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Abstract

Many interesting tasks in image restoration can be cast as linear inverse prob-
lems. A recent family of approaches for solving these problems uses stochastic
algorithms that sample from the posterior distribution of natural images given
the measurements. However, efficient solutions often require problem-specific
supervised training to model the posterior, whereas unsupervised methods that
are not problem-specific typically rely on inefficient iterative methods. This work
addresses these issues by introducing Denoising Diffusion Restoration Models
(DDRM), an efficient, unsupervised posterior sampling method. Motivated by
variational inference, DDRM takes advantage of a pre-trained denoising diffusion
generative model for solving any linear inverse problem. We demonstrate DDRM’s
versatility on several image datasets for super-resolution, deblurring, inpainting,
and colorization under various amounts of measurement noise. DDRM outper-
forms the current leading unsupervised methods on the diverse ImageNet dataset
in reconstruction quality, perceptual quality, and runtime, being 5× faster than
the nearest competitor. DDRM also generalizes well for natural images out of the
distribution of the observed ImageNet training set.1

1 Introduction

Many problems in image processing, including super-resolution [31, 17], deblurring [28, 48], inpaint-
ing [55], colorization [29, 58], and compressive sensing [1], are instances of linear inverse problems,
where the goal is to recover an image from potentially noisy measurements given through a known
linear degradation model. For a specific degradation model, image restoration can be addressed
through end-to-end supervised training of neural networks, using pairs of original and degraded im-
ages [14, 58, 41]. However, real-world applications such as medical imaging often require flexibility
to cope with multiple, possibly infinite, degradation models [46]. Here, unsupervised approaches
based on learned priors [36], where the degradation model is only known and used during inference,
may be more desirable since they can adapt to the given problem without re-training [51]. By
learning sound assumptions over the underlying structure of images (e.g., priors, proximal operators
or denoisers), unsupervised approaches can achieve effective restoration without training on specific
degradation models [51, 40].

Under this unsupervised setting, priors based on deep neural networks have demonstrated impressive
empirical results in various image restoration tasks [40, 50, 43, 38, 15]. To recover the signal,

1Project website: https://ddrm-ml.github.io/
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Figure 1: Pairs of measurements and recovered images with a 20-step DDRM on super-resolution,
deblurring, inpainting, and colorization, with or without noise, and with unconditional generative
models. The images are not accessed during training.

most existing methods obtain a prior-related term over the signal from a neural network (e.g., the
distribution of natural images), and a likelihood term from the degradation model. They combine
the two terms to form a posterior over the signal, and the inverse problem can be posed as solving
an optimization problem (e.g., maximum a posteriori [8, 40]) or solving a sampling problem (e.g.,
posterior sampling [2, 3, 25]). Then, these problems are often solved with iterative methods, such as
gradient descent or Langevin dynamics, which may be demanding in computation and sensitive to
hyperparameter tuning. An extreme example is found in [30] where a “fast” version of the algorithm
uses 15, 000 neural function evaluations (NFEs).

Inspired by this unsupervised line of work, we introduce an efficient approach named Denoising
Diffusion Restoration Models (DDRM), that can achieve competitive results in as low as 20 NFEs.
DDRM is a denoising diffusion generative model [44, 19, 45] that gradually and stochastically
denoises a sample to the desired output, conditioned on the measurements and the inverse problem.
This way we introduce a variational inference objective for learning the posterior distribution of the
inverse problem at hand. We then show its equivalence to the objective of an unconditional denoising
diffusion generative model [19], which enables us to deploy such models in DDRM for various linear
inverse problems (see Figure 2). To our best knowledge, DDRM is the first general sampling-based
inverse problem solver that can efficiently produce a range of high-quality, diverse, yet valid solutions
for general content images.

We demonstrate the empirical effectiveness of DDRM by comparing with various competitive methods
based on learned priors, such as Deep Generative Prior (DGP) [38], SNIPS [25], and Regularization
by Denoising (RED) [40]. On ImageNet examples, DDRM mostly outperforms the neural network
baselines under noiseless super-resolution and deblurring measured in PSNR and KID [5], and is at
least 50× more efficient in terms of NFEs when it is second-best. Our advantage becomes even larger
when measurement noise is involved, as noisy artifacts produced by iterative methods do not appear
in our case. Over various real-world images, we further show DDRM results on super-resolution,
deblurring, inpainting and colorization (see Figure 1). A DDRM trained on ImageNet also works on
images that are out of its training set distribution (see Figure 6).

2 Background

Linear Inverse Problems. A general linear inverse problem is posed as

y = Hx+ z, (1)

where we aim to recover the signal x ∈ Rn from measurements y ∈ Rm, where H ∈ Rm×n is
a known linear degradation matrix, and z ∼ N (0, σ2

yI) is an i.i.d. additive Gaussian noise with
known variance. The underlying structure of x can be represented via a generative model, denoted
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Figure 2: Illustration of our DDRM method for a specific inverse problem (super-resolution +
denoising). We can use unsupervised DDPM models as a good solution to the DDRM objective.

as pθ(x). Given y and H , a posterior over the signal can be posed as: pθ(x|y) ∝ pθ(x)p(y|x),
where the “likelihood” term p(y|x) is defined via Equation (1); such an approach leverages a learned
prior pθ(x), and we call it an “unsupervised” approach based on the terminology in [36], as the prior
does not necessarily depend on the inverse problem. Recovering x can be done by sampling from
this posterior [2], which may require many iterations to produce a good sample. Alternatively, one
can also approximate this posterior by learning a model via amortized inference (i.e., supervised
learning); the model learns to predict x given y, generated from x and a specific H . While this can
be more efficient than sampling-based methods, it may generalize poorly to inverse problems that
have not been trained on.

Denoising Diffusion Probabilistic Models. Structures learned by generative models have been
applied to various inverse problems and often outperform data-independent structural constraints
such as sparsity [7]. These generative models learn a model distribution pθ(x) that approximates a
data distribution q(x) from samples. In particular, diffusion models have demonstrated impressive
unconditional generative modeling performance on images [13]. Diffusion models are generative
models with a Markov chain structure xT → xT−1 → . . . → x1 → x0 (where xt ∈ Rn), which has
the following joint distribution:

pθ(x0:T ) = p
(T )
θ (xT )

T−1∏
t=0

p
(t)
θ (xt|xt+1).

After drawing x0:T , only x0 is kept as the sample of the generative model. To train a diffusion model,
a fixed, factorized variational inference distribution is introduced:

q(x1:T |x0) = q(T )(xT |x0)
T−1∏
t=0

q(t)(xt|xt+1,x0),

which leads to an evidence lower bound (ELBO) on the maximum likelihood objective [44]. A
special property of some diffusion models is that both p

(t)
θ and q(t) are chosen as conditional Gaussian

distributions for all t < T , and that q(xt|x0) is also a Gaussian with known mean and covariance,
i.e., xt can be treated as x0 directly corrupted with Gaussian noise. Thus, the ELBO objective can be
reduced into the following denoising autoencoder objective (please refer to [45] for derivations):

T∑
t=1

γtE(x0,xt)∼q(x0)q(xt|x0)

[
∥x0 − f

(t)
θ (xt)∥

2

2

]
(2)

where f
(t)
θ is a θ-parameterized neural network that aims to recover a noiseless observation from a

noisy xt, and γ1:T are a set of positive coefficients that depend on q(x1:T |x0).

3 Denoising Diffusion Restoration Models

Inverse problem solvers based on posterior sampling often face a dilemma: unsupervised approaches
apply to general problems but are inefficient, whereas supervised ones are efficient but can only
address specific problems.
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To solve this dilemma, we introduce Denoising Diffusion Restoration Models (DDRM), an unsuper-
vised solver for general linear inverse problems, capable of handling such tasks with or without noise
in the measurements. DDRM is efficient and exhibits competitive performance compared to popular
unsupervised solvers [40, 38, 25].

The key idea behind DDRM is to find an unsupervised solution that also suits supervised learning
objectives. First, we describe the variational objective for DDRM over a specific inverse problem
(Section 3.1). Next, we introduce specific forms of DDRM that are suitable for linear inverse
problems and allow pre-trained unconditional and class-conditional diffusion models to be used
directly (Sections 3.2, 3.3). Finally, we discuss practical algorithms that are compute and memory
efficient (Sections 3.4, 3.5).

3.1 Variational Objective for DDRM

For any linear inverse problem, we define DDRM as a Markov chain xT → xT−1 → . . . → x1 → x0

conditioned on y, where

pθ(x0:T |y) = p
(T )
θ (xT |y)

T−1∏
t=0

p
(t)
θ (xt|xt+1,y)

and x0 is the final diffusion output. In order to perform inference, we consider the following factorized
variational distribution conditioned on y:

q(x1:T |x0,y) = q(T )(xT |x0,y)

T−1∏
t=0

q(t)(xt|xt+1,x0,y),

leading to an ELBO objective for diffusion models conditioned on y (details in Appendix A).

In the remainder of the section, we construct suitable variational problems given H and σy and
connect them to unconditional diffusion generative models. To simplify notations, we will construct
the variational distribution q such that q(xt|x0) = N (x0, σ

2
t I) for noise levels 0 = σ0 < σ1 <

σ2 < . . . < σT .2 In Appendix B, we will show that this is equivalent to the distribution introduced in
DDPM [19] and DDIM [45],3 up to fixed linear transformations over xt.

3.2 A Diffusion Process for Image Restoration

Similar to SNIPS [25], we consider the singular value decomposition (SVD) of H , and perform the
diffusion in its spectral space. The idea behind this is to tie the noise present in the measurements y
with the diffusion noise in x1:T , ensuring that the diffusion result x0 is faithful to the measurements.
By using the SVD, we identify the data from x that is missing in y, and synthesize it using a diffusion
process. In conjunction, the noisy data in y undergoes a denoising process. For example, in inpainting
with noise (e.g., H = diag([1, . . . , 1, 0, . . . , 0]), σy ≥ 0), the spectral space is simply the pixel
space, so the model should generate the missing pixels and denoise the observed ones in y. For a
general linear H , its SVD is given as

H = UΣV ⊤ (3)

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×n is a rectangular diagonal
matrix containing the singular values of H , ordered descendingly. As this is the case in most useful
degradation models, we assume m ≤ n, but our method would work for m > n as well. We denote
the singular values as s1 ≥ s2 ≥ . . . ≥ sm, and define si = 0 for i ∈ [m+ 1, n].

We use the shorthand notations for values in the spectral space: x̄(i)
t is the i-th index of the vector x̄t =

V ⊤xt, and ȳ(i) is the i-th index of the vector ȳ = Σ†U⊤y (where † denotes the Moore–Penrose
pseudo-inverse). Because V is an orthogonal matrix, we can recover xt from x̄t exactly by left

2This is called “Variance Exploding” in [47].
3This is called “Variance Preserving” in [47].
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multiplying V . For each index i in x̄t, we define the variational distribution as:

q(T )(x̄
(i)
T |x0,y) =

{
N (ȳ(i), σ2

T − σ2
y

s2i
) if si > 0

N (x̄
(i)
0 , σ2

T ) if si = 0
(4)

q(t)(x̄
(i)
t |xt+1,x0,y) =


N (x̄

(i)
0 +

√
1− η2σt

x̄
(i)
t+1−x̄

(i)
0

σt+1
, η2σ2

t ) if si = 0

N (x̄
(i)
0 +

√
1− η2σt

ȳ(i)−x̄
(i)
0

σy/si
, η2σ2

t ) if σt <
σy

si

N ((1− ηb)x̄
(i)
0 + ηbȳ

(i), σ2
t −

σ2
y

s2i
η2b ) if σt ≥ σy

si

(5)

where η ∈ (0, 1] is a hyperparameter controlling the variance of the transitions, and η and ηb may
depend on σt, si, σy. We further assume that σT ≥ σy/si for all positive si.4

In the following statement, we show that this construction has the “Gaussian marginals” property
similar to the inference distribution used in unconditional diffusion models [19].
Proposition 3.1. The conditional distributions q(t) defined in Equations 4 and 5 satisfy the following:

q(xt|x0) = N (x0, σ
2
t I), (6)

defined by marginalizing over xt′ (for all t′ > t) and y, where q(y|x0) is defined as in Equation (1)
with x = x0.

We place the proof in Appendix C. Intuitively, our construction considers different cases for each
index of the spectral space. (i) If the corresponding singular value is zero, then y does not directly
provide any information to that index, and the update is similar to regular unconditional generation.
(ii) If the singular value is non-zero, then the updates consider the information provided by y, which
further depends on whether the measurements’ noise level in the spectral space (σy/si) is larger than
the noise level in the diffusion model (σt) or not; the measurements in the spectral space ȳ(i) are then
scaled differently for these two cases in order to ensure Proposition 3.1 holds.

Now that we have defined q(t) as a series of Gaussian conditionals, we define our model distribution
pθ as a series of Gaussian conditionals as well. Similar to DDPM, we aim to obtain predictions of x0

at every step t; and to simplify notations, we use the symbol xθ,t to represent this prediction made by
a model5 fθ(xt+1, t + 1) : Rn × R → Rn that takes in the sample xt+1 and the conditioned time
step (t+ 1). We also define x̄

(i)
θ,t as the i-th index of x̄θ,t = V ⊤xθ,t.

We define DDRM with trainable parameters θ as follows:

p
(T )
θ (x̄

(i)
T |y) =

{
N (ȳ(i), σ2

T − σ2
y

s2i
) if si > 0

N (0, σ2
T ) if si = 0

(7)

p
(t)
θ (x̄

(i)
t |xt+1,y) =


N (x̄

(i)
θ,t +

√
1− η2σt

x̄
(i)
t+1−x̄

(i)
θ,t

σt+1
, η2σ2

t ) if si = 0

N (x̄
(i)
θ,t +

√
1− η2σt

ȳ(i)−x̄
(i)
θ,t

σy/si
, η2σ2

t ) if σt <
σy

si

N ((1− ηb)x̄
(i)
θ,t + ηbȳ

(i), σ2
t −

σ2
y

s2i
η2b ) if σt ≥ σy

si
.

(8)

Compared to q(t) in Equations (4) and (5), our definition of p(t)θ merely replaces x̄(i)
0 (which we do

not know at sampling) with x̄
(i)
θ,t (which depends on our predicted xθ,t) when t < T , and replaces

x̄
(i)
0 with 0 when t = T . It is possible to learn the variances [35] or consider alternative constructions

where Proposition 3.1 holds; we leave these options as future work.

3.3 “Learning” Image Restoration Models

Once we have defined p
(t)
θ and q(t) by choosing σ1:T , η and ηb, we can learn model parameters θ by

maximizing the resulting ELBO objective (in Appendix A). However, this approach is not desirable
4This assumption is fair, as we can set a sufficiently large σT .
5Equivalently, the authors of [19] predict the noise values to subtract in order to recover xθ,t.

5



O
ri

gi
na

l
D

eg
ra

de
d

D
D

R
M

(2
0

)

(a) Inpainting results on cat images.
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(b) Deblurring results (σy = 0.05) on bedroom images.

Figure 3: DDRM results on bedroom and cat images, for inpainting and deblurring.

since we have to learn a different model for each inverse problem (given H and σy), which is not
flexible enough for arbitrary inverse problems. Fortunately, this does not have to be the case. In the
following statement, we show that an optimal solution to DDPM / DDIM can also be an optimal
solution to a DDRM problem, under reasonable assumptions used in prior work [19, 45].

Theorem 3.2. Assume that the models f (t)
θ and f

(t′)
θ do not have weight sharing whenever t ̸= t′,

then when η = 1 and ηb =
2σ2

t

σ2
t+σ2

y/s
2
i

, the ELBO objective of DDRM (details in Appendix A) can be
rewritten in the form of the DDPM / DDIM objective in Equation (2).

We place the proof in Appendix C.

Even for different choices of η and ηb, the proof shows that the DDRM objective is a weighted sum-
of-squares error in the spectral space, and thus pre-trained DDPM models are good approximations
to the optimal solution. Therefore, we can apply the same diffusion model (unconditioned on the
inverse problem) using the updates in Equation (7) and Equation (8) and only modify H and its SVD
(U , Σ, V ) for various linear inverse problems.

3.4 Accelerated Algorithms for DDRM

Typical diffusion models are trained with many timesteps (e.g., 1000) to achieve optimal unconditional
image synthesis quality, but sampling speed is slow as many NFEs are required. Previous works [45,
13] have accelerated this process by “skipping” steps with appropriate update rules. This is also true
for DDRM, since we can obtain the denoising autoencoder objective in Equation (2) for any choice
of increasing σ1:T . For a pre-trained diffusion model with T ′ timesteps, we can choose σ1:T to be a
subset of the T ′ steps used in training.

3.5 Memory Efficient SVD

Our method, similar to SNIPS [25], utilizes the SVD of the degradation operator H . This constitutes
a memory consumption bottleneck in both algorithms as well as other methods such as Plug and
Play (PnP) [51], as storing the matrix V has a space complexity of Θ(n2) for signals of size n. By
leveraging special properties of the matrices H used, we can reduce this complexity to Θ(n) for
denoising, inpainting, super resolution, deblurring, and colorization (details in Appendix D).

4 Related Work

Various deep learning solutions have been suggested for solving inverse problems under different
settings (see a detailed survey in [37]). We focus on the unsupervised setting, where we have access
to a dataset of clean images at training time, but the degradation model is known only at inference
time. This setup is inherently general to all linear inverse problems, a property desired in many
real-world applications such as medical imaging [46, 20].
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Table 1: Noiseless 4× super-resolution and deblurring results on ImageNet 1K (256× 256).

Method 4× super-resolution Deblurring
PSNR↑ SSIM↑ KID↓ NFEs↓ PSNR↑ SSIM↑ KID↓ NFEs↓

Baseline 25.65 0.71 44.90 0 19.26 0.48 38.00 0
DGP 23.06 0.56 21.22 1500 22.70 0.52 27.60 1500
RED 26.08 0.73 53.55 100 26.16 0.76 21.21 500
SNIPS 17.58 0.22 35.17 1000 34.32 0.87 0.49 1000

DDRM 26.55 0.72 7.22 20 35.64 0.95 0.71 20
DDRM-CC 26.55 0.74 6.56 20 35.65 0.96 0.70 20

Almost all unsupervised inverse problem solvers utilize a trained neural network in an iterative
scheme. PnP, RED, and their successors [51, 40, 32, 49] apply a denoiser as part of an iterative
optimization algorithm such as steepest descent, fixed-point, or alternating direction method of
multipliers (ADMM). OneNet [39] trained a network to directly learn the proximal operator of
ADMM. A similar use of denoisers in different iterative algorithms is proposed in [34, 16, 30]. The
authors of [43] leverages robust classifiers learned with additional class labels.

Another approach is to search the latent space of a generative model for a generated image that,
when degraded, is as close as possible to the given measurements. Multiple such methods were
suggested, mainly focusing on generative adversarial networks (GANs) [7, 11, 33]. While they
exhibit impressive results on images of a specific class, most notably face images, these methods
are not shown to be largely successful under a more diverse dataset such as ImageNet [12]. Deep
Generative Prior (DGP) mitigates this issue by optimizing the latent input as well as the weights of
the GAN’s generator [38].

More recently, denoising diffusion models were used to solve inverse problems in both supervised
(i.e., degradation model is known during training) [42, 41, 13, 10, 54] and unsupervised settings
[22, 26, 25, 21, 46, 47, 9]. Unlike previous approaches, most diffusion-based methods can successfully
recover images from measurements with significant noise. However, these methods are very slow,
often requiring hundreds or thousands of iterations, and are yet to be proven on diverse datasets. Our
method, motivated by variational inference, obtains problem-specific, non-equilibrium update rules
that lead to high-quality solutions in much fewer iterations.

ILVR [9] suggests a diffusion-based method that handles noiseless super-resolution, and can run in
250 steps. In Appendix H, we prove that when applied on the same underlying generative diffusion
model, ILVR is a special case of DDRM. Therefore, ILVR can be further accelerated to run in 20
steps, but unlike DDRM, it provides no clear way of handling noise in the measurements. Similarly,
the authors of [22] suggest a score-based solver for inverse problems that can converge in a small
number of iterations, but does not handle noise in the measurements.

5 Experiments

5.1 Experimental Setup

We demonstrate our algorithm’s capabilities using the diffusion models from [19], which are trained
on CelebA-HQ [23], LSUN bedrooms, and LSUN cats [56] (all 256 × 256 pixels). We test these
models on images from FFHQ [24], and pictures from the internet of the considered LSUN category,
respectively. In addition, we use the models from [13], trained on the training set of ImageNet
256 × 256 and 512 × 512, and tested on the corresponding validation set. Some of the ImageNet
models require class information. For these models, we use the ground truth labels as input, and
denote our algorithm as DDRM class conditional (DDRM-CC). In all experiments, we use η = 0.85,
ηb = 1, and a uniformly-spaced timestep schedule based on the 1000-step pre-trained models (more
details in Appendix E). The number of NFEs (timesteps) is reported in each experiment.

In each of the inverse problems we show, pixel values are in the range [0, 1], and the degraded
measurements are obtained as follows: (i) for super-resolution, we use a block averaging filter to
downscale the images by a factor of 2, 4, or 8 in each axis; (ii) for deblurring, the images are blurred

7



Table 2: 4× super resolution and deblurring results on ImageNet 1K (256× 256). Input images have
an additive noise of σy = 0.05.

Method 4× super-resolution Deblurring
PSNR↑ SSIM↑ KID↓ NFEs↓ PSNR↑ SSIM↑ KID↓ NFEs↓

Baseline 22.55 0.46 67.86 0 18.35 0.20 75.50 0
DGP 20.69 0.43 42.17 1500 21.20 0.45 34.02 1500
RED 22.90 0.49 43.45 100 14.69 0.08 121.82 500
SNIPS 16.30 0.14 67.77 1000 16.37 0.14 77.96 1000

DDRM 25.21 0.66 12.43 20 25.45 0.66 15.24 20
DDRM-CC 25.22 0.67 10.82 20 25.46 0.67 13.49 20

Original Low-res DDRM (20) SNIPS RED DGP

Figure 4: 4× noisy super resolution comparison with σy = 0.05.

by a 9 × 9 uniform kernel, and singular values below a certain threshold are zeroed, making the
problem more ill-posed. (iii) for colorization, the grayscale image is an average of the red, green, and
blue channels of the original image; (iv) and for inpainting, we mask parts of the original image with
text overlay or randomly drop 50% of the pixels. Additive white Gaussian noise can optionally be
added to the measurements in all inverse problems. We additionally conduct experiments on bicubic
super-resolution and deblurring with an anisotropic Gaussian kernel in Appendix I.

Our code is available at https://github.com/bahjat-kawar/ddrm.

5.2 Quantitative Experiments

In order to quantify DDRM’s performance, we focus on the ImageNet dataset (256 × 256) for its
diversity. For each experiment, we report the average peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) [52] to measure faithfulness to the original image, and the kernel
Inception distance (KID) [5], multiplied by 103, to measure the resulting image quality.

We compare DDRM (with 20 and 100 steps) with other unsupervised methods that work in reasonable
time (requiring 1500 NFEs or less) and can operate on ImageNet. Namely, we compare with RED
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Original Grayscale Samples from DDRM-CC (100)

Figure 5: 512× 512 ImageNet colorization. DDRM-CC produces various samples for multiple runs
on the same input.
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Figure 6: Results on 256× 256 USC-SIPI images using an ImageNet model. Blurred images have a
noise of σy = 0.01.

[40], DGP [38], and SNIPS [25]. The exact setup of each method is detailed in Appendix F. We used
the same hyperparameters for noisy and noiseless versions of the same problem for DGP, RED, and
SNIPS, as tuning them for each version would compromise their unsupervised nature. Nevertheless,
the performance of baselines like RED with such a tuning does not surpass that of DDRM, as we
show in Appendix F. In addition, we show upscaling by bicubic interpolation as a baseline for
super-resolution, and the blurry image itself as a baseline for deblurring. OneNet [39] is not included
in the comparisons as it is limited to images of size 64× 64, and generalization to higher dimensions
requires an improved network architecture.

We evaluate all methods on the problems of 4× super-resolution and deblurring, on one validation
set image from each of the 1000 ImageNet classes, following [38]. Table 1 shows that DDRM
outperforms all baseline methods, in all metrics, and on both problems with only 20 steps. The
only exception to this is that SNIPS achieves better KID than DDRM in noiseless deblurring, but it
requires 50× more NFEs to do so. Note that the runtime of all the tested methods is perfectly linear
with NFEs, with negligible differences in time per iteration. DGP and DDRM-CC use ground-truth
class labels for the test images to aid in the restoration process, and thus have an unfair advantage.

DDRM’s appeal compared to previous methods becomes more substantial when significant noise
is added to the measurements. Under this setting, DGP, RED, and SNIPS all fail to produce viable
results, as evident in Table 2 and Figure 4. Since DDRM is fast, we also evaluate it on the entire
ImageNet validation set in Appendix F.

5.3 Qualitative Experiments

DDRM produces high quality reconstructions across all the tested datasets and problems, as can
be seen in Figures 1 and 3, and in Appendix I. As it is a posterior sampling algorithm, DDRM can
produce multiple outputs for the same input, as demonstrated in Figure 5. Moreover, the unconditional
ImageNet diffusion models can be used to solve inverse problems on out-of-distribution images
with general content. In Figure 6, we show DDRM successfully restoring 256× 256 images from
USC-SIPI [53] that do not necessarily belong to any ImageNet class (more results in Appendix I).

6 Conclusions

We have introduced DDRM, a general sampling-based linear inverse problem solver based on
unconditional/class-conditional diffusion generative models as learned priors. Motivated by varia-
tional inference, DDRM only requires a few number of NFEs (e.g., 20) compared to other sampling-
based baselines (e.g., 1000 for SNIPS) and achieves scalability in multiple useful scenarios, including
denoising, super-resolution, deblurring, inpainting, and colorization. We demonstrate the empirical
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successes of DDRM on various problems and datasets, including general natural images outside the
distribution of the observed training set. To our best knowledge, DDRM is the first unsupervised
method that effectively and efficiently samples from the posterior distribution of inverse problems
with significant noise, and can work on natural images with general content.

In terms of future work, apart from further optimizing the timestep and variance schedules, it would
be interesting to investigate the following: (i) applying DDRM to non-linear inverse problems, (ii)
addressing scenarios where the degradation operator is unknown, and (iii) self-supervised training
techniques inspired by DDRM as well as ones used in supervised techniques [41] that further improve
performance of unsupervised models for image restoration.
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