−j ,0)

(· | xt ∈Mj),Pπ
g(w−j ,1)

(· | xt ∈Mj)
)
= KL(Pπ,t−1

g(w−j ,0)
× πj

t ,Pπ,t−1
g(w−j ,1)

× πj
t )

= KL(Pπ,t−1
g(w−j ,0)

,Pπ,t−1
g(w−j ,1)

) + Eπ,t−1
g(w−j ,0)

[KL(πj
t , π

j
t )]

= KL(Pπ,t−1
g(w−j ,0)

,Pπ,t−1
g(w−j ,1)

), (24)

where the second identity follows from the chain rule of the KL divergence. Moreover, Pπ,t
g(w−j ,wj)

can be further decomposed as follows:
Pπ,t−1
g(w−j ,wj)

(X1, P1, d1, · · · , Xt−1, Pt−1, dt−1)

= Pπ,t−2
g(w−j ,wj)

(X1, P1, d1, · · · , Xt−2, Pt−2, dt−2)× Pu(Xt−1)

× π(Pt−1 | X1, P1, d1, · · · , Xt−2, Pt−2, dt−2, Xt−1)× µg(w−j ,wj)
(dt−1|Pt−1, Xt−1). (25)

Denoting π(Pt−1 | X1, P1, d1, · · · , Xt−2, Pt−2, dt−2, Xt−1) by πFt−2,xt−1
, we get

KL(Pπ,t−1
g(w−j ,0)

,Pπ,t−1
g(w−j ,1)

)

= KL(Pπ,t−2
g(w−j ,0)

,Pπ,t−2
g(w−j ,1)

) + Eπ,t−2
gw−j ,0

[KL(Pu × πFt−2,xt−1
× µg(w−j ,0)

,Pu × πFt−2,xt−1
× µg(w−j ,1)

)]

= KL(Pπ,t−2
g(w−j ,0)

,Pπ,t−2
g(w−j ,1)

) + Eπ,t−2
g(w−j ,0)

[KL(Pu × πFt−2,xt−1
,Pu × πFt−2,xt−1

)]

+ Eπ,t−2
g(w−j ,0)

[EPu×πFt−2,xt−1
[KL(µg(w−j ,0)

, µg(w−j ,1)
)]

= KL(Pπ,t−2
g(w−j ,0)

,Pπ,t−2
g(w−j ,1)

) + Eπ,t−2
g(w−j ,0)

[EPu×πFt−2,xt−1
[KL(µg(w−j ,0)

, µg(w−j ,1)
)], (26)

where the first and second identities follow from the chain rule of KL divergence. Since we have
assumed that ε follows a normal distribution with variance σ2, the following equations hold:

KL(µg(w−j ,0)
(· | pt−1, xt−1), µg(w−j ,1)

(· | pt−1, xt−1))

=
1

2σ2

(
bpt−1 + g(w−j ,0)(xt−1)− bpt−1 − g(w−j ,1)(xt−1)

)2
=

1

2σ2

(
g(w−j ,0)(xt−1)− g(w−j ,1)(xt−1)

)2
≤ 1

2σ2

(
1

4Mβ

)2

I{xt−1∈Mj},

where the last inequality holds because g(w−j ,0) and g(w−j ,1) only differ in Mj . Plugging the above
equation into Eq. (26), we obtain

KL(Pπ,t
g(w−j ,0)

,Pπ,t
g(w−j ,1)

) = KL(Pπ,t−1
g(w−j ,0)

,Pπ,t−1
g(w−j ,1)

) +
1

2σ2Md

(
1

4Mβ

)2

=
1

32σ2Md+2β
t. (27)
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where the first identity is holds since EPu×πFt−2,xt−1
[I{xt−1∈Mj}] =

1
Md , and the second identity

follows by repeatedly applying the first identity. This completes the proof of Eq. (20).

Combining Eqs. (21), (22), (19), (24) and (27), we have

sup
g∈G(β,d)

Rπ
g (T ) ≥

|b|
2MdMd

Md∑
j=1

∑
w−j∈{0,1}Md−1

T∑
t=1

1

2

(
1

16Mβ |b|

)2

exp

(
− 1

32σ2Md+2β
t

)

≥ |b|
4
T

(
1

16Mβ |b|

)2

exp

(
− 1

32σ2Md+2β
T

)
.

By letting M = ⌈T
1

d+2β ⌉ in the above inequality, we obtain the lower bound Ω(T
d

d+2β ).

B.1. Proof of Lemma 1

We prove that for any x, y ∈ [0, 1]d, |gw(x)− gw(y)| ≤ 2||x− y||β by considering two cases: x and
y fall into the same bin in case 1, and x and y fall into different bins in case 2.

Case 1: x, y ∈Mj for some j ∈ [Md]. When x and y fall into the same bin Mj , we divide the proof
into four subcases.

Subcase 1.1: wj = 0, or wj = 1, D(x, ∂Mj) >
1

41/βM
and D(y, ∂Mj) >

1
4/βM

. In this subcase,
we have gw(x) = gw(y), and the result is trivial.

Subcase 1.2: wj = 1, D(x, ∂Mj) ≤ 1
41/βM

and D(y, ∂Mj) ≤ 1
41/βM

. Without loss of generality,
we assume that gw(x) ≤ gw(y). Then we have the following equation:

||x− y||β + gw(x) = ||x− y||β + (D(x, ∂Mj))
β + |b|(p+ p)

= ||x− y||β + min
z∈∂Mj

||z − x||β + |b|(p+ p)

= min
z∈∂Mj

(||x− y||β + ||z − x||β) + |b|(p+ p). (28)

If the following inequality holds: for 0 < β ≤ 1,

||a+ b||β ≤ ||a||β + ||b||β , ∀a, b ∈ Rd, (29)

then we have from (28) that

||x− y||β + gw(x) ≥ min
z∈∂Mj

||z − y||β + |b|(p+ p) = (D(y, ∂Mj))
β + |b|(p+ p) = gw(y),

(30)

which then implies |gw(x)− gw(y)| ≤ ||x− y||β .

We now show (29). Note that (29) is simply the triangle inequality when β = 1. When 0 < β < 1,
let β′ ∈ R+ be such that 1

β + 1
β′ = 1. By applying Hölder’s inequality, we have for any a, b ∈ R+,

(a+ b)β ≤
(
(aβ + bβ)

1
β (1β

′
+ 1β

′
)

1
β′
)β

= 2β−1(aβ + bβ) < aβ + bβ , (31)

Applying (31) and the triangle inequality, we have for any a, b ∈ Rd,

||a+ b||β ≤ (||a||+ ||b||)β < ||a||β + ||b||β ,

which finishes the proof of (29).

Subcase 1.3: wj = 1, D(x, ∂Mj) ≤ 1
41/βM

and D(y, ∂Mj) >
1

41/βM
. Let M̂j := {z ∈ Mj :

D(z, ∂Mj) > 1
41/βM

}. Since Proj(x, M̂j) ∈ ∂M̂j , then we have gw(y) = gw(Proj(x, M̂j)) =

|b|(p+ p) + 1
4Mβ and

|gw(x)− gw(y)| = |gw(x)− gw(Proj(x, M̂j))|. (32)
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Since ∂M̂j = {z ∈ Mj : D(z, ∂Mj) = 1
41/βM

} and Proj(x, M̂j) ∈ ∂M̂j , it then follows that
D(Proj(x, M̂j), ∂Mj) =

1
41/βM

. Since D(x, ∂Mj) ≤ 1
41/βM

from the assumption, by applying the
result in subcase 1.2, we obtain

|gw(x)− gw(Proj(x, M̂j))| ≤ ||x− Proj(x, M̂j)||β = min
z∈M̂j

||x− z||β ≤ ||x− y||β , (33)

where the last inequality holds due to y ∈ M̂j . Combining (32) with (33), we obtain |gw(x) −
gw(y)| ≤ ||x− y||β .

Subcase 1.4: wj = 1, D(x, ∂Mj) >
1

41/βM
and D(y, ∂Mj) ≤ 1

41/βM
. The proof of this subcase is

similar to subcase 1.3, and is omitted for brevity.

Case 2: x ∈Mi and y ∈Mj for i ̸= j. When x and y fall into different bins, we divide the proof
into five subcases.

Subcase 2.1: wi = wj = 0, or if wi = wj = 1, D(x, ∂Mi) >
1

41/βM
and D(y, ∂Mj) >

1
41/βM

. In
this subcase, we have gw(x) = gw(y) and the result is trivial.

Subcase 2.2: wi = 0 and wj = 1. In this subcase, we have

|gw(x)− gw(y)| ≤ (D(y, ∂Mj))
β (34)

≤ ||Proj(x, ∂Mj)− y||β (35)

≤ ||Proj(x, ∂Mj)− x||β + ||x− y||β (36)

= ||Proj(x,Mj)− x||β + ||x− y||β (37)

≤ 2||x− y||β . (38)

In the above equations, Eq. (34) holds since under the assumption wi = 0 and wj = 1,
if D(y, ∂Mj) ≤ 1

41/βM
, |gw(x) − gw(y)| = (D(y, ∂Mj))

β , and if D(y, ∂Mj) > 1
41/βM

,
|gw(x) − gw(y)| = 1

4Mβ ≤ (D(y, ∂Mj))
β . Eq. (35) follows from the definition of D(y, ∂Mj)

and Proj(x, ∂Mj) ∈ ∂Mj . Eq. (36) follows from (29). Eq. (37) holds since if Proj(x,Mj) is an
interior point of Mj , since Mj is a cubic, one can always construct a ball inside Mj with the center
Proj(x,Mj), and the intersected point between the ball and the line connecting x and Proj(x,Mj)
has a strictly shorter distance to x than Proj(x,Mj), leading to contradiction with the fact that
Proj(x,Mj) is the closest point in the bin Mj to x. Thus, Proj(x,Mj) must be at the boundary ∂Mj

and Proj(x,Mj) = Proj(x, ∂Mj). Eq. (38) follows from y ∈Mj and the definition of D(x, ∂Mj).

Subcase 2.3: wi = 1 and wj = 0. The proof of this subcase is similar to subcase 2.2 and is omitted.

Subcase 2.4: wi = wj = 1, D(x, ∂Mi) ≤ 1
41/βM

and D(y, ∂Mj) ≤ 1
41/βM

. Without loss of gener-
ality, we assume gw(y) ≥ gw(x). Then we have

||x− y||β + gw(x) = min
z∈∂Mi

(||x− y||β + ||z − x||β) + |b|(p+ p) ≥ min
z∈∂Mi

||z − y||β + |b|(p+ p),

(39)

where the inequality follows from (29).

On the other hand, when K is sufficiently large, we have

gw(y) = min
z∈∂Mj

||z − y||β + |b|(p+ p)

= min
z∈∂([−K,K]d\int(Mj))

||z − y||β + |b|(p+ p) (40)

= min
z∈[−K,K]d\int(Mj)

||z − y||β + |b|(p+ p) (41)

≤ min
z∈∂Mi

||z − y||β + |b|(p+ p). (42)

In the above equations, Eq. (40) holds since ∂([−K,K]d \ int(Mj)) = ∂([−K,K]d) ∪ ∂Mj ,
and when K is sufficiently large, D(y, ∂Mj) < D(y, ∂([−K,K]d)) and Proj(y, ∂(Mj)) =
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Proj(y, ∂([−K,K]d) ∪ ∂Mj). Eq. (41) holds due to the same reason as (37). Eq. (42) holds
since ∂(Mi) ⊂ [−K,K]d and ∂(Mi) ∩ int(Mj) = ∅ imply that ∂(Mi) ⊂ [−K,K]d \ int(Mj).

Combining Eqs. (39) and (42), we obtain |gw(x)− gw(x)| ≤ ||x− y||β .

Subcase 2.5: wi = wj = 1, D(x, ∂Mj) ≤ 1
41/βM

and D(y, ∂Mj) >
1

41/βM
. In this subcase, we

have

|gw(x)− gw(y)| =
∣∣∣∣(D(x, ∂Mj))

β − 1

4Mβ

∣∣∣∣ = 1

4Mβ
− (D(x, ∂Mj))

β < (D(y, ∂Mj))
β − (D(x, ∂Mj))

β .

The remaining analysis is similar to subcase 2.4, and is omitted for brevity.

Appendix C. Proof of Theorem 3

We first establish the following lemma showing that the true demand function f(p) + a⊤x can be
well-approximated by the linear function θ̂⊤t,jφ(p) + â⊤t,jx within price segment Ij after running
Algorithm 3. This result is quite standard and can be obtained easily by modifying the analysis in [1].
For completeness, we provide the details in Appendix C.1.

Lemma 2 For each j ∈ [N ], with probability at least 1 − ϵ, the following event holds: for any
t ∈ [T ], p ∈ I and x ∈ [0, 1]d,∣∣∣f(p) + a⊤x−

(
θ̂⊤t,jφ(p) + â⊤t,jx

)∣∣∣ ≤ γt,j

√
ϕ(p, x)⊤V −1

t,j ϕ(p, x) + ∆. (43)

Now we highlight our key idea for analyzing the regret in each period t ∈ [T ]. Let p∗t :=
argmaxp∈[p,p] p(f(p) + a⊤xt) be the optimal price for period t and i∗t ∈ [N ] denote the index
for the price segment p∗t belongs to. Conditioning on the events guaranteed by Lemma 2 for each
price segment i ∈ [N ], we have

rt = p∗t
(
f(p∗t ) + a⊤xt

)
− pt

(
f(pt) + a⊤xt

)
≤ max

p∈Ii∗t
p
(
⟨θ̂t,i∗t , φ(p)⟩+ ⟨ât,i∗t , xt⟩+ γt,i∗t

√
ϕ(p, xt)⊤V

−1
t,i∗t

ϕ(p, xt) + ∆
)
− pt

(
f(pt) + a⊤xt

)
≤ max

i∈[N ]
max
p∈Ii

p

(
⟨θ̂t,i, φ(p)⟩+ ⟨ât,i, xt⟩+ γt,i

√
ϕ(p, xt)⊤V

−1
t,i ϕ(p, xt) + ∆

)
− pt

(
f(pt) + a⊤xt

)
= pt

(
⟨θ̂t,it , φ(pt)⟩+ ⟨ât,it , xt⟩+ γt,it

√
ϕ(pt, xt)⊤V

−1
t,it

ϕ(pt, xt) + ∆

)
− pt

(
f(pt) + a⊤xt

)
≤ pt

∣∣∣⟨θ̂t,it , φ(pt)⟩+ ⟨ât,it , xt⟩ −
(
f(pt) + a⊤xt

)∣∣∣+ pt

(
γt,it

√
ϕ(pt, xt)⊤V

−1
t,it

ϕ(pt, xt) + ∆

)
≤ 2p

(
γt,it

√
ϕ(pt, xt)⊤V

−1
t,it

ϕ(pt, xt) + ∆

)
, (44)

where the first inequality follows from Eq. (43) in Lemma 2 and p∗t ∈ I∗t by definition, the second
equality is based on the design of our Algorithm 2 (line 13), and the last inequality again follows
from Eq. (43) in Lemma 2. Therefore, by optimizing the revenue within each price segment in
an optimistic way and choosing the price from all optimistic prices with the highest optimistic

revenue, we reduce estimating the regret in period t to bounding γt,it

√
ϕ(pt, xt)⊤V

−1
t,it

ϕ(pt, xt)+∆.
The subsequent analysis requires applying the elliptical potential lemma (see, e.g., [1]) to bound√

ϕ(pt, xt)⊤V
−1
t,it

ϕ(pt, xt) and carefully choosing the number of price segments N to balance the
bias of polynomial approximation for f(·) and learning efficiency within each price segment. The
details are given in Appendix B.1.

Let nT,j :=
∑T

t=1 Ipt∈Ij be the number of times for which prices p1, p2, . . . , pT selected by our
algorithm fall into Ij , and A denote the event that Eq. (44) in Lemma 2 holds for any t ∈ [T ] and
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i ∈ [N ]. When A holds, from Eq. (44), the total regret can be bounded as follows:
T∑

t=1

rt ≤ 2p

T∑
t=1

γt,it ∥ϕ(pt, xt)∥V −1
t,it

+ 2p∆T

= 2p

N∑
j=1

T∑
t=1

γt,j ∥ϕ(pt, xt)∥V −1
t,j

Ipt∈Ij + 2p∆T

≤ 2p

N∑
j=1

γT,j

T∑
t=1

∥ϕ(pt, xt)∥V −1
t,j

Ipt∈Ij + 2p∆T

≤ 2p

N∑
j=1

γT,j
√
nT,j

√√√√ T∑
t=1

∥ϕ(pt, xt)∥2V −1
t,j

Ipt∈Ij + 2p∆T

≤ 2p

N∑
j=1

γT,j
√
nT,j

√
2(b(k) + d+ 1) ln

(
1 +

nT,j

b(k) + d+ 1

)
+ 2p∆T, (45)

where the second inequality holds since {γt,j : 1 ≤ t ≤ T} is an increasing sequence for each
j ∈ [N ], the third inequality follows from Cauchy-Schwarz inequality, and the last inequality holds
due to

∑T
t=1 ∥ϕ(pt, xt)∥2V −1

t,j
Ipt∈Ij ≤ 2 ln det(VT,j)/ ln(λI) from the elliptical potential lemma

(see, e.g., Lemma 11 in [1]) and ln det(VT,j) ≤ (b(k) + d+ 1) ln(λ(1 +
nT,j

b(k)+d+1 )) from (51).

Since ϵ = T−2, we then have

γT,j = σ

√
(b(k) + d+ 1) ln

(
b(k) + d+ 1 + nT,j

b(k) + d+ 1

)
− 2 ln ϵ+ λ

1
2 (C2

0 (b(k) + 1) + a2)
1
2 +∆

√
nT,j

≤ σ
√
2(b(k) + d+ 1) ln(T + 1) + λ

1
2 (C2

0 (b(k) + 1) + a2)
1
2 +∆

√
nT,j ,

and the first term in the RHS of (45) is bounded by
N∑
j=1

γT,j
√
nT,j

√
2(b(k) + d+ 1) ln

(
1 +

nT,j

b(k) + d+ 1

)

≤ 2
√
(b(k) + d+ 1) ln(T + 1)

max
{
σ
√
(b(k) + d+ 1) ln(T + 1), λ

1
2 (C2

0k + a2)
1
2

}
·

N∑
j=1

√
nT,j +∆T


≤ 2
√
(b(k) + d+ 1) ln(T + 1)

×

max
{
σ
√
(b(k) + d+ 1) ln(T + 1), λ

1
2 (C2

0 (b(k) + 1) + a2)
1
2

}
·

√√√√ N∑
j=1

nT,j ·

√√√√ N∑
j=1

12 +∆T


= 2
√
(b(k) + d+ 1) ln(T + 1)

(
max

{
σ
√
(b(k) + d+ 1) ln(T + 1), λ

1
2 (C2

0 (b(k) + 1) + a2)
1
2

}
·
√
TN

+∆T
)
.

This, together with ∆ = Θ( δ
Nk ) and (45), implies

T∑
t=1

rt = O
(√

(b(k) + d+ 1) lnT
)
· O
(√

(b(k) + d+ 1)NT lnT +
δT

Nk

)
.

To balance the two terms
√
(b(k) + d+ 1)NT lnT and δT

Nk , we let N = ⌈(Tδ2)
1

2k+1 ⌉+ 1. When
δ = O(T− 1

2 ), N = Θ(1) and thus we obtain
√
(b(k) + d+ 1)NT = Θ(

√
(b(k) + d+ 1)T ) and

δT
Nk = O(

√
T ). In this case, we get

∑T
t=1 rt = O((b(k) + d + 1)

√
T lnT ). When δ = Ω(T− 1

2 ),

N = Θ((Tδ2)
1

2k+1 ) and we obtain
∑T

t=1 rt = O((b(k) + d + 1)δ
1

2k+1T
k+1
2k+1 lnT ). Combining

these two cases, we have
∑T

t=1 rt = O((b(k) + d+ 1)((δT k+1)
1

2k+1 ∨
√
T ) lnT ).
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Therefore, the total expected regret is upper bounded by
T∑

t=1

E[rt] =
T∑

t=1

E[rt|A] · P(A) +
T∑

t=1

E[rt|Ac] · P(Ac)

= Õ
(
(b(k) + d+ 1)

(
(δT k+1)

1
2k+1 ∨

√
T
))

+O
(
N

T

)
, (46)

where the second identity holds since from the union bound, P(Ac) ≤ N
ϵ = N

T 2 . Since O(NT ) =

O(T− 2k
2k+1 δ

2
2k+1 ) and δ = O(1), the first term in the RHS of (46) dominates.

C.1. Proof of Lemma 2

In this proof, we consider an arbitrarily fixed I ∈
⋃

j∈[N ] Ij . Let PI(p) be the first b(k) + 1 terms of
the Taylor expansion for function f(p) at p = l:

PI(p) =

b(k)∑
i=0

f (i)(l)

i!
(p− l)i, ∀p ∈ I.

It’s easy to verify that |f(p) − PI(p)| ≤ δ (u−l)k

b(k)! . For convenience, we label (x, p, d) in D as
{(xi, pi, di)}ti=1 in chronological order. Let βi := f(pi) − PI(pi) for i ∈ [t], then |βi| ≤ ∆ and
di = f(pi) + a⊤xi + ϵi = PI(pi) + a⊤xi + ϵi + βi.

Denote d = (di)i≤t, ϵ = (ϵi)i≤t, β = (βi)i≤t as column vectors in Rt. Let X = ((ϕ(pi, xi))i≤t) ∈
Rt×(b(k)+d+1), θ∗ = (( f

(i)(l)
i! )0≤i≤b(k), a) ∈ Rb(k)+d+1. Thus, d = Xθ∗ + ϵ + β. The Ridge

estimate θ̄ := (θ̂⊤, â⊤)⊤ can be written as θ̄ = V −1X⊤d. Note that we omit the dependency of θ̄,
V , X and d on the cardinality of D, i.e., t, for simplicity. By simple calculation, we have

θ̄ − θ∗ = −λV −1θ∗ + V −1X⊤(ϵ+ β).

Multiplying (θ̄ − θ∗)⊤V on both sides of the above equation, we have

(θ̄ − θ∗)⊤V (θ̄ − θ∗)

= −λ(θ̄ − θ∗)⊤θ∗ + (θ̄ − θ∗)⊤X⊤(ϵ+ β)

≤ λ
∥∥(θ̄ − θ∗)

∥∥
V
· ∥θ∗∥V −1 +

∥∥(θ̄ − θ∗)
∥∥
V
·
∥∥X⊤ϵ

∥∥
V −1 + (θ̄ − θ∗)⊤X⊤β

≤ λ
∥∥(θ̄ − θ∗)

∥∥
V
· ∥θ∗∥V −1 +

∥∥(θ̄ − θ∗)
∥∥
V
·
∥∥X⊤ϵ

∥∥
V −1 +∆

√
t
∥∥(θ̄ − θ∗)

∥∥
V
, (47)

where the first inequality follows from Cauchy-Schwarz inequality, and the second inequality holds
due to∣∣(θ̄ − θ∗)⊤X⊤β

∣∣ ≤√ ∑
1≤τ≤t

β2
τ

√ ∑
1≤τ≤t

(
⟨ϕ(pτ , xτ ), θ̄ − θ∗⟩

)2

=

√ ∑
1≤τ≤t

β2
τ

√√√√√(θ̄ − θ∗)⊤

 ∑
1≤τ≤t

ϕ(pτ , xτ )ϕ⊤(pτ , xτ )

 (θ̄ − θ∗)

=

√ ∑
1≤τ≤t

β2
τ

√
(θ̄ − θ∗)⊤ (V − λI) (θ̄ − θ∗)

≤ ∆
√
t
∥∥(θ̄ − θ∗)

∥∥
V
.

Dividing both sides of Eq. (47) by
∥∥θ̄ − θ∗

∥∥
V

, we have∥∥(θ̄ − θ∗)
∥∥
V
≤ λ ∥θ∗∥V −1 +

∥∥X⊤ϵ
∥∥
V −1 +∆

√
t. (48)

By applying the self-normalized bound for vector-valued martingales in Theorem 1 of [1], we have
with probability at least 1− ϵ,

∀t ∈ [T ] :
∥∥X⊤ϵ

∥∥
V −1 ≤

√√√√2σ2 log

(
det(V )

1
2 det(λI)−1/2

ϵ

)
. (49)
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Since ∥θ∗∥2V −1 ≤ 1
λmin(V ) ∥θ

∗∥22 ≤
1
λ ∥θ

∗∥22 ≤
C2

0 (b(k)+1)+a2

λ , it follows from Eqs. (48) and (49)
that

∥∥(θ̄ − θ∗)
∥∥
V
≤

√√√√2σ2 log

(
det(V )

1
2 det(λI)−1/2

δ

)
+ λ

1
2 (C2

0 (b(k) + 1) + a2)
1
2 +∆

√
t. (50)

Moreover, let λ1, λ2, . . . , λb(k)+d+1 denote the eigenvalues of matrix V . Then we have

detV = Π
b(k)+d+1
i=1 λi

≤

(∑b(k)+d+1
i=1 λi

b(k) + d+ 1

)b(k)+d+1

=

(
λ+

∑t
i=1 ∥ϕ(pi, xi)∥22
b(k) + d+ 1

)b(k)+d+1

≤
(
λ+

|D|λ
b(k) + d+ 1

)b(k)+d+1

, (51)

where the first equality follows from the fact that the determinant of a matrix equals the product of its
all eigenvalues, the second inequality follows from the inequality of arithmetic and geometric means,
the second equality follows from the fact that the sum of eigenvalues of a matrix equals its trace,
and the last inequality holds since ||ϕ(pi, xi)||2 =

∑b(k)
j=0 (pi − l)j + ||xi||2 ≤ 1−(u−l)2b(k)

1−(u−l)2 + d ≤
1

1−(p−p)2/N2 + d = λ and t = |D|.

Therefore, with probability at least 1− ϵ, for any t ∈ [T ], p ∈ I and x ∈ [0, 1]d,∣∣∣f(p) + a⊤x− (θ̂⊤φ(p) + â⊤x)
∣∣∣ ≤ ∣∣∣PI(p) + a⊤x− (θ̂⊤φ(p) + â⊤x)

∣∣∣+ |f(p)− PI(p)|

≤
∥∥(θ̄ − θ∗)

∥∥
V
∥ϕ(p, x)∥V −1 +∆

≤ γ ∥ϕ(p, x)∥V −1 +∆,

where the first inequality follows from the triangle inequality, the second inequality follows from
Cauchy-Schwarz inequality, and the last inequality follows from Eqs. (50) and (51) and the definition
of γ.

Appendix D. Proof of Theorem 4

The worst-case bound Ω(
√
T ) is directly implied from Theorem 1 in [18] by letting a = 0 and

f(p) = α+ βp (which belongs to Fk([p, p]; δ) when α and β are appropriately defined to adapt to

δ). To show the instance-dependent bound Ω((δT k+1)
1

2k+1 ), we first construct a series of demand
functions and use the Kullback-Leibler (KL) divergence arguments to bound the regret. Note that the
smoothstep function adopted by [32] can not be used here because in our problem k is not necessarily
a constant. Besides, our analysis also differs from [32] in that the constructed demand functions need
to be instance-dependent such that the established lower bound achieves a tight dependency on δ.

Specifically, following from a similar idea of [15], we start with introducing an infinitely differentiable
function u(x) defined as

u(x) :=

{
exp {− 1

x(1−x)} if x ∈ [0, 1];

0 otherwise .

Consider S : R+ → R+ as follows:

S(x) =

(∫ 2

0

u(t)dt

)−1 ∫ x

−∞
u(t)dt. (52)

Note that S(x) is non-decreasing infinitely differentiable function satisfying S(x) = 0 on (−∞, 0]
and S(x) = 1 on [1,∞). For any integer l ≥ 1, the l-th derivative of S(x) at x ∈ [0, 1] is in the form
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of poly(x)
(x(1−x))2(l−1) exp (− 1

x(1−x) ), which is bounded in the domain. Moreover, S(l)(1) = S(l)(0) = 0.

Besides, there exist a constant ck, such that for any x, x′ ∈ R, |S(b(k))(x)− S(b(k))(x′)| ≤ ck|x−
x′|k−b(k). Based on S(x), we can define g(·) : [0, 2]→ [0, 1

Zk
] as follows:

gk(x) =
1

Zk
(S(x)1{x ≤ 1}+ S(2− x)1{x > 1}), (53)

where Zk > 0 is a scaling parameter which makes the l-th derivatives of gk(x) uniformly bounded
by constant 1 on [0, 2] for each 0 ≤ l ≤ b(k), and |g(b(k))k (x) − g

(b(k))
k (x′)| ≤ |x − x′|k−b(k) for

any x, x′ ∈ R, e.g., Zk := max0≤k′≤k maxx∈[0,1] |S(k)(x)| ∨ ck. Since S(1) = 1, Zk ≥ 1 naturally
holds.

We partition the price range [p, p] into J segments of equal length, denoted by I1, I2, . . . , IJ . We
construct a series of revenue functions r0, r1, r2, . . . , rJ as following,

rj(p) :=

{
1
2 δ̂ if p /∈ Ij ;
1
2 δ̂ + η · gk

(
2J(p− aj)

)
if p ∈ Ij ,

(54)

where δ̂ = δ/((
∑b(k)

i=0
b(k)!
i! )∨(b(k)+1)2b(k)−1). By choosing J := ⌈4(b(k)+1)2b(k)δ̂

2
2k+1T

1
2k+1 ⌉

and η = ((2σ) ∧ 1
23k+1 )

1
((b(k)+1)2b(k))k

δ̂
1

2k+1T− k
2k+1 , we can have the following lemma on the

demand function fj(p) =
fj(p)
p , whose proof is provided in Appendix D.1.

Lemma 3 For each 0 ≤ j ≤ J , fj(p) ∈ Fk([p, p]; δ).

Note that for each j ∈ [J ], the induced optimal price of fj(p) belongs to Ij and rj(p) differs from
r0(p) only in Ij , with the maximum difference characterized by parameter η. It’s important to note
that η is a crucial quantity that balances the tradeoff between making it a more challenging task for
the algorithm to distinguish between different demand functions (which requires η to be small) and
imposing a higher regret loss if the algorithm fails to identify the true demand environment (which
requires η to be large). For any policy π, consider the random variable Tj denoting the number
of times the prices selected by π fall into segment Ij . Similar to [32], we establish the following
inequalities: for each j ∈ [J ],∣∣Eπ

j [Tj ]− Eπ
0 [Tj ]

∣∣ ≤ 1

2
T
√

KL(Pπ
0 (Tj)||Pπ

j (Tj)) ≤
1

4σ

√
Eπ
0 [Tj ]Tη. (55)

In Eq. (55), the first inequality is obtained by bounding
∣∣Eπ

j [Tj ]− Eπ
0 [Tj ]

∣∣ via the total variation
of Pπ

0 and Pπ
j and applying Pinsker’s inequality that relates the total variation of two probability

measures with the KL divergence, and the second inequality is due to our construction of rj . Letting
j∗ := argmin1≤j≤J Eπ

0 [Tj ], we must have Eπ
0 [Tj ] ≤ T

J .Since we set η = Θ((δT−k)
1

2k+1 ) and
J = Θ((δ2T )

1
2k+1 ), Eq. (55) guarantees that Eπ

j∗ [Tj∗ ] ≤ T
2 . This indicates that when the true

revenue function is rj∗ , there are at least T
2 times when the selected prices do not fall into the “best”

segment Ij∗ , leading to the regret loss Ω(Tη) = Ω((δT k+1)
1

2k+1 ).

As discussed before, it suffices to prove the lower bound Ω((δT k+1)
1

2k+1 ). Note that we also only
need to consider the case δ ≥ T− 1

2 , since otherwise, (δT k+1)
1

2k+1 <
√
T , and the desired lower

bound in (2) becomes Ω(
√
T ), which is again obtained. For simplicity, we assume [p, p] = [1, 2] and

D is a standard normal distribution.

Based on what we have constructed, for any given policy π, let Tj be the number of times when the
prices selected by π fall into segment Ij . We then claim the following inequality for any 1 ≤ j ≤ J :∣∣Eπ

0 [Tj ]− Eπ
j [Tj ]

∣∣ ≤ 1

4σ

√
Eπ
0 [Tj ]Tη, (56)

where Eπ
0 [·] and Eπ

j [·] denote the expectation associated with the probability measure induced by
policy π under demand model r0 and rj respectively. The proof of (56) is deferred to the last part,
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and we now proceed to prove the regret lower bound based on (56). Consider the index j∗ ∈ [J ] that
minimizes Eπ

0 [Tj∗ ]. By Pigeonhole principle, we have Eπ
0 [Tj∗ ] ≤ T/J . From (56), we further have

Eπ
j∗ [Tj∗ ] ≤

1

4σ

√
Eπ
0 [Tj∗ ]Tη + Eπ

0 [Tj∗ ] ≤
1

4σ

√
T

J
Tη +

T

J
≤ T

2
, (57)

where the first inequality follows from (56), the second inequality follows from the choice of j,
and the last inequality holds since η2 ≤ (2σδ̂

1
2k+1T− k

2k+1 )2 = 4σ2δ̂
2

2k+1T− 2k
2k+1 ≤ σ2 J

T implies
1
4σ

√
T
J Tη ≤

1
4T and δ̂ ≥ T− 1

2 implies T
J = 1

4 δ̂
− 2

2k+1T
2k

2k+1 ≤ 1
4T . Note that when the true

demand function is fj∗(·), in any period when policy π charges a price out of Ij , a revenue loss η
will be incurred by the definition of rj(·). Hence, we have

sup
f∈{f1,f2,...,fJ}

Rπ
fj (T, k, δ) ≥ Rπ

fj∗
(T, k, δ) ≥ (T − Eπ

j∗ [Tj∗ ])η ≥
1

2
Tη = Ω

((
δT k+1

) 1
2k+1

)
.

Finally, we complete the proof of Theorem 4 by proving (56). For the sake of rigor, we define
a probability space as follows. Let Ω = ([1, 2] × R)T × {0, 1, 2, . . . , T} and B(Ω) be the Borel
algebra on Ω. For any t ∈ [T ], let Pt and Dt be measurable functions on (Ω,B(Ω)) that map each
ω = (p1, d1, p2, d2, . . . , pT , dT ) ∈ Ω to pt and dt respectively. For any j ∈ {0} ∪ [J ], let Tj be a
measurable function on (Ω,B(Ω)) that maps ω = (p1, d1, p2, d2, . . . , pT , dT ) ∈ Ω to the cardinality
of the set {1 ≤ t ≤ T : pt ∈ Ij}. We also define two functions µπ

i : ([1, 2] × R)T → R+ and
νπi : ([1, 2]× R)T × {0, 1, 2, . . . , T} → R+ as follows:

νπj (p1, d1, p2, d2, . . . , pT , dT ) =

T∏
t=1

(
µπ(pt|p1, d1, . . . , pt−1, dt−1) ·

1√
2πσ

e−
(dt−fj(pt))

2

2σ2

)
,

µπ
j (p1, d1, p2, d2, . . . , pT , dT , tj) = νπj (p1, d1, p2, d2, . . . , pT , dT ) · 1{tj=|1≤t≤T :pt∈Ij |},

where µπ(pt|p1, d1, . . . , pt−1, dt−1) is the p.d.f. for pt given (p1, d1, . . . , pt−1, dt−1). Let Pπ
j (·) be

the following probability measure on (Ω,B(Ω)): for any B ∈ B(Ω), Pπ
j (B) =

∫
B
µπ
j (w)dw. Thus,

(Ω,B(Ω),Pπ
j ) constitute a probability space, and from the chain rule, νπj (·) and µπ

j (·) are the p.d.f.
for (P1, D1, P2, D2, . . . , PT , DT ) and (P1, D1, P2, D2, . . . , PT , DT , Tj) respectively. With a slight
abuse of notation, we denote the distributions of Tj and (P1, D1, P2, D2, . . . , PT , DT ) by Pπ

i (Tj)
and Pπ

i (P1, D1, P2, D2, . . . , PT , DT ) respectively, and the conditional probability distribution of
Tj given (P1, D1, P2, D2, . . . , PT , DT ) by Pπ

i (Tj |P1, D1, P2, D2, . . . , PT , DT ). For any given 0 ≤
i ≤ J and 0 ≤ j ≤ J , Eπ

i [Tj ] is then the expectation of Tj under Pπ
i .

Then we note that

∣∣Eπ
0 [Tj ]− Eπ

j [Tj ]
∣∣ ≤ T∑

t=0

t×
∣∣Pπ

0 (t)− Pπ
j (t)

∣∣ ≤ T ×
T∑

t=0

∣∣Pπ
0 (t)− Pπ

j (t)
∣∣

=
1

2
T ||Pπ

0 (Tj)− Pπ
j (Tj)||TV ≤

1

2
T

√
1

2
KL(Pπ

0 (Tj)||Pπ
j (Tj)), (58)

where the first identity follows from the property of the total variation distance for discrete random
variables, see, e.g., Proposition 4.2 in [19], and the last inequality follows from Pinsker’s inequality.
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To further bound KL(Pπ
0 (Tj)||Pπ

j (Tj)), we note that

KL
(
Pπ
0 (Tj) ||Pπ

j (Tj)
)
= KL

(
Pπ
0 (P1, D1, P2, D2, . . . , PT , DT , Tj) ||Pπ

j (P1, D1, P2, D2, . . . , PT , DT , Tj)
)

− KL
(
Pπ
0 (P1, D1, P2, D2, . . . , PT , DT |Tj) ||Pπ

j (P1, D1, P2, D2, . . . , pT , DT |Tj)
)

≤ KL
(
Pπ
0 (P1, D1, P2, D2, . . . , PT , DT , Tj) ||Pπ

j (P1, D1, P2, D2, . . . , PT , DT , Tj)
)

= Eπ
0

[
Eπ
0

[
log

µπ
0 (P1, D1, P2, D2, . . . , PT , DT , Tj)

µπ
j (P1, D1, P2, D2, . . . , PT , DT , Tj)

∣∣∣(P1, D1, . . . , PT , DT )

]]

= Eπ
0

[
log

νπ0 (P1, D1, P2, D2, . . . , PT , DT )

νπj (P1, D1, P2, D2, . . . , PT , DT )

]

=
1

2σ2

T∑
t=1

Eπ
0

[
(Dt − fj(Pt))

2 − (Dt − f0(Pt))
2
]

=
1

2σ2

T∑
t=1

Eπ
0

[
(f0(Pt)− fj(Pt))

2
]

=
1

2σ2

T∑
t=1

Eπ
0

[
1{Pt∈Ij}(f0(Pt)− fj(Pt))

2
]

≤ 1

2σ2
Eπ
0 [Tj ] ·max

p∈Ij
(f0(p)− fj(p))

2

=
1

2σ2
Eπ
0 [Tj ]η

2, (59)

where the first identity follows from the chain rule for KL divergence, the first inequality follows from
the fact that the KL divergence between any two probability distributions is non-negative, the second
identity holds due to the definition of KL divergence and the law of total expectation, the third identity
holds since given (P1, D1, P2, D2, . . . , PT , DT ), Tj takes the value |{1 ≤ t ≤ T : Pt ∈ Ij}| with
probability one, and when Ti = |{1 ≤ t ≤ T : Pt ∈ Ij}|, µπ

i (P1, D2, P2, D2, . . . , PT , DT , Tj) =
νπi (P1, D2, P2, D2, . . . , PT , DT ), the fifth identity holds since Dt = f0(Pt) + εt, Eπ

0 [εt] = 0 and
Pt is independent of εt, and the sixth identity holds since f0 and fj are only different in Ij . Then
(56) is obtained by combining (58) with (59).

D.1. Proof of Lemma 3

The result for j = 0 is trivial. When 1 ≤ j ≤ J , from the properties (1) and (2) of S(x), gk(x) is
infinitely differentiable. Now we check the property of f (b(k))

j (p).

∣∣∣fb(k)
j (p1)− f

b(k)
j (p2)

∣∣∣ = ∣∣∣∣∣
(
rj(p1)

p1

)(b(k))

−
(
rj(p2)

p2

)(b(k))
∣∣∣∣∣

=

∣∣∣∣∣∣
b(k)∑
i=0

(
b(k)

i

)(
1

p1

)(b(k)−i)

r
(i)
j (p1)−

b(k)∑
i=0

(
b(k)

i

)(
1

p2

)(b(k)−i)

r
(i)
j (p2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
b(k)∑
i=0

(
b(k)

i

)
(−1)(b(k)−i)(b(k)− i)!

(
r
(i)
j (p1)

p
b(k)−i+1
1

−
r
(i)
j (p2)

p
b(k)−i+1
2

)∣∣∣∣∣∣
≤

b(k)∑
i=0

b(k)!

i!

 max
0≤i≤b(k)

∣∣∣∣∣ r
(i)
j (p1)

p
b(k)−i+1
1

−
r
(i)
j (p2)

p
b(k)−i+1
2

∣∣∣∣∣ , (60)

where the second identity follows the general Leibniz rule. Now we turn to the RHS of Eq. (60). In
the following, we discuss in three cases: (1) p1, p2 ∈ Ij , (2) p1 ∈ Ij and p2 /∈ Ij , and (3) p1, p2 /∈ Ij .
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Case 1: p1 ∈ Ij and p2 ∈ Ij .

If 0 ≤ i ≤ b(k)− 1, we have

∣∣∣∣∣ r
(i)
j (p1)

p
b(k)−i+1
1

−
r
(i)
j (p2)

p
b(k)−i+1
2

∣∣∣∣∣
≤

∣∣∣∣∣ r
(i)
j (p1)

p
b(k)−i+1
1

−
r
(i)
j (p2)

p
b(k)−i+1
1

∣∣∣∣∣+
∣∣∣∣∣ r

(i)
j (p2)

p
b(k)−i+1
1

−
r
(i)
j (p2)

p
b(k)−i+1
2

∣∣∣∣∣
≤
∣∣∣r(i)j (p1)− r

(i)
j (p2)

∣∣∣+ max
p∈[1,2]

∣∣∣r(i)j (p)
∣∣∣ ∣∣∣∣∣pb(k)−i+1

1 − p
b(k)−i+1
2

p
b(k)−i+1
1 p

b(k)−i+1
2

∣∣∣∣∣
≤ max

p∈[1,2]

∣∣∣r(i+1)
j (p)

∣∣∣ |p1 − p2|+ max
p∈[1,2]

∣∣∣r(i)j (p)
∣∣∣ |p1 − p2|

∣∣∣∣∣∣
b(k)−i∑
q=0

pq1p
b(k)−i−q
2

∣∣∣∣∣∣
≤ η(2J)i+1 max

x∈[0,2]

∣∣∣g(i+1)
k (x)

∣∣∣ |p1 − p2|+ η(2J)i max
x∈[0,2]

∣∣∣g(i)k (x)
∣∣∣ |p1 − p2| (b(k)− i+ 1)2b(k)−i

≤
(
η(2J)i+1 + (b(k)− i+ 1)η(2J)i2b(k)−i

)
|p1 − p2|

≤ 2η(2J)i+1|p1 − p2|, (61)

where the third inequality follows from mean value theorem, the existence of the i+ 1-th derivatives,
p1 ≥ 1, p2 ≥ 1 and the fact that pb(k)−i

1 − p
b(k)−i+1
2 = (p1 − p2)(

∑b(k)−i+1
q=0 pq1p

b(k)−i−q
2 ), the

fourth inequality holds due to p1 ≤ 2 and p2 ≤ 2, the fifth inequality holds by our construction that
maxx∈[0,2]

∣∣∣g(i)k (x)
∣∣∣ ≤ 1, the last inequality follows from (b(k) + 1)2b(k) ≤ 2J . Then, for i = b(k),

∣∣∣∣∣r
(b(k))
j (p1)

p1
−

r
(b(k))
j (p2)

p2

∣∣∣∣∣
≤

∣∣∣∣∣r
(b(k))
j (p1)

p1
−

r
(b(k))
j (p2)

p1

∣∣∣∣∣+
∣∣∣∣∣r

(b(k))
j (p2)

p1
−

r
(b(k))
j (p2)

p2

∣∣∣∣∣
≤ η(2J)b(k)

∣∣∣g(b(k)) (2J(p1 − aj))− g(b(k))(2J(p2 − aj))
∣∣∣+ |p1 − p2| max

p∈[1,2]

∣∣∣rb(k)j (p)
∣∣∣

≤ η(2J)b(k) |2J(p1 − p2))|k−b(k)
+ η(2J)b(k) |p1 − p2|

≤ (η(2J)k + η(2J)b(k)) |p1 − p2|k−b(k)

≤ 2η(2J)k |p1 − p2|k−b(k)
, (62)

where the second inequality holds because
∣∣∣∣ r(b(k))

j (p2)

p1
− r

(b(k))
j (p2)

p2

∣∣∣∣ ≤∣∣∣ 1
p1
− 1

p2

∣∣∣maxp∈[1,2]

∣∣∣r(b(k))j (p)
∣∣∣ ≤ |p1 − p2|maxp∈[1,2]

∣∣∣r(b(k))j (p)
∣∣∣, the third inequality fol-

lows that g(b(k))(·) is (k − b(k))-Hölder continuous, the fourth inequality holds because of
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|p1 − p2| ≤ 1 and k − b(k) ≤ 1. Then, Eq. (60) can be simplified∣∣∣fb(k)
j (p1)− f

b(k)
j (p2)

∣∣∣
≤

b(k)∑
i=0

b(k)!

i!

max

{
max

0≤i≤b(k)−1
2η(2J)i+1 |p1 − p2| , 2η(2J)k |p1 − p2|k−b(k)

}

≤

b(k)∑
i=0

b(k)!

i!

max
{
2η(2J)b(k) |p1 − p2| , 2η(2J)k |p1 − p2|k−b(k)

}

=

b(k)∑
i=0

b(k)!

i!

(2η(2J)k |p1 − p2|k−b(k)
)

≤ δ |p1 − p2|k−b(k)
, (63)

where the last inequality holds due to 2η(2J)k ≤ 2 1
23k+1

1
((b(k)+1)2b(k))k

δ̂
1

2k+1T− k
2k+1 (8(b(k) +

1)2b(k)δ̂
2

2k+1T
1

2k+1 )k = δ̂.

Case 2: p1 ∈ Ij and p2 /∈ Ij .

Note that Eq. (61) still hold in this case. What we need to derive is the bound for | r
(b(k))
j (p1)

p1
−

r
(b(k))
j (p2)

p2
| (i.e., Eq. (62) can not be directly applied here). Define p′2 := Proj(p2, Ij). Note that p′2 is

either aj or bj , rj(aj) = rj(bj) =
1
2 δ̂ and r

(i)
j (aj) = r

(i)
j (bj) = 0 for all 1 ≤ i ≤ b(k). Thus, we

can have∣∣∣∣∣r
(b(k))
j (p1)

p1
−

r
(b(k))
j (p2)

p2

∣∣∣∣∣ =
∣∣∣∣∣r

(b(k))
j (p1)

p1
−

r
(b(k))
j (p′2)

p′2

∣∣∣∣∣
≤ 2η(2J)k|p1 − p′2|k−b(k) ≤ 2η(2J)k|p1 − p2|k−b(k), (64)

where the first equality holds due to r
(b(k))
j (p2) = r

(b(k))
j (p′2) = 0, the first inequality follows from

Eq. (62) because p1 and p′2 are both in Ij , and the second inequality holds due to the projection
process. Together with Eqs. (60), (61) and (64), by the same calculation of Eq. (63), we can know
|fb(k)

j (p1)− f
b(k)
j (p2)| ≤ δ |p1 − p2|k−b(k).

Case 3: p1 /∈ Ij and p2 /∈ Ij .

When p1 and p2 are not in Ij , r(i)j (p1) = r
(i)
j (p2) = 0, for all 1 ≤ i ≤ b(k). From the first two lines

of Eq. (60), we can have∣∣∣fb(k)
j (p1)− f

b(k)
j (p2)

∣∣∣ = ∣∣∣∣∣ rj(p1)p
b(k)+1
1

− rj(p2)

p
b(k)+1
2

∣∣∣∣∣
≤ 1

2
δ̂
∣∣∣pb(k)+1

1 − p
b(k)+1
2

∣∣∣
≤ 1

2
δ̂|p1 − p2|

∣∣∣∣∣∣
b(k)∑
q=0

pq1p
b(k)−q
2

∣∣∣∣∣∣
≤ 1

2
δ̂(b(k) + 1)2b(k)|p1 − p2|

≤ δ|p1 − p2|k−b(k),

where the third inequality holds due to p1 ≤ 2 and p2 ≤ 2, and the last inequality follows from
δ̂ ≤ δ/((b(k) + 1)2b(k) − 1).

Together with the above three cases, we draw the conclusion that for any p1, p2 ∈ [1, 2], we have
|fb(k)

j (p1)− f
b(k)
j (p2)| ≤ δ |p1 − p2|k−b(k). We finish the proof.
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