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Abstract

We propose an adaptive variance-reduction method, called ADASPIDER, for mini-
mization of L-smooth, non-convex functions with a finite-sum structure. In essence,
ADASPIDER combines an ADAGRAD-inspired [16, 40], but a fairly distinct, adap-
tive step-size schedule with the recursive stochastic path integrated estimator
proposed in Fang et al. [19]. To our knowledge, ADASPIDER is the first parameter-
free non-convex variance-reduction method in the sense that it does not require
the knowledge of problem-dependent parameters, such as smoothness constant
L, target accuracy ϵ or any bound on gradient norms. In doing so, we are able to
compute an ϵ-stationary point with Õ

(
n+
√
n/ϵ2

)
oracle-calls, which matches

the respective lower bound up to logarithmic factors.

1 Introduction

This paper studies smooth, non-convex minimization problems with the following finite-sum structure:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (Prob)

where each component function fi : Rd → R is L-smooth and is possibly non-convex, and we further
assume f is also non-convex. We seek to find an ϵ-approximate first-order stationary point x̂ of f ,
such that ∥∇f(x̂)∥ ≤ ϵ, where ϵ > 0 is the accuracy of the desired solution.

This structure captures many interesting learning problems from empirical risk minimization to
training of neural networks. First-order methods have been the standard choice for solving (Prob),
due to their efficiency and favorable practical behavior. In that regard, while gradient descent (GD)
requires O(n/ϵ2) gradient computations, stochastic gradient descent (SGD) requires O(1/ϵ4) overall
gradient computations. In many interesting machine learning applications n tends to be large, e.g.,
training a neural network for image classification with very big image datasets [14], hence SGD
typically leads to better practical performance.
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To leverage the best of both regimes, GD and SGD, the so-called variance reduction (VR) framework
combines the faster convergence rate of GD with the low per-iteration complexity of SGD. Originally
proposed for solving strongly-convex problems [24, 13, 42], variance reduction frameworks essen-
tially generate low-variance gradient estimates by maintaining a balance between periodic full gradient
computations and stochastic (mini-batch) gradients. VR methods and their theoretical behavior for
convex problems have been well-studied under various problem setups and assumptions, including
µ-strongly convex functions with O(n+ (L/µ) log(1/ϵ)) complexity [24, 42, 13]; µ-strongly con-
vex functions with accelerated O(n+

√
L/µ log(1/ϵ)) complexity [2, 29, 47] and smooth, convex

functions with Õ(n+1/ϵ) complexity [58, 47, 15]. For non-convex minimization, earlier attempts ex-
tended the existing VR frameworks, achieving the first rates of order O(n+n2/3/ϵ2) with sub-optimal
dependence on n [45, 55, 1, 35]. The most recent non-convex VR methods [18, 51, 36, 44, 37] close
this gap and achieve the optimal gradient oracle complexity of O(n+

√
n/ϵ2) [18].

Adaptivity and First-order Optimization

The selection of the step-size is of great importance in both the theoretical and practical performance of
first-order methods, including the aforementioned VR methods. In the case of L-smooth minimization,
first-order methods need the knowledge of L so as to adequately select their step-size [41], otherwise
the method is not guaranteed to be convergent and might even diverge [15, 38]. To elucidate, classical
analysis relies on the (expected) descent property and guarantees that the algorithm monotonically
makes progress every iteration. To enforce this property everywhere on the optimization landscape,
one needs to pick the step-size as γt ≤ O(1/L), which restricts the step length of the algorithm
with respect to the worst-case constant L. On the other hand, estimating the smoothness constant
for an objective of interest, such as neural networks, is a very hard task [21]. At the same time,
using crude bounds on the smoothness constant leads to very small step-sizes and consequently to
poorer convergence. In practice the step-size is tuned through an empirical search over a range of
hand-picked values that adds a considerable computational overhead and burden. In order to alleviate
the burden of tuning process, we need step-sizes that adjust in accordance with the optimization path.

A popular line of research studies first-order methods that adaptively select their step-size by taking
advantage of the previously produced point. In many settings of interest, these adaptive methods
are able to guarantee optimal convergence rates without requiring the knowledge of the smoothness
constant L while they often admit superior empirical performance due to their ability to decrease the
step-size according to the local geometry of the objective function. Inspired by AdaGrad introduced
in the concurrent seminal works of [16] [39], a recent line of works [31, 26, 25, 17] propose adaptive
gradient methods that given access to noiseless gradient-estimates achieve accelerated rates in the
case of L-smooth convex minimization without requiring the knowledge of smoothness constant
L. Similarly, Ene et al. [17] and Antonakopoulos et al. [5] propose adaptive methods with optimal
convergence rates for monotone variational inequalities while Antonakopoulos et al. [6] provide
adaptive methods for monotone variational inequalities assuming access to relative noise gradient-
estimates. Hsieh et al. [23] and Vu et al. [50] study the convergence properties of adaptive first-order
methods for routing and generic games.

Adaptive non-convex methods for General Noise Related to our work is a recent line of papers
studying adaptive first-order methods under the general noise model. In this setting, a method is
assumed to access unbiased stochastic estimate of the gradient with bounded variance. This is a
more general setting than finite-sum optimization that comes with worse lower bounds, i.e. Ω(1/ϵ4)2

gradient-estimates are needed so as to compute an ϵ-stationary point. A recent line of works study
adaptive first-order methods that are able to achieve near-optimal oracle-complexity while being
oblivious to the smoothness constant L and the variance of the estimator [52, 20, 34, 27]. For
example Ward et al. [52] established that the adaptive method called AdaGrad-Norm is able to
achieve Õ(1/ϵ4) gradient-complexity in the general noise model. In their recent work, Faw et al.
[20] significantly extended the results of Ward et al. [52] by showing that AdaGrad-Norm achieves
the same rates even in case the gradient admits unbounded norm (a restrictive assumption in [52])
while their result persists even if the variance increases with the gradient norm. In the slightly more
restrictive setting at which the objective function f(x) := Eξ∼Dg(x, ξ) where each estimate g(x, ξ)
is L-smooth with respect to x for all ξ, Levy et al. [32] proposed an adaptive method called STORM++
that achieves O(1/ϵ3) gradient-complexity and that removes the requirement of the knowledge on

2We remark that in the case of finite-sum minimization there exist variance reduction methods with O(n+√
n/ϵ2) gradient complexity [19, 51].
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Table 1: In the following table we present the gradient computation complexity of the existing
non-adaptive and adaptive variance reduction methods for both convex and non-convex finite-sum
minimization. Since for there are multiple non-adaptive VR methods, we present the earliest-proposed
method matching up to logarithmic factors the respective lower bounds.

f(x) Non-Adaptive VR Adaptive VR Complexity Lower Bound

convex Õ
(
n+

√
n
ϵ

)
Õ
(
n+

√
n
ϵ

)
Ω(n+

√
n
ϵ )

(ϵ-opt. solution) [28] [38] [53]
convex Õ

(
n+ 1

ϵ

)
Õ
(
n+ 1

ϵ

)
Ω(n+

√
n
ϵ )

(ϵ-opt. solution) [57] [15] [53]

non-convex O
(
n+

√
n

ϵ2

)
Õ
(
n+

√
n

ϵ2

)
Ω
(
n+

√
n

ϵ2

)
(ϵ-stat. point) [19] This work [19]

problem parameters (e.g., smoothness constant, absolute bounds on gradient norms) that the original
STORM method proposed by Cutkosky et al. [12] requires. The latter gradient-complexity matches
the Ω(1/ϵ3) lower bound of Arjevani et al. [7].

Adaptivity and Finite-Sum minimization

In parallel with what we discussed earlier, existing variance-reduction methods (VR) crucially need to
know the smoothness constant L to select their step-size appropriately to guarantee their convergence.
To this end, the following natural question arises

Can we design adaptive VR methods that achieve the optimal gradient computation complexity?

Li et al. [33] and Tan et al. [49] were the first to propose adaptive variance-reduction methods by using
the Barzilai-Borwein step-size [8]. Despite their promising empirical performance, these methods
do not admit formal convergence guarantees. When the objective function f in (Prob) is convex,
[15] recently proposed an adaptive VR method requiring O(n+ 1/ϵ) gradient computation while,
shortly after, [38] proposed an accelerated adaptive VR method requiring O(n+

√
n/
√
ϵ) gradient

computations.

To the best of our knowledge, there is no adaptive VR method in the case where f is non-convex.
We remark that f being non-convex captures the most interesting settings such as minimizing the
empirical loss of deep neural network where each fi stands for the loss with respect to i-th data point
and thus is a non-convex function in the parameters of the neural architecture. Through this particular
example, we could motivate adaptive VR methods in two fronts: first, even estimating the smoothness
constant L of a deep neural network is prohibitive [21], and at the same time, the parameter n in
(Prob) equals the number of data samples, which can be very large in practice and is prohibitive for
the use of deterministic methods.

Contribution and Techniques In this work we present an adaptive VR method, called ADASPIDER,
that converges to an ϵ-stationary point for (Prob) by using Õ(n+

√
nL2/ϵ2) gradient computations.

Our gradient complexity bound matches the existing lower bounds up to logarithmic factors [19].

ADASPIDER combines an adaptive step-size schedule in the lines proposed by ADAGRAD [16] with
the variance-reduction mechanism based on the stochastic path integrated differential estimator of
the SPIDER algorithm [19]. More precisely, ADASPIDER selects the step-size by aggregating the
norm of its recursive estimator, while following a single-loop structure as in Fang et al. [19].

Our contributions and techniques can be summarized as follows:

• To our knowledge, ADASPIDER is the first parameter-free method in the sense that it is
both accuracy-independent and is oblivious to the knowledge of any problem parameters
including L. Moreover, ϵ-independence enables us to provide any-iterate guarantees. While
SPIDER needs both ϵ and L to set its step-size as min( ϵ

L
√
n∥∇t∥,

, 1
2
√
nL

) to achieve optimal
gradient complexity [19], all other existing non-convex methods must know at least the
value of L in order to guarantee convergence [4, 51].
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• We introduce a novel step-size schedule γt := n−1/4
(√

n+
∑t

s=0∥∇s∥2
)−1/2

where
∇s is the recursive variance-reduced estimator at round s. By identifying a unique addi-
tive/multiplicative form for integrating n, we manage to achieve optimal dependence on
the number of components. We note that Adaspider can be viewed as SPIDER with the
step-size of AdaGrad-Norm [20, 52, 48, 43] were the parameters are respectively selected
as η := n1/4 and b20 :=

√
n [20].

• We show how to combine the above adaptive step-size schedule with the recursive SPIDER

estimator in order to ensure that the average variance 1
T

∑T−1
t=0 E [∥∇t −∇f(xt)∥] decays

at a rate Õ
(
n1/4/

√
T
)

. This might be of independent interest for other variance reduction
techniques.

We follow a novel technical path that uses the adaptivity of the step-size to bound the overall variance
of the process. This fact differentiates our approach from the previous adaptive and non adaptive VR
approaches (see Section 4 for further details) and provides us a surprisingly concise analysis.
Remark 1. Our convergence results do not require bounded gradients that is typically a restrictive
assumption that the analysis of the adaptive methods for stochastic optimization require. We overcome
this obstacle by using the fact ∥xt − xt−1∥ ≤ 1 (due to the step-size selection) and thus ∥∇f(xt)−
∇f(xt−1)∥ ≤ L∥xt − xt−1∥ ≤ L. The latter leads to the following upper bound on the gradient
norm, ∥∇f(xt)∥ ≤ LT + ∥∇f(x0)∥ that however leads to only a logarithmic overhead in the final
bound (see Lemma 2). A similar idea is used by Faw et al. [20] (Lemma 2) in order to remove the
bounded gradient assumption on the convergence rates of AdaGrad-Norm under general noise.

2 Setup and Preliminaries

During the whole of this manuscript, we consider that the non-convex objective function f : Rd 7→ R
possesses a finite-sum structure

f(x) =
1

n

n∑
i=1

fi(x)

where each component function fi is L-smooth (or alternatively has L-Lipschitz gradient) and
(possibly) non-convex. To quantify the performance of our algorithm within the context of non-
convex minimization, we want to find an ϵ-first order stationary point x̂ ∈ Rd such that

∥∇f(x̂)∥ ≤ ϵ.

For notational simplicity we define ∥·∥ as the Euclidean norm. Then, we say that a continuously
differentiable function f is L-smooth if

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, (2.1)

which admits the following equivalent form,

f(x) ≤ f(y) +∇f(y)⊤(x− y) +
L

2
∥x− y∥2 for all x, y ∈ Rd. (2.2)

Observe that smoothness of each component immediately suggests that objective f is L-smooth
itself. Since we are studying randomized algorithms for finite-sum minimization problems, we do not
consider any variance bounds on the gradients of components. We only assume that we have access
to an oracle which returns the gradient of individual components when queried.

3 Adaptive SPIDER algorithm and convergence results

In this section, we present our adaptive variance reduction method, called ADASPIDER (Algorithm 1)
which exploits the variance reduction properties of the stochastic path integrated differential estimator
proposed in [19] while combining it with an AdaGrad-type step-size construction [16]. Unlike the
original SPIDER method [19], our algorithm admits anytime guarantees, i.e., we don’t need to specify
the accuracy ϵ a priori. Additionally, our algorithm does not need to know the smoothness parameter
L and guarantees convergence without any tuning procedure.
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Algorithm 1 Adaptive SPIDER (ADASPIDER)
Input: x0 ∈ Rd, β0 > 0, G0 > 0

1: G← 0
2: for t = 0, ..., T − 1 do
3: if t mod n = 0 then
4: ∇t ← ∇f(xt)
5: else
6: pick it ∈ {1, . . . , n} uniformly at random
7: ∇t ← ∇fit(xt)−∇fit(xt−1) +∇t−1

8: end if

9: γt ← 1/

(
n1/4β0

√
n1/2G2

0 +
∑t

s=0∥∇s∥2
)

10: xt+1 ← xt − γt · ∇t

11: end for

12: return uniformly at random {x0, . . . , xT−1}.

Remark 2. In Algorithm 1 the units of G0 are the same with the units of ∇f(xt) i.e. f/x while the
units of β0 are x−1. The latter is important so that the step-size γt takes the right units i.e. x2/f .

As Algorithm 1 indicates, ADASPIDER performs a full-gradient computation every n iterations
while in the rest iterations updates the variance-reduced gradient estimator in a recursive manner,
∇t ← ∇fit(xt)−∇fit(xt−1)+∇t−1. The adaptive nature of ADASPIDER comes from the selection
of the step-size at Step 9 that only depends on the norms of estimates produced by the algorithm in
the previous steps.

Before presenting the formal convergence guarantees of ADASPIDER (stated in Theorem 1), we
present the cornerstone idea behind its design and motivate the analysis for controlling the overall
variance of the process through the adaptivity of the step-size. This conceptual novelty differentiates
our work form the previous adaptive VR methods [15, 38] at which the adaptivity of the step-size is
only used for adapting to the smoothness constant L, and their constructions come with additional
challenges in bounding the variance. As a result, the following challenge is the first to be tackled by
the design of a VR method.

Challenge 1. Does the average variance of the estimator, 1
T

∑T−1
t=0 E [∥∇t −∇f(xt)∥], diminishes

at a sufficiently fast rate?

Up next we explain why combining the variance-reduction estimator of Step 7 with the adaptive
step-size of Step 9 provides a surprisingly concise answer to Challenge 1. We remark that SPIDER
is able to control the variance at any iterations by choosing γt := min( ϵ

L
√
n∥∇t∥,

, 1
2
√
nL

) as step-
size. The latter enforces the method to make tiny steps, ∥xt − xt−1∥ ≤ ϵ/L

√
n which results in

ϵ-bounded variance at any iteration. The latter proposed SPIDERBOOST [51] provides the same
gradient-complexity bounds with SPIDER but through the accuracy-independent step-size γ = 1/L.
SPIDERBOOST handles Challenge 1 by using a dense gradient-computations schedule3 combined
with amortization arguments based on the descent inequality (this is why the knowledge of L is
necessary in its analysis). We remark that ADASPIDER, despite being oblivious to L and accuracy ϵ,
admits a significantly simpler analysis by exploiting the adaptability of its step-size.

In the rest of the section we present our approach to Challenge 1 and we conclude the section with
Theorem 1 stating the formal convergence guarantees of ADASPIDER.

Handling the variance with adaptive step-size We start with the following variance aggregation
lemma that is folklore in (VR) literature (e.g. [56]).

Lemma 1. Define the gradient estimator at point x as ∇x := ∇fi(x) −∇fi(y) +∇y where i is
sampled uniformly at random from {1, . . . , n}. Then,

E
[
∥∇x −∇f(x)∥2

]
≤ L2∥x− y∥2 + E

[
∥∇y −∇f(y)∥2

]
3ADASPIDER computes a full-gradient every

√
n steps and at the intermediate steps uses batches of size

√
n.
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Now, let us apply Lemma 1 on SPIDER estimator,∇t := ∇fit(xt)−∇fit−1(xt) +∇t−1 to measure
its variance at step xt.

E
[
∥∇t −∇f(xt)∥2

]
≤ L2E

[
∥xt − xt−1∥2

]
+ E

[
∥∇t−1 −∇f(xt−1)∥2

]
≤ L2E

[
γ2
t−1∥∇t−1∥2

]
+ E

[
∥∇t−1 −∇f(xt−1)∥2

]
≤ L2E

[
γ2
t−1∥∇t−1∥2

]
+ . . .+ E

[
∥∇t−(t mod n) −∇f(xt−(t mod n)∥2

]
=

t−1∑
τ=t−(t mod n)+1

L2E
[
γ2
τ · ∥∇τ∥2

]
where the last equality follows by the fact E

[
∥∇t−(t mod n) −∇f(xt−(t mod n)∥2

]
= 0 since

Algorithm 1 performs a full-gradient computations for every t with t mod n = 0 (Step 3 of
Algorithm 1). By telescoping the summation we get,

T−1∑
t=0

E
[
∥∇t −∇f(xt)∥2

]
≤

T−1∑
t=0

t−1∑
τ=t−(t mod n)+1

L2E
[
γ2
τ · ∥∇τ∥2

]
≤ L2n ·

T−1∑
t=0

E
[
γ2
t · ∥∇t∥2

]
where the n factor on the right-hand side is due to the fact that each term E

[
γ2
t ∥∇t∥2

]
appears at

most n times in the total summation. To this end, using the structure of the stochastic path integrated
differential estimator we have been able to bound the overall variance of the process as follows,

T−1∑
t=0

E
[
∥∇t −∇f(xt)∥2

]
≤ L2n ·

T−1∑
t=0

E
[
γ2
t · ∥∇t∥2

]
However it is not clear at all why the above bound is helpful. At this point the adaptive selection of
the step-size (Step 9 in Algorithm 1) comes into play by providing the following surprisingly simple
answer,

T−1∑
t=0

E
[
∥∇t −∇f(xt)∥2

]
≤ L2n E

[
T−1∑
t=0

γ2
t · ∥∇t∥2

]

=
L2
√
n

β2
0

E

[
T−1∑
t=0

∥∇t∥2/G2
0√

n+
∑t

s=0∥∇s∥2/G2
0

]
≤ L2

√
n

β2
0

log

(
1 + E

[
T−1∑
t=0

∥∇t∥2/G2
0

])

where the last inequality comes from Lemma 7. To finalize the bound, we require the following
expression that follows by the fact that γt ≤ 1/∥∇t∥ and thus ∥xt − xt−1∥ ≤ 1.

Lemma 2. Let x0, x1, . . . , xT the points produced by Algorithm 1. Then,

T−1∑
t=0

∥∇t∥2 ≤ O
(
n2T 3 ·

(
L2

β2
0

+ ∥∇f(x0)∥2
))

In simple terms, Lemma 2 helps us avoid the bounded gradient norm assumption that is common
among adaptive non-convex methods. As a result, ADASPIDER admits the following cumulative
variance bound,

T−1∑
t=0

E
[
∥∇t −∇f(xt)∥2

]
≤ O

(
L2
√
n

β2
0

log

(
1 + nT ·

(
L

β0G0
+
∥∇f(x0)∥

G0

)))
. (3.1)

Remark 3. To this end one might notice that using a more aggressive n dependence on γt leads to
smaller variance of the estimator which is obviously favorable. However more aggressive dependence
on n leads to smaller step-sizes and thus to sub-optimal overall gradient-computation complexity. In
Section 4, we explain why the optimal way to inject the n dependence into the step-size is through
the simultaneous multiplicative/additive way described in Step 9 of ADASPIDER that may seem
unintuitive on the first sight.
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We will conclude this discussion with a complementary remark on the interplay between our adaptive
step-size and the convergence rate. As we demonstrated in Eq. (3.1), using a data-adaptive step-size
leads to a decreasing variance bound in an amortized sense as opposed to any iterate variance bound
of SPIDER. The trade-off in our favor is the parameter-free step-size that is independent of ϵ and L.
For a fair exposition of our results, notice that the aforementioned advantages of an adaptive step-size
comes at an additional log(T ) term in our final bound due to Eq. (3.1). This has a negligible effect
on the convergence as even in the large iteration regime when T is in the order billions, it amounts to
a small constant factor.

We conclude the section with Theorem 1 that formally establishes the convergence rate of ADASPI-
DER. The proof of Theorem 1 is deferred for the next section.
Theorem 1. Let x0, x1, . . . , xT−1 be the sequence of points produced by Algorithm 1 in case f(·) is
L-smooth. Let us also define ∆0 := f(x0)− f∗. Then,

1

T

T−1∑
t=0

E [∥∇f(xt)∥] ≤ O

(
n1/4 · Θ√

T
· log

(
1 + nT ·

(
L

β0G0
+
∥∇f(x0)∥

G0

)))
where Θ = ∆0 · β0 +G0 + L/β0 + L2/(β2

0G0). Overall, Algorithm 1 with β0 := 1 and G0 := 1

needs at most Õ
(
n+
√
n · ∆

2
0+L4

ϵ2

)
oracle calls to reach an ϵ-stationary point.

4 Sketch of Proof of Theorem 1

In this section we present the key steps for proving Theorem 1. We first use the triangle inequality to
derive,

T−1∑
t=0

E [∥∇f(xt)∥] ≤
T−1∑
t=0

E [∥∇t −∇f(xt)∥] +
T−1∑
t=0

E [∥∇t∥]

We have previously discussed how to bound the first term in Section 3. More precisely, by the
Jensen’s inequality and the arguments presented in Section 3, we obtain the following variance bound.
Lemma 3. Let x0, x1 . . . , xT the sequence of points produced by Algorithm 1. Then,

T−1∑
t=0

E
[
∥∇t −∇f(xt)∥2

]
≤ O

(
Ln1/4

β0

√
log

(
1 + nT ·

(
L

β0G0
+
∥∇f(x0)∥

G0

)))
.

We continue with presenting how to treat the term
∑T−1

t=0 E [∥∇t∥]. By the smoothness of the function
and through a telescopic summation one can easily establish the following bound,

E

[
T−1∑
t=0

γt · ∥∇t∥2
]
≤ 2(f(x0)− f∗) + L · E

[
T−1∑
t=0

γ2
t · ∥∇t∥2

]
+ E

[
T−1∑
t=0

γt · ∥∇f(xt)−∇t∥2
]

As we explained in Section 3, the term E
[∑T−1

t=0 γ2
t · ∥∇t∥2

]
can be upper bounded by the adapt-

ability of the step-size γt. At the same time, using the adaptability of γt we are able to establish that∑T−1
t=0 E [∥∇t∥] is at most n1/4

√
T · E

[∑T−1
t=0 γt · ∥∇t∥2

]
. All the above are formally stated and

established in Lemma 4 the proof of which is deferred to the appendix.
Lemma 4. Let x0, x1, . . . , xT−1 the sequence of points produced by Algorithm 1 and ∆0 :=
f(x0)− f∗. Then,

E

[
T−1∑
t=0

∥∇t∥

]
≤ Õ

(
∆0 · β0 +G0 +

L

β0
+ E

[
T−1∑
t=0

γt∥∇f(xt)−∇t∥2
])

n1/4
√
T .

Due to the use of the adaptive step-size γt, the estimator’s error and the step-size itself are dependent
random variables, meaning that the weighted variance term E

[∑T−1
t=0 γt∥∇f(xt)−∇t∥2

]
cannot

be handled by Lemma 1. To overcome the latter, we use the monotonic behavior of the step-size γt to
establish the following refinement of Lemma 1.
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Lemma 5. Let x0, x1, . . . the sequence of points produced by Algorithm 1. Then,

E

[
T−1∑
t=0

γt · ∥∇t −∇f(xt)∥2
]
≤ L2n · E

[
T−1∑
t=0

γ3
t · ∥∇t∥2

]

To this end we are ready to summarize the importance of simultaneous additive/multiplicative
dependence of γt in Step 9 of Algorithm 1. This selection permits us to do achieve two orthogonal
goals at the same time,

• Bounding the variance of the process, E
[∑T−1

t=0 ∥∇t −∇f(xt)∥
]
≤ Õ

(
n1/4
√
T
)

(see
Section 3 and Lemma 3).

• Bounding the sum, E
[∑T−1

t=0 ∥∇t∥
]
≤ Õ

(
n5/4
√
T · E

[∑T−1
t=0 γ3

t ∥∇t∥2
])

(see Lemma 4
and Lemma 5).

The third important thing that the selection of γt does is that it permits us to upper bound the term
Õ
(
n5/4 E

[∑T−1
t=0 γ3

t ∥∇t∥2
])

by Õ
(
n1/4

)
. The proof of the latter upper bound can be found in the

proof of Theorem 1 that due to lack of space is deferred to appendix. It is interesting that all the above
three different purposes can be handled by selecting γt = n−1/4β0(

√
n ·G2

0 +
∑t

s=0∥∇s∥2)−1/2.

5 Experiments

We complement our theoretical findings with an evaluation of the numerical performance of the algo-
rithm under different experimental setups. We aim to highlight the sample complexity improvements
over simple stochastic methods, while displaying the advantages of adaptive step-size strategies.
For that purpose we design two setups; first, we consider the minimization of a convex loss with a
non-convex regularizer in the sense of Wang et al. [51] and in a second part we consider an image
classification task with neural networks.

5.1 Convex loss with a non-convex regularizer

We consider the following problem: minx∈Rd
1
n

∑n
i=1 ℓ(x, (ai, bi)) + λg(x) where ℓ(x, (ai, bi)) is

the loss with respect to the decision variable/weights x with (ai, bi) denoting the (feature vector, label)
pair. We select g =

∑d
i=1

x2
i

1+x2
i

, similar to Wang et al. [51], where the subscript denotes the corre-
sponding dimension of x. We compare ADASPIDER against the original SPIDER, SPIDERBOOST,
SVRG, ADASVRG and two non-VR methods, SGD and ADAGRAD. We picked two datasets from
LibSVM, namely a1a, mushrooms. We initialize each algorithm from the same point and repeat the
experiments 5 times, then report the mean convergence with standard deviation as the shaded region
around the mean curves. We tune the algorithms by executing a parameter sweep for their initial
step-size over an interval of values which are exponentially scaled as

{
10−3, 10−2, ..., 102, 103

}
.

After tuning the algorithms on one dataset, we run them with the same parameters for the others.
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Figure 1: Logistic regression with non-convex regularizer on LibSVM datasets

First, we clearly observe the difference between SGD & ADAGRAD, and the rest of the pack, which
demonstrates the superior sample complexity of VR methods in general. Among VR algorithms,
there does not seem to be any concrete differences with similar convergence, except for SPIDER.
The performance of ADASPIDER is on par with other VR methods, and superior to SPIDER. The
unexpected behavior of SPIDER algorithm has previously been documented in Wang et al. [51]. From
a technical point of view, this behavior is predominantly due to the accuracy dependence in the
step-size, making the step-size unusually small. We had to run SPIDER beyond its prescribed setting
and tune the step-size with a large initial value to make sure the algorithm makes observable progress.

5.2 Experiments with neural networks

In our second setup, we train neural networks with our variance reduction scheme. Our fo-
cus is on standard image classification tasks trained with the cross entropy loss [9, 10]. De-
noting by C the number of classes, the considered datasets in this section consist of n pairs
(ai, bi) where ai is a vectorized image and bi ∈ RC is a one-hot encoded class label. A neu-
ral network is parameterized with weights x ∈ Rd and its output on is denoted net(x, a) ∈ RC ,
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Figure 2: Gradient norms throughout the epochs for image classification with neural networks (curves
are averaged over 5 independent runs and the shaded region are the standard error).

Table 2: Algorithm parameters and test accuracies (average of 5 runs, in %)

MNIST FashionMNIST
Batch Size = 32, cinit = 0.03 Batch Size = 128, cinit = 0.01

Algorithm Parameters Test Accuracy Parameters Test Accuracy
AdaGrad[16] η = 0.01, ϵ = 10−4 97.86 η = 0.01, ϵ = 10−4 86.19

SGD[46] η = 0.01 98.11 η = 0.01 85.83
KatyushaXw[3] η = 0.005 97.93 η = 0.01 86.27

AdaSVRG[15] η = 0.1 98.03 η = 0.1 86.82
Spider[19] ϵ = 0.01, L = 100.0, n0 = 1 97.53 ϵ = 0.01, L = 50.0, n0 = 1 82.22

SpiderBoost[51, 42] L = 200 97.01 L = 120 84.42
AdaSpider n = 60000 97.49 n = 60000 84.09

where a is the input image. The training of the network consists of solving the following op-
timization problem: minx∈Rd

1
n

∑n
i=1

(
−b⊤i net(x, ai) + logsumexp(net(x, ai))

)
. This is the de-

fault setup for doing image classification and we test our algorithm on two benchmark datasets :
MNIST[30] and FashionMNIST[54]. We choose 3-layer fully connected network with dimensions
[28 ∗ 28, 512, 512, 10]. The activation function is the ELU [11].

Initialization: The initialization of the network is a crucial component to guarantee good perfor-
mance. We find that a slight modification of the Kaiming Uniform initialization [22] improves the
stability of the tested variance reduction schemes. For each layer in the network with din inputs, the
original method initializes the weights with independent uniform random variables with variance 1

din
.

Our modification initializes with a smaller variance of cinit
din

with cinit in the order of 0.01. With this
choice, we observed that fewer variance reductions schemes diverged, and standard algorithms like
SGD and AdaGrad(for which the original method was tuned), were not penalized and performed well.
This often overlooked initialization heuristic is the only “tuning” needed for AdaSpider.

Observations: We observe (Figure 2) that AdaSpider performs as well as other variance reduction
methods in terms of minimizing the gradient norm. The key message here is that it does so without
the need for extensive tuning. This diminished need for tuning is a welcome feature for deep learning
optimization, but, often the true metric of interest is not the gradient norm, but the accuracy on unseen
data, and on this metric variance reduction schemes are not yet competitive with simpler methods like
SGD. With AdaSpider, the focus can go to finding the right initialization scheme and architecture to
ensure good generalization without being distracted by other parameters like the step-size choice.

Acknowledgments

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement n° 725594), the Swiss
National Science Foundation (SNSF) under grant number 200021 205011 and Innosuisse.

10



References
[1] Zeyuan Allen-Zhu. Natasha: Faster non-convex stochastic optimization via strongly non-convex parameter,

2017. URL https://arxiv.org/abs/1702.00763.
[2] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In Proceedings

of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, page 1200–1205.
Association for Computing Machinery, 2017.

[3] Zeyuan Allen-Zhu. Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Opti-
mization. In Proceedings of the 35th International Conference on Machine Learning, ICML ’18, 2018.
Full version available at http://arxiv.org/abs/1802.03866.

[4] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In Proceedings
of the 33rd International Conference on International Conference on Machine Learning - Volume 48,
ICML’16, page 699–707. JMLR.org, 2016.

[5] Kimon Antonakopoulos, Elena Veronica Belmega, and Panayotis Mertikopoulos. Adaptive extra-gradient
methods for min-max optimization and games. In 9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[6] Kimon Antonakopoulos, Thomas Pethick, Ali Kavis, Panayotis Mertikopoulos, and Volkan Cevher. Sifting
through the noise: Universal first-order methods for stochastic variational inequalities. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors,
Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 13099–13111, 2021.

[7] Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake E. Woodworth.
Lower bounds for non-convex stochastic optimization. CoRR, abs/1912.02365, 2019.

[8] Jonathan Barzilai and Jonathan M. Borwein. Two-Point Step Size Gradient Methods. IMA Journal of
Numerical Analysis, 8(1):141–148, 01 1988. ISSN 0272-4979. doi: 10.1093/imanum/8.1.141. URL
https://doi.org/10.1093/imanum/8.1.141.

[9] John Bridle. Training stochastic model recognition algorithms as networks can lead to maximum mutual
information estimation of parameters. Advances in neural information processing systems, 2, 1989.

[10] John S Bridle. Probabilistic interpretation of feedforward classification network outputs, with relationships
to statistical pattern recognition. In Neurocomputing, pages 227–236. Springer, 1990.
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Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 10462–10472, 2019.

[29] Guanghui Lan, Zhize Li, and Yi Zhou. A unified variance-reduced accelerated gradient method for convex
optimization, 2019.

[30] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

[31] Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and acceleration. In
Neural and Information Processing Systems (NeurIPS), December 2018.

[32] Kfir Yehuda Levy, Ali Kavis, and Volkan Cevher. STORM+: Fully adaptive SGD with recursive momentum
for nonconvex optimization. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=ytke6qKpxtr.

[33] Bingcong Li, Lingda Wang, and Georgios B. Giannakis. Almost tune-free variance reduction. In
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