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Abstract

We study the problem of learning an adversarially robust predictor to test time
attacks in the semi-supervised PAC model. We address the question of how many
labeled and unlabeled examples are required to ensure learning. We show that
having enough unlabeled data (the size of a labeled sample that a fully-supervised
method would require), the labeled sample complexity can be arbitrarily smaller
compared to previous works, and is sharply characterized by a different complexity
measure. We prove nearly matching upper and lower bounds on this sample
complexity. This shows that there is a significant benefit in semi-supervised robust
learning even in the worst-case distribution-free model, and establishes a gap
between supervised and semi-supervised label complexities which is known not to
hold in standard non-robust PAC learning.

1 Introduction

The problem of learning predictors that are immune to adversarial corruptions at inference time
is central in modern machine learning. The phenomenon of fooling learning models by adding
imperceptible perturbations to their input illustrates a basic vulnerability of learning-based models
and is named adversarial examples. We study the model of adversarially-robust PAC learning, in a
semi-supervised setting.

Adversarial robustness has been shown to significantly benefit from semi-supervised learning, mostly
empirically, but also theoretically in some specific cases of distributions [e.g., 18, 58, 51, 46, 1, 55, 36].
In this paper, we ask the following natural question. To what extent can we benefit from unlabeled

data in the learning process of robust models in the general case? More specifically, what is the
sample complexity in a distribution-free model?

Our semi-supervised model is formalized as follows. Let H ✓ {0, 1}X be a hypothesis class. We
formalize the adversarial attack by a perturbation function U : X ! 2X , where U(x) is the set
of possible perturbations (attacks) on x. In practice, we usually consider U(x) to be the `p ball
centered at x. In this paper, we have no restriction on U , besides x 2 U(x). The robust error of
hypothesis h on a pair (x, y) is supz2U(x) I [h(z) 6= y]. The learner has access to both labeled and
unlabeled examples drawn i.i.d. from unknown distribution D, and the goal is to find h 2 H with low
robust error on a random point from D. The sample complexity in semi-supervised learning has two
parameters, the number of labeled examples and the number of unlabeled examples which suffice to
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ensure learning. The learner would like to restrict the amount of labeled data, which is significantly
more expensive to obtain than unlabeled data.

In this paper, we show a gap between supervised and semi-supervised label complexities of adversari-
ally robust learning in a distribution-free model. The label complexity in semi-supervised may be
arbitrarily smaller compared to the supervised case and is characterized by a different complexity
measure. Importantly, we are not using more data, just less labeled data. The unlabeled sample size
is the same as how much labeled data a fully-supervised method would require, so this is a strict
improvement. This kind of gap is known not to hold in standard (non-robust) PAC learning, this is a
unique property of robust learning.

Background. The following complexity measure VCU was introduced by Montasser et al. [40]
(and denoted there by dimU⇥) as a candidate for determining the sample complexity of supervised
robust learning. It was shown that indeed its finiteness is necessary, but not sufficient. This parameter
is our primary object in this work, as we will show that it characterizes the labeled sample complexity
of semi-supervised robust PAC-learning.

Definition 1.1 (VCU -dimension) A sequence of points {x1, . . . , xk} is U-shattered by H if
8y1, . . . , yk 2 {0, 1}, 9h 2 H such that 8i 2 [k], 8z 2 U(xi), h(z) = yi. The VCU (H) is
largest integer k for which there exists a sequence {x1, . . . , xk} U -shattered by H.

Intuitively, this dimension relates to the shattering of the entire perturbation sets, instead of one
point in the standard VC-dimension. When U(x) = {x}, this parameter coincides with the standard
VC. Moreover, for any hypothesis class H, it holds that VCU (H)  VC(H), and the gap can be
arbitrarily large. That is, there exist H0 such that VCU (H0) = 0 and VC(H0) = 1 (see Proposition
3.2).

For an improved lower bound on the sample complexity, Montasser et al. [40, Theorem 10] introduced
the Robust Shattering dimension, denoted by RSU (and denoted there by dimU ).

Definition 1.2 (RSU -dimension) A sequence x1, . . . , xk is said to be U -robustly shattered by F if
9z+1 , z

�

1 , . . . , z+k , z
�

k such that xi 2 U
�
z+i

�
\ U

�
z�i

�
8i 2 [k] and 8y1, . . . , yk 2 {+,�} , 9f 2 F

with f(⇣) = yi, 8⇣ 2 U (zyi
i ) , 8i 2 [k]. The U-robust shattering dimension RSU (H) is defined as

the maximum size of a set that is U -robustly shattered by H.

Specifically, the lower bound on the sample complexity is ⌦
�
RSU
✏ + 1

✏ log
1
�

�
for realizable robust

learning, and ⌦
�
RSU
✏2 + 1

✏2 log
1
�

�
for agnostic robust learning. They also showed upper bounds of

Õ
⇣

VC ·VC⇤

✏ +
log 1

�
✏

⌘
1 in the realizable case and Õ

⇣
VC ·VC⇤

✏2 +
log 1

�
✏2

⌘
in the agnostic case, where

VC⇤ is the dual VC dimension (definitions are in Appendix A). Montasser et al. [40] showed that
for any H, VCU (H)  RSU (H)  VC(H), and there can be an arbitrary gap between them.
Specifically, there exists H0 with VCU (H0) = 0 and RSU (H0) = 1, and there exists H1 with
RSU (H1) = 0 and VC(H1) = 1.

Main contributions.

• In Section 3, we first analyze the simple case where the support of the marginal distribution on the
inputs is fully known to the learner. In this case, we show a tight bound of ⇥

⇣
VCU (H)

✏ +
log 1

�
✏

⌘

on the labeled complexity for learning H.

• In Section 4, we present a generic algorithm that can be applied both for the realizable and agnostic
settings. We prove an upper bound and nearly matching lower bounds on the sample complexity in
the realizable case. For semi-supervised robust learning, we prove a labeled sample complexity
bound ⇤ss and compare it to the sample complexity of supervised robust learning ⇤s. Our algorithm
uses ⇤ss = Õ

�
VCU
✏ + 1

✏ log
1
�

�
labeled examples and O(⇤s) unlabeled examples. Recall that

⇤s = ⌦(RSU ), and since RSU can be arbitrarily larger than VCU , this means our labeled sample
complexity represents a strong improvement over the sample complexity of supervised learning.

1Õ(·) stands for omitting poly-logarithmic factors of VC,VC⇤,VCU ,RSU , 1/✏, 1/�.
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Figure 1: Summary of the sample complexity
regimes for semi-supervised robust learning,
for the realizable model and the agnostic model
with error 3⌘ + ✏, where ⌘ is the minimal ag-
nostic error in the hypothesis class.
Obtaining an error of ⌘ + ✏ requires at least
RSU labeled examples, as in the supervised
case.
⇤s denotes the sample complexity of super-
vised robust learning. It is an open question
whether ⇤s equals RSU .

• In Section 5, we prove upper and lower bounds on the sample complexity in the agnostic setting.
We reveal an interesting structure, which is inherently different than the realizable case. Let ⌘ be
the minimal agnostic error. If we allow an error of 3⌘ + ✏, it is sufficient for our algorithm to have
⇤ss = Õ

⇣
VCU
✏2 +

log 1
�

✏2

⌘
labeled examples and O(⇤s) unlabeled examples (as in the realizable

case). If we insist on having error ⌘ + ✏, then there is a lower bound of ⇤ss = ⌦
�
RSU
✏2 + 1

✏2 log
1
�

�

labeled examples. Furthermore, an error of ( 32 � �)⌘ + ✏ is unavoidable if the learner is restricted
to O(VCU ) labeled examples, for any � > 0. We also show that improper learning is necessary,
similar to the supervised case. We summarize the results in Fig. 1 showing for which labeled and
unlabeled samples we have a robust learner.

• The above results show that there is a significant benefit in semi-supervised robust learning. For
example, take H0 with VCU (H0) = 0 and RSU (H0) = n. The labeled sample size for learning
H0 in supervised learning is ⌦(n). In contrast, in semi-supervised learning our algorithms requires
only O(1) labeled examples and O(n) unlabeled examples. We are not using more data, just less
labeled data. Note that n can be arbitrarily large.

• A byproduct of our result is that if we assume that the distribution is robustly realizable by
a hypothesis class (i.e., there exists a hypothesis with zero robust error) then, with respect to
the non-robust loss (i.e., the standard 0-1 loss) we can learn with only Õ

⇣
VCU (H)

✏ +
log 1

�
✏

⌘

labeled examples, even if the VC is infinite. Recall that there exists H0 with VCU (H0) = 0,
RSU (H0) = 1 and VC(H0) = 1. Learning linear functions with margin is a special case of this
data-dependent assumption. Moreover, we show that this is obtained only by improper learning.
(See Section 6.)

Related work. Adversarially robust learning. The work of Montasser et al. [40] studied the setting
of fully-supervised robust PAC learning. In this paper, we propose a semi-supervised method with a
significant improvement in the labeled sample size. We show that the labeled and unlabeled sample
complexities are controlled by different complexity measures. Adversarially robust learning has been
extensively studied in several supervised learning models [e.g., 25, 49, 34, 57, 20, 7, 35, 6, 10, 44, 41–
43, 3, 11, 21, 9, 15, 56, 4]. For semi-supervised robust learning, Ashtiani et al. [3] showed that under
some assumptions, robust PAC learning is possible with O(VC(H)) labeled examples and additional
unlabeled samples. Carmon et al. [18] studied a robust semi-supervised setting where the distribution
is a mixture of Gaussians and the hypothesis class is linear separators.

Semi-supervised (non-robust) learning. There is substantial interest in semi-supervised (non-robust)
learning, and many contemporary practical problems significantly benefit from it [e.g., 16, 19, 59].
This was formalized in theoretical frameworks. Urner et al. [52] suggested a semi-supervised learning
(non-robust) framework, with an algorithmic idea that is similar to our method. Their framework
consists of two steps; using labeled data to learn a classifier with a small error (not necessarily
a member of the target class H), and then labeling an unlabeled input sample in order to use a
fully-supervised proper learner. They investigate scenarios where the saving of labeled examples
occurs. In our paper, we are interested in the robust loss function. We use labeled data in order
to learn a classifier (with the 0-1 loss function) from a class with a potentially smaller complexity
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measure, then we label an unlabeled input sample, and use a fully-supervised method using the
robust loss function. The sample complexity of learning the robust loss class is controlled by a larger
complexity measure. Fortunately, this affects our unlabeled sample size and not the labeled sample
size as in the fully-supervised setting. Göpfert et al. [27] studied circumstances where the learning
rate can be improved given unlabeled data. Darnstädt et al. [23] showed that the label complexity gap
between the semi-supervised and the fully supervised setting can become arbitrarily large for concept
classes of infinite VC-dimension, and this gap is bounded when a function class contains the constant
zero and the constant one functions. Balcan and Blum [13, 12] introduced an augmented version of
the PAC model designed for semi-supervised learning and analyzed when unlabeled data can help.
The main idea is to augment the notion of learning a concept class, with a notion of compatibility
between a function and the data distribution that we hope the target function will satisfy.

2 Preliminaries

Let X be the instance space, Y a label space, and H ✓ YX a hypothesis class. A pertur-
bation function U : X ! 2X maps an input to a set U(x) ✓ X . Denote the 0-1 loss of
hypothesis h on (x, y) by `0-1(h;x, y) = I [h(x) 6= y], and the robust loss with respect to U
by `U (h;x, y) = sup

z2U(x)
I [h(z) 6= y]. Denote the support of a distribution D over X ⇥ Y by

supp(D) = {(x, y) 2 X ⇥ Y : D(x, y) > 0}. Denote the marginal distribution DX on X and
its support by supp(DX ) = {x 2 X : D(x, y) > 0}. Define the robust risk of a hypothesis h 2 H
with respect to distribution D over X ⇥ Y ,

RU (h;D) = E(x,y)⇠D [`U (h;x, y)] = E(x,y)⇠D

"
sup

z2U(x)
I [h(z) 6= y]

#
.

The approximation error of H on D, namely, the optimal robust error achievable by a hypothesis in
H on D is denoted by,

RU (H;D) = inf
h2H

RU (h;D) .

We say that a distribution D is robustly realizable by a class H if RU (H;D) = 0.

Define the empirical robust risk of a hypothesis h 2 H with respect to a sequence S 2 (X ⇥ Y)⇤ ,

bRU (h;S) =
1

|S|
X

(x,y)2S

`U (h;x, y) =
1

|S|
X

(x,y)2S

"
sup

z2U(x)
I [h(z) 6= y]

#
.

The robust empirical risk minimizer learning algorithm RERM : (X ⇥ Y)⇤ ! H for a class H on a
sequence S is defined by

RERMH(S) 2 argmin
h2H

bRU (h;S) .

When the perturbation function is the identity, U(x) = {x}, we recover the standard notions. The
risk of a hypothesis h 2 H with respect to distribution D over X ⇥ Y is defined by R(h;D) =
E(x,y)⇠D [`0-1(h;x, y)] = E(x,y)⇠D [I [h(x) 6= y]] , and the empirical risk of a hypothesis h 2 H
with respect to a sequence S 2 (X ⇥ Y)⇤ is defined by bR(h;S) = 1

|S|

P
(x,y)2S `0-1(h;x, y) =

1
|S|

P
(x,y)2S [I [h(x) 6= y]] . The empirical risk minimizer learning algorithm ERM : (X ⇥ Y)⇤ !

H for a class H on a sequence S is defined by ERMH(S) 2 argminh2H
bR(h;S) .

A learning algorithm A : (X ⇥ Y)⇤ ! YX for a class H is called proper if it always outputs a
hypothesis in H, otherwise it is called improper.

Realizable robust PAC learning. We define the supervised and semi-supervised settings.

Definition 2.1 (Realizable robust PAC learnability) For any ✏, � 2 (0, 1), the sample complexity
of realizable robust (✏, �)-PAC learning for a class H, with respect to perturbation function U ,
denoted by ⇤RE(✏, �,H,U), is the smallest integer m for which there exists a learning algorithm
A : (X ⇥ Y)⇤ ! YX , such that for every distribution D over X ⇥ Y robustly realizable by H,
namely RU (H;D) = 0, for a random sample S ⇠ Dm, it holds that

P (RU (A(S);D)  ✏) > 1� �.
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If no such m exists, define ⇤RE(✏, �,H,U) = 1, and H is not robustly (✏, �)-PAC learnable with
respect to U .

For the standard (non-robust) learning with the 0-1 loss function, we omit the dependence on U and
denote the sample complexity of class H by ⇤RE(✏, �,H).

Definition 2.2 (Realizable semi-supervised robust PAC learnability) A hypothesis class H is
semi-supervised realizable robust (✏, �)-PAC learnable, with respect to perturbation function U , if for
any ✏, � 2 (0, 1), there exists mu,ml 2 N [ {0}, and a learning algorithm A : (X ⇥ Y)⇤ [ (X )⇤ !
YX , such that for every distribution D over X ⇥Y robustly realizable by H, namely RU (H;D) = 0,
for random samples Sl ⇠ Dml and Su

X
⇠ Dmu

X
, it holds that

P
�
RU

�
A(Sl, Su

X
);D

�
 ✏

�
> 1� �.

The sample complexity MRE(✏, �,H,U) includes all such pairs (mu,ml). If no such (mu,ml)
exist, then MRE(✏, �,H,U) = ;.

Agnostic robust PAC learning. In this case we have RU (H;D) > 0, and we would like to
compete with the optimal h 2 H. We add a parameter to the sample complexity, denoted by ⌘, which
is the optimal robust error of a hypothesis in H, namely ⌘ = RU (H;D). We say that a function f is
(↵, ✏)-optimal if RU (f ;D)  ↵⌘ + ✏.

Definition 2.3 (Agnostic robust PAC learnability) For any ✏, � 2 (0, 1), the sample complexity of
agnostic robust (↵, ✏, �)-PAC learning for a class H, with respect to perturbation function U , denoted
by ⇤AG(↵, ✏, �,H,U , ⌘), is the smallest integer m, for which there exists a learning algorithm
A : (X ⇥ Y)⇤ ! YX , such that for every distribution D over X ⇥Y , for a random sample S ⇠ Dm,
it holds that

P
✓
RU (A(S);D)  ↵ inf

h2H

RU (h;D) + ✏

◆
> 1� �.

If no such m exists, define ⇤AG(↵, ✏, �,H,U , ⌘) = 1, and H is not robustly (↵, ✏, �)-PAC learnable
in the agnostic setting with respect to U . Note that for ↵ = 1 we recover the standard agnostic
definition, our notation allows for a more relaxed approximation.

Analogously, we define the semi-supervised case.

Definition 2.4 (Agnostic semi-supervised robust PAC learnability) A hypothesis class H is semi-
supervised agnostically robust (↵, ✏, �)-PAC learnable, with respect to perturbation function U , if for
any ✏, � 2 (0, 1), there exists mu,ml 2 N [ {0}, and a learning algorithm A : (X ⇥ Y)⇤ [ (X )⇤ !
YX , such that for every distribution D over X ⇥ Y , for random samples Sl ⇠ Dml and Su

X
⇠ Dmu

X
,

it holds that

P
✓
RU

�
A(Sl, Su

X
);D

�
 ↵ inf

h2H

RU (h;D) + ✏

◆
> 1� �.

The sample complexity MAG(↵, ✏, �,H,U , ⌘) includes all such pairs (mu,ml). If no such (mu,ml)
exist, then MAG(↵, ✏, �,H,U , ⌘) = ;.

Partial concept classes [2]. Let a partial concept class H ✓ {0, 1, ?}X . For h 2 H and input
x such that h(x) = ?, we say that h is undefined on x. The support of a partial hypothesis
h : X ! {0, 1, ?} is the preimage of {0, 1}, formally, h�1({0, 1}) = {x 2 X : h(x) 6= ?}. The
main motivation for introducing partial concept classes is that data-dependent assumptions can be
modeled in a natural way that extends the classic theory of total concepts. The VC dimension of a
partial class H is defined as the maximum size of a shattered set S ✓ X , where S is shattered by H
if the projection of H on S contains all possible binary patterns, {0, 1}S ✓ H|S . The VC-dimension
also characterizes verbatim the PAC learnability of partial concept classes, even though uniform
convergence does not hold in this setting.
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We use the notation Õ(·) for omitting poly-logarithmic factors of VC,VC⇤,VCU ,RSU , 1/✏, 1/�.
See Appendix A for additional preliminaries on complexity measures, sample compression schemes,
and partial concept classes.

3 Warm-up: knowing the support of the marginal distribution

In this section, we provide a tight bound on the labeled sample complexity when the support of
marginal distribution is fully known to the learner, under the robust realizable assumption. Studying
this setting gives an intuition for the general semi-supervised model. The main idea is that as long as
we know the support of the marginal distribution, supp(DX ) = {x 2 X : 9y 2 Y, s.t. D(x, y) > 0},
we can restrict our search to a subspace of functions that are robustly self-consistent, HU -cons ✓ H,
where

HU -cons = {h 2 H : 8x 2 supp(DX ), 8z, z0 2 U(x), h(z) = h(z0)} .

As long as the distribution is robustly realizable, i.e., RU (H;D) = 0, we are guaranteed that the
target hypothesis belongs to HU -cons. As a result, it suffices to learn the class HU -cons with the 0-1
loss function, in order to robustly learn the original class H. We observe that,

VC(HU -cons) = VCU (H)  VC(H).

Moreover, there exists H0 with VCU (H0) = 0 and VC(H0) = 1 (see Proposition 3.2). Fortunately,
moving from VC(H) to VCU (H) implies a significant sample complexity improvement. Since
supp(DX ) is known, we can now employ any algorithm for learning the hypothesis class HU -cons. 2

This leads eventually to robustly learning H with labeled sample complexity that scales linearly with
VCU (instead of the VC). Formally,

Theorem 3.1 For hypothesis class H and adversary U , when the support of the marginal distribution

DX is known, the labeled sample complexity is ⇥
⇣

VCU (H)
✏ +

log 1
�

✏

⌘
.

Remark. The statement in the theorem is about the labeled sample size that is required for learning
when the marginal distribution is known. This is different than the sample complexity in Definition 2.2,
where we ask about the labeled and unlabeled sample sizes required for learning. Here we make a
strong assumption of knowing the marginal distribution, instead of having access to an unlabeled
sample.

The following Proposition demonstrates that semi-supervised robust learning requires much fewer
labeled samples compared to the supervised counterpart. Recall the lower bound on the sample com-
plexity of supervised robust learning, ⇤RE(✏, �,H,U) = ⌦

⇣
RSU (H)

✏ + 1
✏ log

1
�

⌘
given by Montasser

et al. [40, Theorem 10]. For completeness, we prove the following in Appendix B.

Proposition 3.2 ([40], Proposition 9) There exists a hypothesis class H0 such that VCU (H0) = 0,

RSU (H0) = 1, and VC(H0) = 1.

We can now conclude the following separation result on supervised and semi-supervised label
complexities.

Corollary 3.3 The hypothesis class in Proposition 3.2 is not learnable in supervised robust learning

(i.e., we need to see the entire data distribution). However, when supp(DX ) is known, this class can

be learned with O( 1✏ log
1
� ) labeled examples.

In the next section, we prove a stronger separation in the general semi-supervised setting. The
size of the labeled data required in the supervised case is lower bounded by RSU , whereas in the
semi-supervised case, the labeled sample complexity depends only on VCU and the unlabeled data is

2See Mohri et al. [39, Chapter 3] for standard upper and lower bounds. In order to remove the superfluous
log 1

✏ factor of the standard uniform convergence based upper bound, O
⇣

VCU (H)
✏ log 1

✏ +
log 1

�
✏

⌘
, we can use

the learning algorithm and its analysis from Hanneke [30] that applies for any H and D, or some other algorithms
that are doing so while restricting the hypothesis class or the data distribution [e.g., 8, 22, 31, 29, 37, 26, 17, 14].
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lower bounded by RSU . Moreover, note that in Theorem 3.1, when supp(DX ) is known, we can use
any proper learner. In Section 4 we show that in the general semi-supervised model this is not the
case, and sometimes improper learning is necessary, similar to supervised robust learning.

4 Near-optimal semi-supervised sample complexity

In this section, we present our algorithm and its guarantees for the realizable setting. We also prove
nearly matching lower bounds on the sample complexity. Finally, we show that improper learning is
necessary in semi-supervised robust learning, similar to the supervised case.

We present a generic semi-supervised robust learner, that can be applied in both realizable and
agnostic settings. The algorithm uses the following two subroutines. The first one is any algorithm
for learning partial concept classes, which controls our labeled sample size. (In Appendix F we
discuss in detail the algorithm suggested by Alon et al. [2].) The second subroutine is any algorithm
for the agnostic adversarially robust supervised learning, which controls our unlabeled sample size.
(In Appendix G we discuss in detail the algorithm suggested by Montasser et al. [40].) Any progress
on one of these problems improves directly the guarantees of our algorithm. We use the following
definition that explains how to convert a total concept class into a partial one, in a way that preserves
the idea of the robust loss function.

Definition 4.1 Let a hypothesis class H ✓ {0, 1}X and a perturbation function U : X ! 2X .
For any h 2 H, we define a corresponding partial concept h? : X ! {0, 1, ?}, and denote this
mapping by '(h) = h?. For x 2 X , whenever h is not consistent on the entire set U(x), i.e.,
9z, z0 2 U(x), h(z) 6= h(z0), define h?(x) = ?. Otherwise, h is robustly self-consistent on x, i.e.,
8z, z0 2 U(x), h(z) = h(z0) and h remains unchanged, h?(x) = h(x). The corresponding partial
concept class is defined by H?

U
= {h? : '(h) = h?, 8h 2 H}.

The main motivation for the above definition is the following. Fix a hypothesis h. For any point
x, as defined above, the adversary can force a mistake on h, regardless of the prediction of h. We
would like to mark such points as mistake. We do this by defining a partial concept h? and setting
h?(x) = ?, which, for partial concepts, implies a mistake. The benefit of this preprocessing is that
we reduce the complexity of the hypothesis class from VC to VCU , which potentially can reduce the
labeled sample complexity. We are now ready to describe the algorithm.

Algorithm 1 Generic Adversarially-Robust Semi-Supervised (GRASS) learner
Input: Labeled data set Sl ⇠ Dml , unlabeled data set Su

X
⇠ Dmu

X
, hypothesis class H, perturbation

function U , parameters ✏, �.
Algorithms used: PAC learner A for partial concept classes, agnostic adversarially robust supervised
PAC learner B.

1. Given the class H, construct the hypothesis class H?
U

using Definition 4.1.

2. Execute the learning algorithm for partial concepts A on H?
U

and sample Sl, with the 0-1
loss and parameters ✏

3 ,
�
2 . Denote the resulting hypothesis h1.

3. Label the unlabeled data set Su
X

with h1, denote the labeled sample by Su. (On points where
h1 predicts ?, we can arbitrarily choose a label of 0 or 1.)

4. Execute the agnostic adversarially robust supervised PAC learner B on Su with parameters
✏
3 ,

�
2 . Denote the resulting hypothesis h2.

Output: h2.

Algorithm motivation. The main idea behind the algorithm is the following. Given the class H?
U

,
we would like to find a hypothesis h1 2 H?

U
which has a small error, whose existence follows from

our realizability assumption. The required sample size scales with VCU , which is the complexity
of H?

U
, rather than VC. This is where we make a significant gain in the labeled sample complexity.

Note that h1 does not guarantee a small robust error, although it does guarantee a small non-robust
error. We utilize an additional unlabeled sample for this task, which we label using h1. If we would
simply minimize the non-robust error on this sample we would simply get back h1. The main insight
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is that we would like to minimize the robust error over this sample, which will result in hypothesis h2.
We now need to bound the robust error of h2. The optimal function hopt has only a slightly increased
robust error on this sample, namely, at most on the sample points where it disagrees with h1. Note
that h1 might have a large robust error due to the perturbation U . However, a robust supervised PAC
learner would return a hypothesis h2 which has robust error similar to hopt, which is at most ✏.

Algorithm outline and guarantees. In the first step, we convert H to H?
U

. Then we employ a
learning algorithm A for partial concepts on H?

U
with a labeled sample Sl ⇠ Dml . The output of

the algorithm is a function h1 with ✏/3 on the 0-1 error. Crucially, we needed for this step |Sl| =
Õ(VCU (H)/✏) labeled examples for learning the partial concept H?

U
, since VC(H?

U
) = VCU (H).

So our labeled sample size is controlled by the sample complexity for learning partial concepts with
the 0-1 loss. In step 3, we label an independent unlabeled sample Su

X
⇠ Dmu

X
with h1, denote his

labeled sample by Su. Define a distribution D̃ over X ⇥ Y by D̃(x, h1(x)) = DX (x), and so Su

is an i.i.d. sample from D̃. We argue that the robust error of H with respect to D̃ is at most ✏
3 , i.e.,

RU (H; D̃) = ✏
3 . Indeed, the function with zero robust error on D, hopt 2 argminh2H

RU (h;D) has
a robust error of at most ✏

3 on D̃. Finally, we employ an agnostic adversarially robust supervised
PAC learner B for the class H on Su ⇠ D̃mu , that should be of a size of the sample complexity of
agnostically robust learn H with respect to U , when the optimal robust error of hypothesis from H
on D̃ is at most ✏

3 . Moreover, the total variation distance between D and D̃ is at most ✏
3 . We are

guaranteed that the resulting hypothesis h2 has a robust error of at most ✏
3 + ✏

3 + ✏
3 = ✏ on D. We

conclude that a size of |Su
X
| = mu = ⇤AG

�
1, ✏

3 ,
�
2 ,H,U , ⌘ = ✏

3

�
unlabeled samples suffices, this

completes the proof for Theorem 4.2. For a specific instantiation of such an algorithm ([40]), we
deduce the sample complexity in Theorem 4.4. A simple analysis of the latter yields a dependence
of ✏2 for the unlabeled sample size. However, by applying a suitable data-dependent generalization
bound, we reduce this dependence to ✏. (Full proofs appear in Appendix C).

We now formally present the sample complexity of the generic semi-supervised learner for the
robust realizable setting. First, in the case of using a generic agnostic robust supervised learner as a
subroutine (step 4 in the algorithm). Then we deduce the sample complexity of a specific instantiation
of such an algorithm.
Theorem 4.2 For any hypothesis class H and adversary U , algorithm GRASS (✏, �)-PAC learns

H with respect to the robust loss function, in the realizable robust case, with samples of size

ml = O
✓
VCU (H)

✏
log2

VCU (H)

✏
+

log 1
�

✏

◆
, mu = ⇤AG

✓
1,

✏

3
,
�

2
,H,U , ⌘ =

✏

3

◆
,

where ⇤AG (↵, ✏, �,H,U , ⌘) is the sample complexity of adversarially-robust agnostic supervised

(↵, ✏, �)-PAC learning, such that ⌘ is the error of the optimal hypothesis in H, i.e., ⌘ = RU (H;D).

Remark 4.3 Note that if we simply invoke a PAC learner (for total concept classes) on H with the
0-1 loss, instead of steps 1 and 2 in the algorithm, we would get a labeled sample complexity of
roughly O(VC(H)). This is already an exponential improvement upon previous results that require
roughly O

�
2VC(H)

�
labeled samples. The purpose of using partial concept classes is to further reduce

the labeled sample complexity to O(VCU (H)).

The following result follows by using the agnostic supervised robust learner suggested by Montasser
et al. [40]. A simple analysis of the latter yields a dependence of ✏2 for the unlabeled sample size.
However, by applying a suitable data-dependent generalization bound, we reduce this dependence to
✏.
Theorem 4.4 For any hypothesis class H and adversary U , Algorithm GRASS (✏, �)-PAC learns

H with respect to the robust loss function, in the realizable robust case, with samples of size

ml = O
✓
VCU (H)

✏
log2

VCU (H)

✏
+

log 1
�

✏

◆
, mu = Õ

✓
VC(H)VC⇤(H)

✏
+

log 1
�

✏

◆
.

We present nearly matching lower bounds for the realizable setting. The following Corollary stems
from Theorem 3.1 and Montasser et al. [40, Theorem 10].
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Corollary 4.5 For any ✏, � 2 (0, 1), the sample complexity of realizable robust (✏, �)-PAC learning

for a class H, with respect to perturbation function U is

ml = ⌦

✓
VCU (H)

✏
+

log 1
�

✏

◆
, mu = 1, or ml +mu = ⌦

✓
RSU (H)

✏
+

log 1
�

✏

◆
.

Proper vs. improper. In Section 3, we have seen that when the support of the marginal distribution
DX is known, the labeled sample complexity is ⇥

⇣
VCU (H)

✏ +
log 1

�
✏

⌘
. This was obtained by a proper

learner: keep the robustly self-consistent hypotheses, HU -cons ✓ H, and then use ERM on this class.
The case when DX is unknown is different. We know that there exists a perturbation function U
and a hypothesis class H with finite VC-dimension that is not robustly PAC learnable by any proper
learning rule [40, Lemma 3]. The same proof holds in the semi-supervised case. Note that both
algorithms A and B used in Algorithm 1 are improper. (The proof appears in Appendix C.)
Theorem 4.6 There exists H with VC(H) = 0 such that for any proper learning rule A : (X ⇥ Y)⇤[
(X )⇤ ! H, there exists a distribution D over X⇥Y that is robustly realizable by H, i.e., RU (H;D) =
0. It holds that RU

�
A(Sl, Su

X
);D

�
> 1

8 with probability at least
1
7 over Sl ⇠ Dml and Su

X
⇠ Dmu ,

where ml,mu 2 N [ {0} is the size of the labeled and unlabeled samples respectively. Moreover,

when the support of the marginal distribution DX is known, there exists a proper learning rule for

any H.

5 Agnostic robust learning

In this section, we prove the guarantees of Algorithm 1 in the more challenging agnostic robust
setting. We then prove lower bounds on the sample complexity which exhibit that it is inherently
different from the realizable case.

We follow the same steps as in the proof of the realizable case, with the following important difference.
In the first two steps of the algorithm, we learn a partial concept class with respect to the 0-1 loss and
obtain a hypothesis with an error of ⌘ + ✏/3 (⌘ is the optimal robust error of a hypothesis in H and
not 0). This leads eventually to an error of 3⌘ + ✏ for learning with respect to the robust loss.

We then present two negative results. In Theorem 5.2 we show that for obtaining error ⌘ + ✏ there is
a lower bound of ⌦(RSU ) labeled examples, this result coincides with the lower bound of supervised
robust learning. In Theorem 5.3, we show that for any � > 0 there exists a hypothesis class, such that
having access only to O(VCU ) labeled examples, leads to an error ( 32 � �)⌘ + ✏. (All proofs for this
section are in Appendix D.)

We start with the upper bounds. First, we analyze the case of using a generic agnostic robust learner,
then we deduce the sample complexity of a specific instantiation of such an algorithm.
Theorem 5.1 For any hypothesis class H and adversary U , Algorithm GRASS (3, ✏, �)-PAC learns

H with respect to the robust loss function, in the agnostic robust case, with samples of size

ml = O
✓
VCU (H)

✏2
log2

VCU (H)

✏2
+

log 1
�

✏2

◆
, mu = ⇤AG

✓
1,

✏

3
,
�

2
,H,U , 2⌘ +

✏

3

◆
,

where ⇤AG (↵, ✏, �,H,U , ⌘) is the sample complexity of adversarially-robust agnostic supervised

learning, such that ⌘ is the error of the optimal hypothesis in H, namely ⌘ = RU (H;D).

By using the agnostic supervised robust learner suggested by Montasser et al. [40], we have the
following upper bound on the unlabeled sample size, mu = Õ

⇣
VC(H) VC⇤(H)

✏2 +
log 1

�
✏2

⌘
.

We now present two negative results.
Theorem 5.2 For any ✏, � 2 (0, 1), the sample complexity of agnostic robust (1, ✏, �)-PAC learning

for a class H, with respect to perturbation function U is (even if DX is known),

ml = ⌦

✓
RSU (H)

✏2
+

1

✏2
log

1

�

◆
, mu = 1.
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Theorem 5.3 For any � > 0, there exists a hypothesis class H and adversary U , such that the sample

complexity for ( 32 � �, ✏, �)-PAC learn H is

ml = ⌦

✓
VCU (H)

✏2
+

1

✏2
log

1

�

◆
, mu = 1.

Open question. What is the optimal error rate in the agnostic setting when using only O(VCU )
labeled examples?

6 Learning with the 0-1 loss assuming robust realizability

In this section, we learn with respect to the 0-1 loss, under robust realizability assumption. A
Distribution D over X ⇥ Y is robustly realizable by H given a perturbation function U , if there is
h 2 H such that not only h classifies all points in D correctly, it also does so with respect to the
robust loss function, that is, RU (H;D) = 0. Note that our guarantees, only in this section, are with
respect to the non-robust risk. The formal definition is in Appendix E. A simple example of this
model is the following. Let H be linear separators on X the unit ball in Rd, and U as `2 balls of
radius �, the robustly realizable distributions are separable with margin �, where VCU (H) = 1

�2 but
VC(H) = d+ 1 can be arbitrarily larger. Moreover, we have the following example. (All proofs are
in appendix Appendix E.)

Proposition 6.1 For any m 2 N, there exist a hypothesis class Hm and distribution D, such that D
is robustly realizable by Hm, VCU (Hm) = 1, and VC(Hm) = 2m.

Standard VC theory does not ensure learning in this case. In this section, we explain how we can
learn in such a scenario with a small sample complexity (scales linearly in VCU ). Moreover, we show
that it cannot be achieved via proper learners.

Theorem 6.2 The sample complexity for learning a hypothesis class H with respect to the 0-1 loss,

for any distribution D that is robustly realizable by H, namely RU (H;D) = 0,

O
✓
VCU (H)

✏
log2

VCU (H)

✏
+

log 1
�

✏

◆
,⌦

✓
VCU (H)

✏
+

log 1
�

✏

◆
.

This Theorem was an intermediate step in the proof of Theorem 4.2, and the sample complexity is
the same as Theorem C.1, O (⇤RE(✏, �,H)) . We show that there exists a robust ERM that fails in
this setting (Proposition E.2 in Appendix E). Then, we claim that every proper learner fails.

Theorem 6.3 There exists H with VCU (H) = 1, such that for any proper learning rule A :
(X ⇥ Y)⇤ ! H, there exists a distribution D over X ⇥ Y that is robustly realizable by H, i.e.,

RU (H;D) = 0, and it holds that R(A(S);D) > 1
8 with probability at least

1
7 over S ⇠ Dm

.
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