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A Query Decomposition (Section 3 in paper)

All of the questions posed in Table 1 in the main paper can be decomposed into readily available
components that our model pθ can estimate. Should we not utilize the proposed query structure
(Q = ∪iV(i)

1 ×· · ·×V(i)
K ) then these are the derivations that would need to be performed individually

in order to compute these values exactly on a case-by-case basis.

Q1 P∗(X1) is already naturally in a form that our model can directly estimate due to the
autoregressive factorization imposed by the architecture: p∗θ(X1). Furthermore, if we are in-
terested in any potential continuing sequence X1:K = x1:K this can easily be computed via
p∗θ(X1:K = x1:K) =

∏K
k=1 p

∗
θ(Xk = xk|X<k = x<k).

Q2 To evaluate p∗θ(XK), terms X<K need to be marginalized out. This is naturally represented
like so:

p∗θ(XK) = Ex<K∼p∗
θ(X<K) [p

∗
θ(XK |X<K = x<K)]

=
∑

x<K∈VK−1

p∗θ(XK , X<K = x<K)

It is helpful to show both the exact summation form as well as the expected value representation as
both will be useful in Section 4.

Q3 The “hitting time” or the next occurrence of a specific event type a ∈ V is defined as τ(a).
Evaluating the distribution of the hitting time with our model can be done like so:

p∗θ(τ(a) = K) = p∗θ(XK = a,X<K ̸= a),

=
∑

x<K∈{V\{a}}K−1

p∗θ(XK = a,X<K = x<K).

The value a ∈ V can be easily replaced with a set of values A ⊂ V in these representations.

p∗θ(τ(A) = k) = p∗θ(XK ∈ A,X<K ∈ (V \A)K−1),

=
∑

x<K∈{V\A}K−1

∑
a∈A

p∗θ(XK = a,X<K = x<K)

Interestingly, we can see that Q3 is a generalization of Q2 by noting that they are identical when
A = {}.
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Q4 To evaluate p∗θ(τ(a) < τ(b)), we must consider the possible instances where this condition is
fulfilled. In doing so, we end up evaluating multiple queries similar in form to Q3, like so:

p∗θ(τ(a) < τ(b)) =

∞∑
k=1

p∗θ(τ(a) = k, τ(b) > k)

=

∞∑
k=1

p∗θ(Xk = a,X<k ∈ (V \ {a, b})k−1) (11)

In practice, computing this exactly is intractable due to it being an infinite sum. There are two
potential approaches one could take to subvert this. The first of which is to ask a slightly different
query:

p∗θ(τ(a) < τ(b)|τ(a) ≤ K) =
p∗θ(τ(a) < τ(b), τ(a) ≤ K)

p∗θ(τ(a) ≤ K,HT )

=

∑K
k=1 p

∗
θ(Xk = a,X<k ∈ (V \ {a, b})k−1)∑K

k=1 p
∗
θ(τ(a) = k)

.

The other option is to produce a lower bound on this expression by evaluating the sum in Eq. (11) for
the first K terms. We can achieve error bounds on this estimate by noting that p∗θ(τ(a) < τ(b)) +
p∗θ(τ(a) > τ(b)) = 1. As such, if we evaluate Eq. (11) up to K terms for both p∗θ(τ(a) < τ(b)) and
p∗θ(τ(b) < τ(a)), the difference between the sums will be the maximum error either lower bound can
have.

Similar to Q3, we can also ask this query with sets A ⊥ B ⊂ V instead of values a, b.

p∗θ(τ(A) < τ(B)) =

∞∑
k=1

p∗θ(τ(A) = k, τ(B) > k)

=

∞∑
k=1

∑
a∈A

p∗θ(Xk = a,X<k ∈ (V \ (A ∪B))k−1)

Q5 Evaluating p∗θ(Na(K) = n) also involves decomposing this value of interest into statements
involving hitting times.

Let τ (l)(a) be the lth hitting time of a specific event of interest a. In other words, the time of the lth

occurrence of a. Assuming n ≤ K:

p∗θ(Na(K) = n)

=
∑

i1<i2<···<in≤K

p∗θ(τ
(1)(a) = i1, τ

(2)(a) = i2, . . . , τ
(n)(a) = in, τ

(n+1)(a) > K)

=
∑

i1<i2<···<in≤K

p∗θ(Xi1 = τ (1)(a) = i1, τ
(2)(a) = i2, . . . , τ

(n)(a) = in, τ
(n+1)(a) > K)

Approximation Errors With queries that fall under the Q5 category (e.g., how likely will the
event a happen n times in the next K steps? p∗θ(Na(K) = n)), while in the limiting case C(K,n)
will become the dominant scaling factor for the size of the query space, in many circumstances this
actually isn’t as impactful as one might expect. For instance, it can be shown that the query space
of a Q5 query is larger than that of a hitting time query (Q3) evaluated one step further (at K + 1)
if n
√

C(K,n) > V where V is the vocabulary size. Looking at our main set of experiments from
Section 5, we can see that when evaluating hitting time queries up to 11 steps into the future (K = 11),
these queries had a slightly larger query space of than that of p∗θ(Na(K) = n) for K = 10,∀0≤n≤K

and thus can be seen as comparable in complexity. This behavior easily extends to larger values of
K (e.g., K ≈ 100), especially for larger vocabulary sizes. This is due to the nth root dramatically
slowing down the factorial growth in the inequality shared above.
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B Proof for Coverage-Based Beam Search Error Upper Bound (Section 4.2 in
paper)

Proposition 1. For a given set of decoded sequences B ⊂ Q with coverage q(X1:K ∈ B), the error
between the true probabilistic query value p∗θ(X1:K ∈ Q) and the lower bound p∗θ(X1:K ∈ B) is
bounded above by the complement of the coverage: 1− q(X1:K ∈ B).

Proof. For brevity, we will assume that Q = V1 × · · · × VK (although this can easily be extended
to the general case). Since q(Xk = xk|X<k = x<k) =

p∗
θ(Xk=xk|X<k=x<k)1(xk∈Vk)

p∗
θ(Xk∈Vk|X<k=x<k)

and p∗θ(·) ≤ 1,
it follows that q(Xk = xk|X<k = x<k) ≥ p∗θ(Xk = xk|X<k = x<k). This becomes a strict
inequality should p∗θ(Xk ∈ Vk|X<k = x<k) < 1 (which is often the case should Vk ⊂ V). Since
this holds for arbitrary k and xk, it then follows that q(X1:K = x1:K) ≥ p∗θ(X1:K = x1:K) for any
x1:K ∈ Q.2 This inequality becomes strict should any sequence not in the query set have non-zero
probability, i.e., p∗θ(X1:K = x1:K) > 0 for any x1:K ∈ VK \ Q.

The target value that we are estimating can be broken up into the following terms:

p∗θ(X1:K ∈ Q) = p∗θ(X1:K ∈ B) + p∗θ(X1:K ∈ Q \ B).
Rearranging these terms yields us the error of our lower bound. We can easily derive an upper bound
on the error for an arbitrary set B:

p∗θ(X1:K ∈ Q)− p∗θ(X1:K ∈ B) = p∗θ(X1:K ∈ Q \ B)
=

∑
x1:K∈Q\B

p∗θ(X1:K = x1:K)

≤
∑

x1:K∈Q\B
q(X1:K = x1:K)

= q(X1:K ∈ Q \ B)
= q(X1:K ∈ Q)− q(X1:K ∈ B)
= 1− q(X1:K ∈ B) ≤ 1− α

where α is the targeted coverage probability used to find B with coverage-based beam search.3 This
inequality becomes strict should any sequence not in the query set have non-zero probability, i.e.,
p∗θ(X1:K = x1:K) > 0 for any x1:K ∈ VK \ Q.

C Complexity of Predictive Querying with First-Order Markov Models
(Section 3 in paper)

As a point of reference for neural sequence models we summarize below the cost of various queries
for Markov models (using basic results from the theory of finite Markov chains, e.g., see [Kemeny
and Snell, 1983]). Consider a first-order ergodic homogeneous Markov chain with a V ×V transition
matrix with elements p(xk+1|xk). We analyze below the complexity of various queries for such a
chain, conditioned on the current observation X0 = v, where v ∈ V (this is analogous to conditioning
on H for neural sequence models). We use p(·|v) as shorthand for p(·|X0 = v).

Q2: computing p(Xk|v) This can be computed recursively by computing the conditional distrubu-
tion p(X1|v), then p(X2|v) =

∑
v′ p(X2|v′)p(v′|v), and so on, resulting in k matrix multiplications,

with complexity O(kV 2).

Q3: computing p(τ(a) = k|v) For finite k, we can compute the result for all values k′ ≤ k using
k − 1 matrix multiplications where, at each step k′ = 2, . . . , k − 1, all states (events) except a are
marginalized over. Thus, the complexity is O(kV 2).

2This can be seen by comparing their autoregressive factorizations term by term.
3Note that q(X1:K ∈ Q) = 1 because by design q(X1:K = x1:K) = 0 for every x1:K /∈ Q.
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In general it is straightforward to show that

p(τ(a) = k|v) = p(a|v), k = 1

and

p(τ(a) = k|v) = p(a|ā)p(ā|v)p(ā|ā)(k−2), k > 1

where p(a|ā) is the probability of transitioning to state a given that the chain is not in state a.
Computation of p(a|ā) requires knowledge of the steady-state probabilities of the chain πa and
πā =

∑
v′ ̸=a πv′ . Computing the steady-state probabilities requires inversion of a V × V matrix,

with a complexity of O(V 3). This general solution will be faster to compute than the version using
matrix multiplication (up to horizon k) whenever k > V .

Q4: computing p(τ(a) < τ(b)|v) Let c be the set of all states (events) in V except for a and b. It
is straightforward to show that

p(τ(a) < τ(b)|v) = p(a|v) + p(c|v) p(a|c)
p(a|c) + p(b|c)

and

p(τ(b) < τ(a)|v) = p(b|v) + p(c|v) p(b|c)
p(a|c) + p(b|c)

where p(a|c) and p(b|c) are the probabilities of transitioning to a and b, respectively, given that the
system is currently in a state that is neither a or b. Computing these probabilities again requires
knowledge of the steady-state probabilities πa, πb, πc, resulting in O(V 3) time complexity.

General Queries and Higher Order Markov Models For simplicity, we will assume that a query
takes the form Q = V1 × · · · × VK and we are interested in p(X1:K ∈ Q|H) for a mth-order
Markov model p. This model can be defined with an (m + 1)-dimensional tensor Π ∈ RV×···×V

with elements πi1,...,im,im+1 such that
∑V

j=1 πi1,...,im,j = 1 for all i1, . . . , im ∈ V. Alternatively,
πi1,...,im,im+1

= p(Xj+m+1 = im+1|Xj+1:j+m = i1:m) for j ≥ 0.

To marginalize out Xm+1 and compute the conditional distribution p(Xm+2|X1:m), that requires the
following computation:

p(Xm+2 = xm+2|X1:m = x1:m) =
∑
v∈V

p(Xm+2 = a,Xm+1 = v|X1:m = x1:m)

=
∑
v∈V

p(Xm+2 = xm+2|Xm+1 = v,X2:m = x2:m)p(Xm+1 = v|X1:m = x1:m)

=
∑
v∈V

πx2,...,xm,v,aπx1,...,xm−1,xm,v

If we perform this over all values of x1:m, we can construct a new transition tensor representing
p(Xm+2|X1:m). We will denote this new tensor as being equal to Π⊗Π where (Π⊗Π)i1,...,im,v =

p(Xj+m+2 = v|Xj+1:j+m = i1:m). This operation has a computation complexity of O(V m+1).

This special product can be done repeatedly to further marginalize out. For instance, performing this
operation on Π (n−1)-times results in (Π⊗· · ·⊗Π)i1,...,im,v = p(Xj+m+n = v|Xj+1:j+m = i1:m),
thus marginalizing out n− 1 terms: Xj+m+1:j+m+n−1.

Transitioning into a restricted space V can be done easily by defining a restricted transition tensor ΠV
such that (ΠV)i1,...,im,v ∝ πi1,...,im,v if v ∈ V, otherwise (ΠV)i1,...,im,v = 0 for all i1, . . . , im, v ∈
V.
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With this, we have everything we need to compute p(X1:K ∈ Q|H). If the last m-values of the
history H are equal to i1, . . . , im, then:

p(X1:K ∈ Q|H) =

K∏
k=1

p(Xk ∈ Vk|X<k ∈ V1 × · · · × Vk−1)

=

K∏
k=1

∑
v∈Vk

p(Xk = v|X<k ∈ V1 × · · · × Vk−1)

=

K∏
k=1

∑
v∈Vk

(ΠV1 ⊗ · · · ⊗ΠVk
)i1,...,im,v .

The dominant factor in the computational complexity of this is computing all of the special products
of Π. As such, this has a total computational complexity of O((k − 1)V m+1).

D Details for the Hybrid Method (Section 4 in paper)

The hybrid method estimates an arbitrary probabilistic query p∗θ(X1:K ∈ Q) by first using some
variant of beam search (in our results we use our proposed tail-splitting beam search, see Section 3) to
find a lower bound p∗θ(X1:K ∈ B), and then using a sampling method (we use importance sampling,
see Section 3) to estimate the remainder p∗θ(X1:K ∈ Q \ B). The only complicated portion of this
process lies in how we derive an acceptable proposal distribution for the sampling phase that respects
the domain Q \ B. The following paragraphs detail how we construct such a distribution.

Viewing VK and p∗θ as Trees In the space of all possible sequences of length K, X1:K ∈ VK , one
can represent these sequences as paths in a tree. Each node in this tree represents a single element in
a sequence Xk ∈ V with depth k, with parent and children nodes representing previous and potential
future values in the sequence respectively. The root node either represents the very beginning of a
sequence, or a concrete history H to condition on.

This tree can be augmented into a probabilistic one by defining edges between nodes as the conditional
probability of a child node being next in a sequence, conditioned on all ancestors of that child. These
probabilities are naturally determined by p∗θ(Xk = xk|X<k = x<k) where xk is the child node value
and x<k are the ancestors’ values.

Building the Tree Any subset of VK can also be represented as a tree, and in fact will be a sub-tree
of the one that represents VK . As such, there exists a tree that represents Q. Our usual proposal
distribution q is a natural source of conditional probabilities for the edges. While none of these trees
with their edge weights are fully known ahead of time, we do explore and uncover them through
the process of beam search. As such, during the beam search phase of the hybrid method we keep
track of any conditional distributions q(Xk = xk|X<k = x<k) that are computed and use them to
construct a partial view of the tree for Q. Note that the end result of this process is a tree that will
likely have many paths that do not fully reach depth K; however, there will be at least |B| many that
do.

For our purposes, it is also useful to keep track of p∗θ(Xk = xk|X< k = x<k) over this restricted
set, as well as model byproducts such as hidden states to reduce computation redundancy later.

Pruning the Tree After beam search has completed, we are left with a resulting set of beams B
and a probabilistic tree representing q. We would now like to alter this tree such that its weights
represent qB(X1:K = x1:K) := q(X1:K = x1:K |X1:K /∈ B). This alteration can be accomplished by
adjusting the edge weights in the tree recursively as detailed below. New weight assignments will be
denoted by q′ to differentiate from old weights q. The steps to the procedure are defined as follows:

1. At the final depth K, assign edge weights q′(XK = xK |X<K = x<K) = 0 for all x1:K ∈ B.
All other edge weights in the final depth will have new weights q′(XK = xK |X<K = x<K) =
q(XK = xK |X<K = x<K).

2. At the next layer above with depth k = K − 1, assign edge weights as q′(Xk = xk|X<k =
x<k) = q(Xk = xk|X<k = x<k)

∑
v∈V q′(Xk+1 = v|X≤k = x≤k) for all sub-sequences

x1:k ∈ B.
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3. Repeat step 2 iteratively for k = K − 2,K − 3, . . . , 2, 1.
4. Finally, normalize every conditional distribution for every node whose children edges were

altered such that they each sum to 1.

After these steps are completed, qB(X1:K = x1:K) =
∏K

k=1 q
′(Xk = xk|X<k = x<k). Note that

weights related to sequences that were not discovered during beam search, and are thus not in the tree,
are not altered and still match the original proposal distribution q. As such, to sample sequences from
the tree, we start at the root node and sample from each successive conditional distribution until either
depth K or a leaf node at depth k < K is reached. In the former scenario, the sampling is complete.
In the latter, the remaining values of the sequence are sampled from q(·|X≤k = x≤k) like usual.

E Variance of Estimates from the Hybrid Method (Section 4 in paper)

We are assuming to be under the hybrid method regime where a collection of sequences B ⊂ Q
relevant to answering p∗θ(X1:K ∈ Q) have been deterministically found and are interested in using
sampling methods to estimate the remainder p∗θ(X1:K ∈ Q \ B). For brevity, we will assume that
Q = V1 × · · · × VK . As mentioned in the previous section, we leverage our originally presented
proposal distribution q by further restricting the domain to Q \ B in order to be used in this scenario.
This will be represented by

qB(X1:K = x1:K) := q(X1:K = x1:K |X1:K /∈ B)

=
q(X1:K = x1:K)1(x1:K ∈ Q \ B)

1− q(X1:K ∈ B) .

Note that an associated autoregressive form qB(Xk = xk|X<k = x<k) exists and is well defined;
however, the exact definition is a bit unwieldy. Please refer to the previous section for more details.

Using this proposal distribution, we can easily estimate the remaining probability:

p∗θ(X1:K ∈ Q \ B) = Ex1:K∼qB

[
p∗θ(X1:K = x1:K)

qB(X1:K = x1:K)

]
≈ 1

M

M∑
m=1

p∗θ(X1:K = x
(m)
1:K)

qB(X1:K = x
(m)
1:K)

for x(1)
1:K , . . . , x

(M)
1:K

iid∼ qB.

Let ωB(x1:K) :=
p∗
θ(X1:K=x1:K)

qB(X1:K=x1:K) and for brevity we will refer to p∗θ(X1:K ∈ Q \ B) as ω̄B.

If we assume B′ = B∪{x̂1:K} for some x̂1:K ∈ Q\B, then it is interesting to determine when exactly
there will be a reduction in sampling variance for p∗θ(X1:K ∈ Q \ B′) versus p∗θ(X1:K ∈ Q \ B) as
this will give insight into when the hybrid method is successful. In other words, we would like to
show when the following inequality holds true:

∆Var := Varx1:K∼qB [ωB(x1:K)]− Varx1:K∼qB′ [ωB′(x1:K)] ≥ 0

If this is true for a given x̂1:K , then this finding can be applied recursively for more general (but still
possibly restricted) B′ ⊃ B.

Varx1:K∼qB [ωB(x1:K)] = Ex1:K∼qB

[
(ωB(x1:K)− ω̄B)

2
]

= Ex1:K∼qB

[
ωB(x1:K)2

]
− ω̄2

B

=
∑

x1:K∈Q\B
qB(x1:K)ωB(x1:K)2 − ω̄2

B

It then follows that

∆Var = ω̄2
B′ − ω̄2

B +
∑

x1:K∈Q\B
qB(x1:K)ωB(x1:K)2 −

∑
x1:K∈Q\B′

qB′(x1:K)ωB′(x1:K)2

= (ω̄2
B′ − ω̄2

B) + qB(x̂1:K)ωB(x̂1:K)2+∑
x1:K∈Q\B′

[
qB(x1:K)ωB(x1:K)2 − qB′(x1:K)ωB′(x1:K)2

]
(12)
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We will now analyze each of the three terms in Eq. (12) to determine when ∆Var ≥ 0. For the first
term, it follows that:

ω̄B′ + ω̄B = p∗θ(X1:K ∈ Q \ B′) + p∗θ(X1:K ∈ Q \ B)
= 2p∗θ(X1:K ∈ Q \ B′) + p∗θ(x̂1:K)

ω̄B′ − ω̄B = p∗θ(X1:K ∈ Q \ B′)− p∗θ(X1:K ∈ Q \ B)
= −p∗θ(x̂1:K)

=⇒ ω̄2
B′ − ω̄2

B = −p∗θ(x̂1:K) (2p∗θ(X1:K ∈ Q \ B′)− p∗θ(x̂1:K)) (13)

The other two terms in Eq. (12) must sum to a positive value with as large or larger magnitude to
Eq. (13) for ∆Var ≥ 0. Looking at the second term, we see that

qB(x̂1:K)ωB(x̂1:K)2 =
p∗θ(x̂1:K)2

qB(x̂1:K)

= p∗θ(x̂1:K)(1− q(X1:K ∈ B))
K∏

k=1

p∗θ(Xk ∈ Vk|X<k = x̂<k) ≥ 0.

This inequality becomes strict should p∗θ(x̂1:K) > 0. We will now look at the final summation in
Eq. (12):∑

x1:K∈Q\B′

[
qB(x1:K)ωB(x1:K)2 − qB′(x1:K)ωB′(x1:K)2

]
=

∑
x1:K∈Q\B′

(
p∗θ(x1:K)2

qB(x1:K)
− p∗θ(x1:K)2

qB′(x1:K)

)

=
∑

x1:K∈Q\B′

p∗θ(x1:K) (q(X1:K ∈ B′)− q(X1:K ∈ B))
K∏

k=1

p∗θ(Xk ∈ Vk|X<k = x<k)

= q(x̂1:K)
∑

x1:K∈Q\B′

p∗θ(x1:K)

K∏
k=1

p∗θ(Xk ∈ Vk|X<k = x<k)

=
p∗θ(x̂1:K)∏K

k=1 p
∗
θ(Xk ∈ Vk|X<k = x̂<k)

∑
x1:K∈Q\B′

p∗θ(x1:K)

K∏
k=1

p∗θ(Xk ∈ Vk|X<k = x<k).

Since all terms in Eq. (12) have a common factor p∗θ(x̂1:K), we can see that ∆Var ≥ 0 iff the following
holds:

2p∗θ(X1:K ∈ Q \ B′)− 1

ρ(x̂1:K)

∑
x1:K∈Q\B′

p∗θ(x1:K)ρ(x1:K)

≤ (1− q(X1:K ∈ B))ρ(x̂1:K) + p∗θ(x̂1:K) (14)

for ρ(x1:K) =
∏K

k=1 p
∗
θ(Xk ∈ Vk|X<k = x<k). Should this hold true, then by taking B′ instead

of B during the beam search segment of the hybrid approach would the variance of the sampling
subroutine reduce. Generalizing this further, it is not guaranteed that the hybrid estimate will have a
lower variance than regular importance sampling; however, our experimental results across a variety
of settings (see Fig. 3 in the main paper) seem to indicate that the variance is reduced on average.

All of the terms to the left of the inequality in Eq. (14) are quantities that would require either
expansive computations or estimation in order to know their values. Conversely, all the values to the
right of the inequality are readily available as a byproduct of beam search. Incorporating this into
decision making for our hybrid method is left for future work.

F Experimental Setup and Preparation (Section 5 in paper)

In this section we disclose all dataset preparation and modeling details necessary for reproducing our
experimental results.

7



F.1 Datasets

We evaluate our query estimation methods on three user behavior and two language datasets. We
provide details on the preparation and utilization of each below. For all datasets, users are associated
with anonymous aliases to remove personally identifiable information (PII).

Reviews [Ni et al., 2019] contains sequences of 233 million timestamped Amazon product reviews
spanning from May 1996 to October 2018, with each product belonging to one of 30 product
categories. We restrict our consideration of this dataset to reviews generated by users with at least
15 product reviews and products with a defined category, retaining 63 million reviews on which
the model was trained. This dataset is publicly available under the Amazon.com Conditions of Use
License.

Mobile Apps [Aliannejadi et al., 2021] consists of 3.6 million app usage records from 200 Android
users from September 2017 to May 2018, where each event is an interaction of an individual with an
application. User behavior spans 87 unique applications, which we use as the vocabulary for events
for our experiments. This dataset is released under the Creative Commons License, and all users
contain at least 15 mobile app interactions so no data was removed before training.

MOOCs [Kumar et al., 2019] is a dataset of sequences of anonymized user interactions with online
course materials from a set of massive open online courses (MOOCs). In total, the dataset includes 97
unique types of interactions. Data from users with fewer than 15 interaction events are not considered,
resulting in a dataset of 72% of users and 93% of the events (350,000 interactions) of the original
dataset. The MOOCs dataset is available under the MIT License.

Shakespeare We also examine character-level language models, using the complete works of
William Shakespeare [Shakespeare], comprising 125,000 lines of text and 67 unique characters and
released under the Project Gutenberg License.

WikiText The WikiText-v2 dataset [Merity et al., 2017] includes word-level language data from
"verified Good" and featured articles of Wikipedia. All sentences are provided in English and the
dataset is available under the Creative Commons Attribution-ShareAlike License.

F.2 Neural Sequence Models

For all datasets except WikiText (word-level language), we trained a 2-layer LSTM with a dropout
rate of 0.3 and the ReLU activation function. Each network was trained against cross entropy loss
with the Adaptive Moments (Adam) optimizer initialized with a learning rate of 0.001. A constant
learning rate decay schedule and 0.01 warm-up iteration percentage was also used. All LSTM models
maintain a hidden state size of 512 except the model for Shakespeare, which possesses a reduced
hidden state size of 128 to reflect the size of the dataset. Model checkpoints were collected for all
models every 2 epochs, and the checkpoint with the highest validation accuracy was selected to be
used for query estimation experiments. All models were trained on NVIDIA GeForce 2080ti GPUs.

For WikiText-v2, we leveraged the GPT-2 medium (350 million parameters) Architecture from Hug-
gingFace with pre-trained weights provided by OpenAI. The WikiText-v2 dataset was preprocessed
using the tokenization scheme provided by HuggingFace for GPT-2, assigning numeric token indices
to work pieces. No finetuning of GPT-2 is conducted.

F.3 Ground Truth Calculations

Exact computation of ground truth is intractable for queries with large path spaces. We circumvent
this issue via the law of large numbers by computing surrogate ground truth query estimates
with a large computational budget, leveraging the variance of the query’s samples as a convergence
criterion. Specifically, our algorithm is conducted as follows. We first specify a minimum number of
samples Slow = 10000 to be drawn for the surrogate ground-truth estimate. Once Slow samples have

been drawn, we compute the variance of our estimate p̂∗θ(X1:K ∈ Q) := 1
S

∑S
i=1

p∗
θ(X1:K=x

(i)
1:K)

q(X1:K=x
(i)
1:K)

for
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x
(1)
1:K , . . . , x

(S)
1:K

iid∼ q(X1:K):

V̂arq [p̂∗θ(X1:K ∈ Q)] =
1

S

S∑
i=1

(
p∗θ(X1:K = x

(i)
1:K)

q(X1:K = x
(i)
1:K)

− p̂∗θ(X1:K ∈ Q)

)2

We then evaluate V̂arq [p̂∗θ(X1:K ∈ Q)] every 1000 additional samples until either it drops below
tolerance δ = 1e−7 or S meets our maximum sample budget Shigh = 100000. This procedure is done
in all of our experiments in which a method’s performance is being compared to a query’s ground
truth value and exact ground truth cannot be computed due to resource constraints (typically when
K > 4).

F.4 Model Budget Determination

Each of the estimation methods that have been discussed can use varying amounts of computation
depending on their configuration. To ensure an even comparison between methods, we configure
them throughout our experiments to have roughly the same amount of computation. We measure
amount of computation by the number of model calls fθ(hk) used within a given method. This
can be controlled directly for all of the methods except the hybrid approach. For this reason, in our
experiments we typically use fix the number of samples S for the importance sampling component of
the hybrid method, where S is the number of samples used by the hybrid method after conducting
tail-splitting beam search. We then use the resulting number of total model calls used by the hybrid
method (including both beam search and sampling with S samples) to determine a fixed computation
budget (number of model calls to compute fθ(hk)) for all other methods. Should the hybrid method
not be used in an experiment, the budget is set by determining the number of model calls used in
drawing S samples for importance sampling.

G Query Estimation Process and Examples (Section 1 in paper)

Below, we outline in clear terms the process of conducting query estimation experiments that we
leverage in the main paper. Furthermore, we include demonstrative examples of potential queries of
interest.

Query Estimation Process

1. Sample a sequence x of length n from the test set.
2. Using a model pθ that was trained on the training split of the dataset, condition on the first 5

elements, x1:5.
3. Then, using the proposed method of interest (e.g., importance sampling, coverage-based

beam search, etc.), approximate the query of interest for the future continuation of the
sequence–typically K steps into the future, x6:6+K . As mentioned in lines 256 and 257
of the main paper, the main experiments pertain to hitting time queries τ(a) = K where
K = 3, . . . , 11 and a is determined as being equal to the actual value of x6+K from the
sampled sequence. We ensure 6 +K ≤ n.

4. Repeat steps 1-3 over 1000 sequences (unless the dataset is WikiText, in which case do 100
sequences).

5. Against either p determined by absolute ground truth, or pseudo-ground truth p computed
via sampling, compute relative absolute error (RAE) of the form |p̂−p|

p . For a given dataset,
query estimation method, and budget, compute the median RAE over all 1000 (or 100 in the
case of WikiTest) sampled sequences, where a sampled sequence is a history-target tuple
[H, a].

MOOCs Query Example:

• History H = [log on, open assignment, watch lecture]
• Query Class: “A” before “B” query (Q4)
• Formalism: p∗θ(τ(A) < τ(B)) = p∗θ(τ(purchase) < τ(log off))

9
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Figure 6: Median estimation error versus query horizon K: median relative absolute error
(RAE) between estimated probability and (surrogate) ground truth for p∗θ(τ(·) = K), for importance
sampling, beam search, and the hybrid method, with varying computation budgets determined by 10,
100, and 1000 samples for the hybrid method. Ground truth values used to determine error in these
plots are exact for K ≤ 4 and approximated otherwise.

.

• Description: Given a user’s online class engagement history, what is the probability that
they turn in their assignment before they navigate away from the page?

Shakespeare Query Example:

• History H = [“t”, “h”, “o”, “u”, “<space>”]
• Query Class: Combination query (Q5)
• Formalism: p∗θ(Nvowel(10) = 4)

• Description: In the next 10 characters, what is the probability that 4 of them are vowels?

H Additional Experimental Details and Results (Section 5 in paper)

This section discusses additional experimental details and results that were not included in section 5
of our main paper due to space constraints. In all experiments, all means and medians reported are
with respect to NQ = 1000 randomly selected sequence locations/histories/queries per datapoint in
each plot, unless stated otherwise. For each randomly selected current location, the event a used in
the query for k steps ahead corresponds to the actual observed event a for k steps ahead.

H.1 Query Estimation Error as a Function of Horizon K

Fig. 3 in the main paper shows the median relative absolute error (RAE) (across NQ = 1000 queries)
as a function of query horizon K for 4 datasets, comparing beam search, importance sampling, and
the hybrid method, with a computation budget fixed at S = 100 hybrid samples. Here we provide a
number of extensions of these results.
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Figure 7: Mean estimation error versus query horizon K: same format as Fig. 6. Ground truth
values used to determine error in these plots are exact for K ≤ 4 and approximated otherwise.

Fig. 6 shows the median RAE, for three levels of computation budget: S = 10, 100, 1000 and Fig. 7
shows the same results but now reporting mean RAE on the y-axis. While the details differ across
different settings, the qualitative conclusions in these Figures agree with those for Fig. 3 in the main
paper, namely that beam search is more sensitive (in its error) to both the horizon query K and to
individual datasets, compared to both importance sampling and the hybrid method. More granular
perspectives of this information for one of the datasets (MOOCs) can be seen in Figures 8 to 10 in
the form of scatter plots of each of the individual query estimates against (surrogate) ground truth for
that query. Different budgets are shown in different figures, and the results for K = 3, 5, 7, 9, 11 are
shown in each column.

H.2 Query Estimation Error as a Function of Computation Budget

In addition to identifying optimal query estimation methodologies for a low and fixed compu-
tation budget, we also explore the impact of increasing computation budget for query lengths
K = 3, 7, 11, roughly corresponding to short, medium, and long horizon queries. These
experiments are conducted in the same manner as the query estimation experiments with a
fixed model budget, but are then repeated for many different budgets derived from S =
10, 30, 50, 100, 300, 500, 1000, 3000, 5000, 10000 hybrid samples. The intention with these exper-
iments is to observe if any query estimation methods disproportionately benefit from increased
computation and exhibit behavior that was not present at lower computation budgets. We also include
two additional baselines. The full set of methods explored is listed below.

1. Importance sampling (informative proposal distribution q derived from model pθ)

2. Beam search

3. Hybrid search and sampling

4. Monte-Carlo sampling with a uniform proposal distribution

5. Naive model sampling (direct MC sampling for Ep∗
θ
1(X1:K ∈ Q))
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Figure 11: Median estimation error versus model budgets: Median relative absolute error (RAE)
for importance sampling, beam search, the hybrid method, MC sampling, and naive sampling across
three different queries, p∗θ(τ(·) = k), for k = 3, 7, 11, over all four main datasets, as a function of
different model budgets. For cases where the MC sampling results are not visible (e.g., see rightmost
plot on the bottom row), the results coincide with the naive sampling results. Ground truth values
used to determine error in these plots are exact for K ≤ 4 and approximated otherwise.

As a clarifying point, naive sampling is conducted by sampling sequences from the model and
determining if they fall within the query set Q; the proportion of samples that exist in Q serves as
a naive means of determining the query estimate in question. In addition, Monte-Carlo sampling
with a uniform proposal distribution samples sequences in Q uniformly and the estimates the query
probability for that sample. These two methods were not included in the main paper due to their
consistently poor performance.

Fig. 11 (median error) and Fig. 12 (mean error), show that increasing the computation budget by
an order of magnitude roughly corresponds to a three times reduction in RAE for both importance
sampling and the hybrid method. Naive sampling sees almost no benefit from the increased budget
regardless of the size of the query path space. Monte Carlo sampling sees some reduction in error
from increased computation budget for some configurations, but also often sees no benefit.

For the provided budgets, the query estimates resulting from naive model sampling are consistently 0,
resulting in an RAE of 1. While naive model sampling can be useful in some contexts in general, these
results indicate that it is not well-suited for estimating query probabilities. This is likely because many
of the ground truth probabilities for these queries have values on the order of 10−1 or smaller. For
queries that are highly unlikely under the model, the probability of even a single sampled sequence
belonging to Q is very low.

Monte-Carlo sampling also includes high error estimates, but for a different reason. Since the
Monte-Carlo estimate can be decomposed into an expectation over p(X1:K = x1:K , x1:K ∈ Q) that

13



0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

R
el

at
iv

e
A

b
s.

E
rr

or
fo

r
p∗ θ

(τ
(·)

=
3)

Reviews

Method

Importance Sampling Beam Search Hybrid MC Sampling Naive Sampling

0.0

0.5

1.0

1.5

2.0

2.5

MOOCs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Shakespeare

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Mobile Apps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n
R

el
at

iv
e

A
b

s.
E

rr
or

fo
r
p∗ θ

(τ
(·)

=
7)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n
R

el
at

iv
e

A
b

s.
E

rr
or

fo
r
p∗ θ

(τ
(·)

=
11

)

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 12: Mean estimation error versus model budgets: Same format as Fig. 11. Ground truth
values used to determine error in these plots are exact for K ≤ 4 and approximated otherwise.

is then re-scaled by |Q| ≫ 0, the scaling term magnifies any error in the expectation dramatically,
inducing extremely high variance and the potential to produce query estimates that exceed 1. This
high variance can persist even for high computation budgets. By contrast, beam search improves
with an increased computational budget, but only as a function of the total path space. The larger the
path space and the higher the entropy of the distribution, the worse the beam search estimates are as
measured by RAE.

H.3 Coverage-based Beam Search Ablation

As described in the main paper, a variant of beam search well-suited to query estimation is coverage-
based beam search. However, this method was not explored further in our analysis as it could not
scale to non-trivial query types and large query path spaces. Depicted in Fig. 13, the minimum number
of beams needed to cover 50%, 75%, and 90% of the query path space increases exponentially with
the query length K. Though coverage-based beam search comes with desirable coverage guarantees
and is a consistent (albeit biased) query estimator, naively applying coverage-based beam search to
queries of practical interest is ill-posed and computationally intractable. However, the hybrid method
preserves some of beam search’s desirable traits while making it suitable for queries of practical
interest. See Appendix D for more information.

H.4 Long-horizon Query Estimation

The empirical results of our experiments tell us much of the abilit, but we still do not have clarity on
the extent to which importance sampling can yield low-error estimates in the limit of large sequence
lengths. To that end, we conducted an experiment to directly assess the performance of importance
sampling when estimating long horizons. Our primary conclusion was that (i) with reasonable sample
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sizes the error remains below 25%, even at K = 100, and (ii) the error does not increase substantially
as K increases beyond K = 5.

In more detail, a set of 100 history sequences H of length 5 was collected from each dataset. We then
compute ground truth or pseudo ground truth (PGT) for query 2 (probability of event at K without
restriction) over sequence lengths K = [2, 5, 10, 20, 40, ..., 100]. Pseudo-ground truth estimates
are generated with a tolerance δ = 1e−7 and a maximum sampling budget of 250, 000. The same
estimates are then computed using importance sampling with sampling budgets [10, . . . , 10000].
Similar to the experiments in Section 5, we aggregate and present the results as the median relative
absolute error, shown in the tables below. Since we are not focusing on a specific event type of
interest, this median also marginalizes over all event types in the vocabulary as well as the sampled
query sequences. All results are reported as percentages

# Samples 2 5 10 20 40 60 80 100

10 31.35 40.33 44.39 43.48 45.98 45.84 49.44 50.05
100 13.29 17.12 18.73 19.46 20.41 21.65 21.82 21.86
1000 4.94 6.38 7.06 7.33 7.26 6.99 7.13 6.82
10000 1.60 2.05 2.21 2.34 2.20 2.13 2.06 2.10

Table 2: Median RAE across query estimations methods (1000 samples) and query horizons K =
2, 5, 10, 20, ..., 100 and sample budgets 10, 100, 1000, 10000 for Amazon Reviews.

# Samples 2 5 10 20 40 60 80 100

10 66.21 84.93 92.92 96.96 98.41 99.00 99.19 99.32
100 62.36 80.94 89.79 94.00 96.16 97.05 97.38 97.66
1000 47.96 59.14 69.10 75.45 74.79 71.34 65.12 59.75
10000 15.21 20.51 23.38 24.00 20.66 18.78 16.48 15.55

Table 3: Median RAE across query estimations methods (1000 samples) and query horizons K =
2, 5, 10, 20, ..., 100 and sample budgets 10, 100, 1000, 10000 for Mobile Apps.

In general, we see (not surprisingly) that the increase in sequence length leads to a consistent
and non-trivial increase in error for most sampling budgets. In addition, as expected the increase
in sampling budget consistently reduces the query estimation error. However, we do witness the
interesting phenomenon that the error occasionally decreases as the sequence length increases. We
conjecture that this may be happening because as the sequence length increases, the relevance of the
history context H decreases and the distribution may regress to a base stationary distribution (as if no
history context were provided at all) indicating that the conditional model entropy may be the main
driving factor in estimation complexity. This intuition is further supported by the fact that in many
datasets, budgets exist where query estimation error first increases but then begins to decrease again.
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# Samples 2 5 10 20 40 60 80 100

10 79.84 79.99 83.53 85.29 83.53 84.00 85.82 85.15
100 28.66 32.85 39.25 40.66 38.78 41.51 39.71 40.07
1000 8.61 10.99 13.29 13.52 13.78 13.89 13.64 14.10
10000 2.77 3.48 4.28 4.34 4.32 4.33 4.34 4.30

Table 4: Median RAE across query estimations methods (1000 samples) and query horizons K =
2, 5, 10, 20, ..., 100 and sample budgets 10, 100, 1000, 10000 for Shakespeare.

# Samples 2 5 10 20 40 60 80 100

10 89.62 97.30 98.73 99.19 99.08 99.06 98.91 98.87
100 63.80 83.34 84.77 79.15 66.89 62.99 60.28 61.30
1000 30.39 43.37 36.32 26.07 19.78 18.11 17.53 17.38
10000 11.92 15.15 11.35 7.86 5.90 5.66 5.43 5.40

Table 5: Median RAE across query estimations methods (1000 samples) and query horizons K =
2, 5, 10, 20, ..., 100 and sample budgets 10, 100, 1000, 10000 for MOOCs.

Regardless, as the largest budget of 10, 000 we witness that median RAE remains at or under 25% in
all cases, often significantly so.

H.5 Query Estimation with Large-Scale Language Models

In order to explore the feasibility of applying our query estimation methods to real-world sequence
data, we also analyze a subset of our query estimation methods against GPT-2 and WikiText language
data. GPT-2 decomposes English words into V = 50257 work pieces, a vocabulary over 500 times
larger than our other datasets. For this reason, we only conduct experiments using only 100 sequence
histories per dataset due to computational limitations. For the same reason, we do not explore the
hybrid method and restrict ourselves to analyzing the following query estimators:

1. Importance sampling (informative proposal distribution q derived from model pθ)

2. Beam search

3. Monte-Carlo sampling with a uniform proposal distribution

Fixed-budget query experiments with GPT-2 are conducted identically to those on the other 4 datasets.
We find query estimation error closely mirrors the results we see in datasets with smaller vocabulary
sizes, suggesting our findings may generalize well to practical domains. Our analysis is reported in
Table 6 and includes estimates of the restricted model entropy H(q) for different query lengths K,
with the entropy increasing much faster than small-vocabulary models, as expected. With that said,
there is still much exploration to be done on large-scale sequence models and is a promising avenue
for future work.

K Importance Samp. Beam Search MC Samp. Entropy Entropy %

3 11.41 51.25 99.36 12.89 41.28
4 13.35 82.42 99.95 19.09 40.74
5 13.53 93.59 99.99 25.23 40.38

Table 6: Median RAE across query estimations methods (1000 samples) and query horizons
K = 3, 4, 5 for GPT-2 and Wikitext. Entropy values estimated as the mean (over 100 queries) of
the restricted proposal q and entropy % is the entropy in percentage relative to its potential maximum
value Klog(V ).
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Figure 14: Error as a function of entropy: Median relative absolute error for estimating p∗θ,T (τ(·) =
4) over all four datasets for a variety of imposed temperatures T . Shaded regions indicate interquartile
ranges.

H.6 Entropy Relationship with Query Estimation Error

Fig. 4(b) in the main paper demonstrated how indirectly controlling the entropy of a given model
through an applied temperature affected the performance of beam search and importance sampling.
In Fig. 14 we can see similar plots for all of four of our main datasets.

H.7 Investigation of Query 4 (“A" before “B")

Most of our analysis was conducted on hitting time queries, and justifiably so as more advanced
queries decompose into individual operations on hitting times. This includes Q4, colloquially stated
as the probability an item from token set A occurs before an item in token set B. More formally:

p∗θ(τ(A) < τ(B)) =

∞∑
k=1

p∗θ(τ(A) = k, τ(B) > k)

=

∞∑
k=1

∑
a∈A

p∗θ(Xk = a,X<k ∈ (V \ (A ∪B))k−1)

While this cannot be computed exactly, a lower bound can. The other option is to produce a lower
bound on this expression by evaluating the sum in Eq. (11) for the first K terms. We can achieve
error bounds on this estimate by noting that p∗θ(τ(a) < τ(b)) + p∗θ(τ(a) > τ(b)) = 1. As such, if
we evaluate Eq. (11) up to K terms for both p∗θ(τ(a) < τ(b)) and p∗θ(τ(b) < τ(a)), the difference
between the sums will be the maximum error either lower bound can have. This difference will be
referred to as unaccounted probability and will approach 0 as K → ∞.

A natural question to ask is what is the minimum value of K sufficient to compute these lower bounds
to in order to have negligible unaccounted probability. Though this will surely vary based on the
entropy of the model and the specific query in question, we explore this question across all datasets
except WikiText and note some general trends.

Fig. 15 plots the unaccounted probability 1− p̂∗θ(τ(A) < τ(B))− p̂∗θ(τ(A) > τ(B)) as a function
of query length K. We observe that for many datasets, a query horizon of k = 30 is largely sufficient
to reduce the remaining probability to under 10%. One notable exception is the Mobile Apps dataset,
which, due to its lower entropy and high self-transition rate, maintains a much longer query horizon.
This discovery implies that a successful partition of probability space with a given Q4 query can be
sensitive to the model distribution, but also that approximate partitions are possible for relatively low
values of K.
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Figure 15: Mean unaccounted probability (1 − (p̂∗θ(τ(A) < τ(B)) + p̂∗θ(τ(B) < τ(A)))) when
evaluating the pair of queries for τ(A) < τ(B) and τ(B) < τ(A) up to K steps into the future
over all four main datasets. Shaded regions indicate 99% confidence intervals and estimates were
computed with a fixed model budget based on 1000 samples.

H.8 Linearly Compounding Errors in Complex Query Estimation

As mentioned in Section 5 of the main paper, hitting time queries can often be seen as components
of more involved queries, such as “a” before “b” queries p∗θ(τ(a) < τ(b)) or counting-style queries
p∗θ(Na(K) = n). These queries can be rewritten as summations of more basic hitting time queries.
For instance, p∗θ(τ(a) < τ(b)) =

∑∞
k=1 p

∗
θ(τ(a) = k, τ(b) > k). In practice, each summand

probability is estimated using our proposed techniques so it can be seen that the error compounds
additively with respect to the different basic hitting time queries.

More generally, our framework proposes representing general queries as Q = ∪iQi = ∪i

∏
j V

(i)
j

such that the Qi’s form a minimal partition on Q. With this representation, we can see that for an
arbitrary query, the error when estimating will compound additively and scale linearly with respect to
the number of different Qi. Note that the actual values of p∗θ(x ∈ Qi) do have an impact on the errors
when estimating due to the values ∈ [0, 1]. Lastly, as mentioned in the paper we can additionally
control this error either by utilizing the coverage-based beam search, or by leveraging the Central
Limit Theorem with importance sampling.

H.9 Qualitative Exploration and Practical Applications

In addition to systematic quantitative analysis of query estimators, we also qualitatively explore
specific applications of our methods that lend practical insights. First, we consider the question of
“given a partial sentence, predict when the sentence will end". Using our query estimation methods,
we can not only answer this question with relatively low error but also effectively re-use intermediate
computational results. This necessarily correlates query estimates over steps K, but this confers little
negative impact upon the analysis since our sampling methods are unbiased estimators and beam
search, though biased, offers a deterministic lower bound. The results of our analysis are seen in
Fig. 1 in the main paper and align with basic intuition about English sentences, with open ended
prefixes possessing a long-tailed end-of-sentence probability distribution relative to more structured
and declarative phrases.

A second practical question that can be asked with our query estimation methods utilizes the Mobile
Apps dataset: given someone’s mobile usage history, predict what will occur first: the individual will
go on social media or directly interact with someone via video chat, call, text, or email. This question
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Figure 16: A case study of evaluating how likely it is that a mobile app user will use social media
before they directly communicate with someone via text messaging, email, phone call, etc. as a
function of how much of their recent history consists of social media usage. This is a p∗θ(τ(A) <
τ(B)) type query that has been estimated and averaged over 500 different histories for each social
media history percentage. Error bars indicate 90% confidence intervals.

is a practical application of query 4, p∗θ(τ(a) < τ(b)). Other, equally interesting equivalents of this
question include “will an online shopper purchase something before leaving the website?". Below,
we have conducted an experiment where we synthetically generate mobile app behavior histories
with specific percentages of social media activity present. By computing these queries over several
histories and then averaging the estimates, we obtain the results seen in Fig. 16. As expected, we
see a clear linear trend between a user’s social media usage and the likelihood they will return to
it before conducting other tasks like directly communication. Such a result, though contrived and
purely demonstrative in this setting, could be applied to many practical applications that analyze the
characteristics of online user behavior.
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