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Abstract

In this paper, we derive upper bounds on generalization errors for deep neural
networks with Markov datasets. These bounds are developed based on Koltchinskii
and Panchenko’s approach for bounding the generalization error of combined
classifiers with i.i.d. datasets. The development of new symmetrization inequalities
in high-dimensional probability for Markov chains is a key element in our extension,
where the absolute spectral gap of the infinitesimal generator of the Markov chain
plays a key parameter in these inequalities. We also propose a simple method
to convert these bounds and other similar ones in traditional deep learning and
machine learning to Bayesian counterparts for both i.i.d. and Markov datasets.
Extensions to m-order homogeneous Markov chains such as AR and ARMA
models and mixtures of several Markov data services are given.

1 Introduction

In statistical learning theory, understanding generalization for neural networks is among the most
challenging tasks. The standard approach to this problem was developed by Vapnik [1], and it is
based on bounding the difference between the prediction error and the training error. These bounds
are expressed in terms of the so called VC-dimension of the class. However, these bounds are very
loose when the VC-dimension of the class can be very large, or even infinite. In 1998, several authors
[2, 3] suggested another class of upper bounds on generalization error that are expressed in terms
of the empirical distribution of the margin of the predictor (the classifier). Later, Koltchinskii and
Panchenko [4] proposed new probabilistic upper bounds on generalization error of the combination of
many complex classifiers such as deep neural networks. These bounds were developed based on the
general results of the theory of Gaussian, Rademacher, and empirical processes in terms of general
functions of the margins, satisfying a Lipschitz condition. They improved previously known bounds
on generalization error of convex combination of classifiers.

In the context of supervised classification, PAC-Bayesian bounds have proved to be the tightest [5–7].
Several recent works have focused on gradient descent based PAC-Bayesian algorithms, aiming to
minimise a generalisation bound for stochastic classifiers [8–10]. Most of these studies use a surrogate
loss to avoid dealing with the zero-gradient of the misclassification loss. Several authors used other
methods to estimate of the misclassification error with a non-zero gradient by proposing new training
algorithms to evaluate the optimal output distribution in PAC-Bayesian bounds analytically [11–13].
Recently, there have been some interesting works which use information-theoretic approach to find
PAC-bounds on generalization errors for machine learning [14, 15] and deep learning [16].
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All of the above-mentioned bounds are derived based on the assumption that the dataset is generated
by an i.i.d. process with unknown distribution. However, in many applications in machine learning
such as speech, handwriting, gesture recognition, and bio-informatics, the samples of data are usually
correlated. Some of these datasets are time-series ones with stationary distributions such as samples
via MCMC, finite-state random walks, or random walks on graph. In this work, we develop some
upper bounds on generalization errors for deep neural networks with Markov or hidden Markov
datasets. Our bounds are derived based on the same approach as Koltchinskii and Panchenko [4]. To
deal with the Markov structure of the datasets, we need to develop some new techniques in this work.
The development of new symmetrization inequalities in high-dimensional probability for Markov
chains is a key element in our extension, where the absolute spectral gap of the infinitesimal generator
of the Markov chain plays as a key parameter in these inequalities. Furthermore, we also apply our
results to m-order Markov chains such as AR and ARMA models and mixtures of Markov chains.
Finally, a simple method to convert all our bounds for traditional deep learning to counterparts for
Bayesian deep learning is given. Our method can be applied to convert other similar bounds for i.i.d.
datasets in the research literature as well. Bayesian deep learning was introduced by [20, 21]. The
key distinguishable property of a Bayesian approach is marginalization, rather than using a single
setting of weights in (traditional) deep learning [22].

Bayesian marginalization can particularly improve the accuracy and calibration of modern deep
neural networks, which are typically underspecified by the data, and can represent many compelling
but different solutions. Analysis of machine learning algorithms for Markov and Hidden Markov
datasets already appeared in research literature [17–19]. In practice, some real-world time-series
datasets are not stationary Markov chains. However, we can approximate time-series datasets by
stationary Markov chains in many applications. There are also some other methods of approximating
non-stationary Markov chains by stationary ones via MA and ARMA models in the statistical research
literature. The i.i.d. dataset is a special case of the Markov dataset with stationary distribution.

2 Preliminaries

2.1 Mathematical Backgrounds

Let a Markov chain {Xn}∞n=1 on a state space S with transition kernel Q(x, dy) and the initial state
X1 ∼ ν, where S is a Polish space in R. In this paper, we consider the Markov chains which are
irreducible and positive-recurrent, so the existence of a stationary distribution π is guaranteed. An
irreducible and recurrent Markov chain on an infinite state-space is called Harris chain [23]. A
Markov chain is called reversible if the following detailed balance condition is satisfied:

π(dx)Q(x, dy) = π(dy)Q(y, dx), ∀x, y ∈ S. (1)

Define

d(t) = sup
x∈S

dTV(Qt(x, ·), π), tmix(ε) := min{t : d(t) ≤ ε}, (2)

and

τmin := inf
0≤ε≤1

tmix(ε)

(
2− ε
1− ε

)2

, tmix := tmix(1/4). (3)

LetL2(π) be the Hilbert space of complex valued measurable functions on S that are square integrable
w.r.t. π. We endow L2(π) with inner product 〈f, g〉 :=

∫
fg∗dπ, and norm ‖f‖2,π := 〈f, f〉1/2π . Let

Eπ be the associated averaging operator defined by (Eπ)(x, y) = π(y),∀x, y ∈ S, and

λ = ‖Q− Eπ‖L2(π)→L2(π), (4)

where ‖B‖L2(π)→L2(π) = maxv:‖v‖2,π=1 ‖Bv‖2,π. Q can be viewed as a linear operator (infinites-
imal generator) on L2(π), denoted by Q, defined as (Qf)(x) := EQ(x,·)(f), and the reversibility
is equivalent to the self-adjointness of Q. The operator Q acts on measures on the left, creating a
measure µQ, that is, for every measurable subset A of S, µQ(A) :=

∫
x∈S Q(x,A)µ(dx). For a

Markov chain with stationary distribution π, we define the spectrum of the chain as

S2 :=
{
ξ ∈ C : (ξI−Q) is not invertible on L2(π)

}
. (5)
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It is known that λ = 1− γ∗ [24], where

γ∗ :=


1− sup{|ξ| : ξ ∈ S2, ξ 6= 1},

if eigenvalue 1 has multiplicity 1,
0, otherwise

is the the absolute spectral gap of the Markov chain. The absolute spectral gap can be bounded by
the mixing time tmix of the Markov chain by the following expression:(

1

γ∗
− 1

)
log 2 ≤ tmix ≤

log(4/π∗)

γ∗
, (6)

where π∗ = minx∈S πx is the minimum stationary probability, which is positive if Qk > 0 (entry-
wise positive) for some k ≥ 1. See [25] for more detailed discussions. In [25, 26], the authors
provided algorithms to estimate tmix and γ∗ from a single trajectory.

Define

M2 :=

{
ν ∈M(S) :

∥∥∥∥ dvdπ
∥∥∥∥
2

<∞
}
, (7)

where ‖ · ‖2 is the standard L2 norm in the Hilbert space of complex valued measurable functions on
S.

2.2 Problem settings

In this paper, we consider a uniformly bounded class of functions: F :=
{
f : S → R

}
such that

supf∈F
∥∥f∥∥∞ ≤M for some finite constant M .

Define the probability measure P (A) :=
∫
A
π(x)dx, for any measurable set A ∈ S. In addition, let

Pn be the empirical measure based on the sample (X1, X2, · · · , Xn), i.e., Pn := 1
n

∑n
i=1 δXi . We

also denote Pf :=
∫
S
fdP and Pnf :=

∫
S
fdPn. Then, we have

Pf =

∫
S
f(x)π(x)dx and Pnf =

1

n

n∑
i=1

f(Xi). (8)

On the Banach space of uniformly bounded functions F , define an infinity norm: ‖Y ‖F =
supf∈F |Y (f)|. Let

Gn(F) := E
[∥∥∥∥n−1 n∑

i=1

giδXi

∥∥∥∥
F

]
, (9)

where {gi} is a sequence of i.i.d. standard normal variables, independent of {Xi}. We will call
n 7→ Gn(F) the Gaussian complexity function of the class F .

Similarly, we define

Rn(F) := E
[∥∥∥∥n−1 n∑

i=1

εiδXi

∥∥∥∥
F

]
, (10)

and

P 0
n := n−1

n∑
i=1

εiδXi , (11)

where {εi} is a sequence of i.i.d. Rademacher (taking values +1 and −1 with probability 1/2 each)
random variables, independent of {Xi}. We will call n 7→ Rn(F) the Rademacher complexity
function of the class F .

For times-series datasets in machine learning, we can assume that feature vectors are generated by
a Markov chain {Xn}∞n=1 with stochastic matrix Q, and {Yn}∞n=1 is the corresponding sequence
of labels. Furthermore, Q is irreducible and recurrent on some finite set S. An i.i.d. sequence of
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feature vectors can be considered as a special Markov chain where Q(x, x′) only depends on x′. In
the supervised learning, the sequence of labels {Yn}∞n=1 can be considered as being generated by a
Hidden Markov Model (HMM), where the emission probability PYn|Xn(y|x) = g(x, y) for all n ≥ 1
and g : S × Y → R+. It is easy to see that {(Xn, Yn)}∞n=1 is a Markov chain with the transition
probability

PXn+1Yn+1|XnYn(xn+1, yn+1|xn, yn) = Q(xn, xn+1)g(xn+1, yn+1). (12)

Let Q̃(x1, y1, x2, y2) := Q(x1, x2)g(x2, y2) for all x1, x2 ∈ S and y1, y2 ∈ Y , which is the
transition probability of the Markov chain {(Xn, Yn)}∞n=1 on S̃ := S ×Y . Then, it is not hard to see
that {(Xn, Yn)}∞n=1 is irreducible and recurrent on S̃, so it has a stationary distribution, say π̃. The
associated following probability measure is defined as

P (A) :=

∫
S×Y

π̃(x, y)dxdy, (13)

and the empirical distribution Pn based on the observations {(Xk, Yk)}nk=1 is

Pn :=
1

n

n∑
k=1

δXk,Yk . (14)

2.3 Contributions

In this paper, we aim to develop a set of novel upper bounds on the generalization errors for deep
neural networks with Markov dataset. More specially, our target is to find a relationship between Pf
and Pnf which holds for all f ∈ F in terms of Gaussian and Rademacher complexities. Our main
contributions include:

• We develop general bounds on generalization errors for machine learning (and deep learning)
on Markov datasets.

• Since the dataset is non-i.i.d., the standard symmetrization inequalities in high-dimensional
probability can not be applied. In this work, we extend some symmetrization inequalities
for i.i.d. random processes to Markov ones.

• We propose a new method to convert all the bounds for machine learning (and deep learning)
models to Bayesian settings.

• Extensions to m-order homogeneous Markov chains such as AR and ARMA models and
mixtures of several Markov services are given.

3 Main Results

3.1 Probabilistic Bounds for General Function Classes

In this section, we develop probabilistic bounds for general function classes in terms of Gaussian and
Rademacher complexities.

First, we prove the following key lemma, which is an extension of the symmetrization inequality
for i.i.d. sequences (for example, [27]) to a new version for Markov sequences {Xn}∞n=1 with the
stationary distribution π and the initial distribution ν ∈M2:
Lemma 1. Let F be a class of functions which are uniformly bounded by M . For all n ∈ Z+, define

An :=

√
2M

n(1− λ)
+

64M2

n2(1− λ)2

∥∥∥∥ dvdπ − 1

∥∥∥∥
2

, (15)

Ãn :=
M

2n

[√
2τminn log n+

√
n+ 4

]
. (16)

Then, the following holds:

1

2
E
[
‖P 0

n‖F
]
− Ãn ≤ E

[∥∥Pn − P∥∥F] ≤ 2E
[
‖P 0

n‖F
]

+An, (17)
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where

‖P 0
n‖F := sup

f∈F

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣. (18)

The proof of this lemma can be found in Appendix A of the supplement material. Compared with
the i.i.d. case, the symmetrization inequality for Markov chain in Lemma 1 are different in two
perspectives: (1) The expectation E

[
‖P 0

n‖F
]

is now is under the joint distributions of Markov chain
and Rademacher random variables and (2) The term An appears in both lower and upper bounds
to compensate for the difference between the initial distribution ν and the stationary distribution
π of the Markov chain2. Later, we will see that An represents the effects of data structures on the
generalization errors in deep learning.

By applying Lemma 1, the following theorem can be proved. See a detailed proof in Appendix C in
the supplement material.

Theorem 2. Denote by

Bn :=

√
2

n(1− λ)
+

64

n2(1− λ)2

∥∥∥∥ dvdπ − 1

∥∥∥∥
2

, (19)

Let ϕ be a non-increasing function such that ϕ(x) ≥ 1(−∞,0](x) for all x ∈ R. For any t > 0,

P
(
∃f ∈ F : P{f ≤ 0} > inf

δ∈(0,1]

[
Pnϕ

(
f

δ

)
+

8L(ϕ)

δ
Rn(F)

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2) (20)

and

P
(
∃f ∈ F : P{f ≤ 0} > inf

δ∈(0,1]

[
Pnϕ

(
f

δ

)
+

2L(ϕ)
√

2π

δ
Gn(F)

+
(
t+
√

log log2 2δ−1
)√τmin

n
+

2√
n

+Bn

])
≤ π2

3
exp(−2t2). (21)

Since Bn = O
(
1/
√
n
)
, Theorem 2 shows that with high probability, the generalization error can be

bounded by Rademacher or Gaussian complexity functions plus an O(1/
√
n) term, where n is the

length of the training set. This fact also happens in i.i.d. case [4]. However, because the dependency
among samples in Markov chain, the constant in O(1/

√
n) term is larger than the i.i.d. case.

It follows, in particular, in the example of the voting methods of combining classifiers [2], from
Theorem 2, we achieve the following PAC-bound:

P{f̃ ≤ 0} ≤ inf
δ∈(0,1]

[
Pn{f̃ ≤ δ}+

8C

δ

√
V (H)

n

+Bn +

(√
1

2
log

π2

3α
+
√

log log2 2δ−1
)√

τmin

n

]
(22)

with probability at least 1− α (PAC-Bayes bound), where V (H) is the VC-dimension of the classH
and C is some positive constant.

3.2 Bounding the generalization error in deep neural networks

In this section, we consider the same example as [4, Section 6]. However, we assume that feature
vectors in the dataset are generated by a Markov chain instead of an i.i.d. process. Let H be a the
class of all uniformly bounded functions f : S → R. H is called the class of base functions.

2This difference causes a burn-in time [28] which is the time between the initial and first time that the Markov
chain is stationary.
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Consider a feed-forward neural network with l layers of neurons V = {vi} ∪
⋃l
j=0 Vj where

Vl = {vo}. The neurons vi and vo are called the input and the output neurons, respectively. To define
the network, we will assign the labels to the neurons in the following way. Each of the base neurons
is labelled by a function from the base class H. Each neuron of the j-th layer Vj , where j ≥ 1, is
labelled by a vector w := (w1, w2, · · · , wm) ∈ Rm, where m is the number of inputs of the neuron.
Here, w will be called the vector of weights of the neuron.

Given a Borel function σ from R into [−1, 1] (for example, sigmoid function) and a vector w :=
(w1, w2, · · · , wm) ∈ Rm where m = |H|+ 1, let

Nσ,w : Rm → R, Nσ,w(u1, u2, · · · , um) := σ

( m∑
j=1

wjuj

)
. (23)

Let σj : j ≥ 1 be functions from R into [−1, 1], satisfying the Lipschitz conditions∣∣σj(u)− σj(v)
∣∣ ≤ Lj |u− v|, u, v ∈ R. (24)

The neural network works can be formed as the following. The input neuron inputs an instance x ∈ S .
A base neuron computes the value of the base function on this instance and outputs the value through
its output edges. A neuron in the j-th layer (j ≥ 1) computes and outputs through its output edges
the value Nσj ,w(u1, u2, · · · , um) (where u1, u2, · · · , um are the values of the inputs of the neuron).
The network outputs the value f(x) (of a function f it computes) through the output edge.

We denote byNl the set of such networks. We callNl the class of feed-forward neural networks with
baseH and l layers of neurons (and with sigmoid σj). Let N∞ :=

⋃∞
j=1Nj . DefineH0 := H, and

then recursively

Hj :=

{
Nσj ,w(h1, h2, · · · , hm) : m ≥ 0, hi ∈ Hj−1, w ∈ Rm

}
∪Hj−1. (25)

DenoteH∞ :=
⋃∞
j=1Hj . Clearly,H∞ includes all the functions computable by feed-forward neural

networks with baseH.

Let {bj} be a sequence of positive numbers. We also define recursively classes of functions com-
putable by feed-forward neural networks with restrictions on the weights of neurons:

Hj(b1, b2, · · · , bj) :=

{
Nσj ,w(h1, h2, · · · , hm) : m ≥ 0,

hi ∈ Hj−1(b1, b2, · · · , bj−1), w ∈ Rm, ‖w‖1 ≤ bj
}⋃

Hj−1(b1, b2, · · · , bj−1), (26)

where ‖w‖1 denotes the 1-norm of the vector w.

Clearly,

H∞ =
⋃{

Hj(b1, · · · , bj) : b1, · · · , bj < +∞
}
. (27)

Denote by H̃ the class of measurable functions f̃ : S ×Y → R, where Y is the alphabet of labels. H̃
is introduced for real machine learning applications where we need to work with a new Markov chain
generated from both feature vectors and their labels {(Xn, Yn)}∞n=1 instead of the feature-based
Markov chain {Xn}∞n=1. See Subsection 2.2 for detailed discussions. For binary classification,
H̃ := {f̃ : f ∈ H}, where f̃(x, y) = yf(x). Let ϕ be a function such that ϕ(x) ≥ I(−∞,0](x) for
all x ∈ R and ϕ satisfies the Lipschitz condition with constant L(ϕ). Then, the following is a direct
application of Theorem 2.
Theorem 3. For any t ≥ 0 and for all l ≥ 1,

P
(
∃f ∈ H(b1, b2, · · · , bl) : P{f̃ ≤ 0} > inf

δ∈(0,1]

[
Pnϕ

(
f̃

δ

)
+

2
√

2πL(ϕ)

δ

l∏
j=1

(2Ljbj + 1)Gn(H)

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2), (28)

where Bn is defined in (19).
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Remark 4. P{f̃ ≤ 0} represents the probability of mis-classification in the deep neural network.

Proof. LetH′l := H(b1, b2, · · · , bl). As the proof of [4, Theorem 13], it holds that

Gn(H′l) ≤
l∏

j=1

(2Ljbj + 1)Gn(H). (29)

Hence, (28) is a direct application of Theorem 2 and (29).

Now, given a neural network f ∈ N∞, let

l(f) := min{j ≥ 1 : f ∈ Nj}. (30)

For any number k such that 1 ≤ k ≤ l(f), let Vk(f) be the set of all neurons of layer k in the neural
network which is represented by f . Denote by

Wk(f) := max
u∈Vk(f)

‖w(u)‖1 ∨ bk, k = 1, 2, · · · , l(f) (31)

where w(u) is the coefficient-vector associated with the neuron u in this layer. Define

Λ(f) :=

l(f)∏
k=1

(4LkWk(f) + 1), Γα(f) :=

l(f)∑
k=1

√
α

2
log(2 + log2Wk(f)), (32)

where α > 0 is the number such that ζ(α) < 3/2, ζ being the Riemann zeta-function: ζ(α) :=∑∞
k=1 k

−α. Then, by using Theorem 3 with bk → ∞ and the same arguments as [4, Proof of
Theorem 14], we obtain the following result. See Section 1.3 in the supplement material for more
detailed derivations.

Theorem 5. For any t ≥ 0 and for all l ≥ 1,

P
(
∃f ∈ H∞ : P{f̃ ≤ 0} > inf

δ∈(0,1]

[
Pnϕ

(
f̃

δ

)
+

2
√

2πL(ϕ)

δ
Λ(f)Gn(H) +

2√
n

+

(
t+ Γα(f) +

√
log log2 2δ−1

)√
τmin

n
+Bn

])
≤ π2

3
(3− 2ζ(α))−1 exp

(
− 2t2

)
, (33)

where Bn is defined in (19).

3.3 Generalization Error Bounds on Bayesian Deep Learning

For Bayesian machine learning and deep learning, F :=
{
f : S ×W → R

}
, where S is the state

space of the Markov chain andW is the domain of (random) coefficients. We assume that S andW
are Polish spaces on R, which include both discrete sets and R. For example, in binary classification,
f(X,W ) = sgn(WTX + b) where the feature X and the coefficient W are random vectors with
specific prior distributions. In practice, the distribution of W is known which depends on our design
method, and the distribution of X is unknown. For example, W is assumed to be Gaussian in
Bayesian deep neural networks [22].

Since all the bounds on Subsections 3.1 and 3.2 hold for any function f in F at each fixed vector
W = w, hence, they can be directly applied to Bayesian settings where W is random. However,
these bounds are not expected to be tight enough since we don’t use the prior distribution of W when
deriving them. In the following, we use another approach to derive new (and tighter) bounds for
Bayesian deep learning and machine learning from all the bounds in Subsections 3.1 and 3.2. For
illustration purposes, we only derive a new bound. Other bounds can be derived in a similar fashion.
We assume that W1,W2, · · · ,Wn are i.i.d. random variables as in [22].

Let

P̃n :=
1

n

n∑
i=1

δXi,Wi
, (34)
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and define a new probability measure P̃ on S ×W such that

P̃ (A) :=

∫
A

π̃(x,w)dxdw, (35)

for all (Borel) setA on S×W . Here, π̃ is the stationary distribution of the irreducible Markov process
{(Xn,Wn)}∞n=1 with stochastic matrix Q̃ := {Q(x,w)PW (w)}x∈S,w∈W . In addition, define two
new (averaging) linear functionals:

P̂n(f) =
1

n

n∑
i=1

∫
W
f(Xi, w)dPW (w), (36)

and

P̂ (f) :=

∫
S

∫
W
f(x,w)π̃(x,w)dPW (w)dP (x). (37)

In practice, the prior distribution of W is known, so we can estimate P̂n(f) based on the training
set {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)}, which is a Markov chain on X × Y (cf. Section 2.2). The
following result can be proved.
Theorem 6. Let ϕ be a sequence of function such that ϕ(x) ≥ I(−∞,0](x). For any t > 0,

P
(
∃f ∈ F : P̂{f ≤ 0} > inf

δ∈(0,1]

[
P̂nϕ

(
f

δ

)
+

8L(ϕ)

δ
Rn(F)

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2) (38)

and

P
(
∃f ∈ F : P̂{f ≤ 0} > inf

δ∈(0,1]

[
P̂nϕ

(
f

δ

)
+

2L(ϕ)
√

2π

δ
Gn(F) +

2√
n

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp

(
− 2t2

)
. (39)

Proof. Let W1,W2, · · · ,Wn be an n samples of W ∼ PW onW (or samples of some set of random
coefficients). For simplicity, we assume that {Wn}∞n=1 is an i.i.d. sequence. Then, it is obvious that
{(Xn,Wn)}∞n=1 forms a Markov chain with probability transition probability

Q̃(xn, wn;xn+1, wn+1) = P(Xn+1 = xn+1,Wn+1 = wn+1|Xn = xn,Wn = wn) (40)
= Q(xn, xn+1)PW (wn+1). (41)

From Theorem 2, it holds that

P
(
∃f ∈ F : P̃{f ≤ 0} > inf

δ∈(0,1]

[
P̃nϕ

(
f

δ

)
+

8L(ϕ)

δ
Rn(F)

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2). (42)

This means that with probability at least 1− π2

3 exp(−2t2), it holds that

P̃{f ≤ 0} ≤ inf
δ∈(0,1]

[
P̃nϕ

(
f

δ

)
+

8L(ϕ)

δ
Rn(F) +

(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

]
. (43)

From (43), it holds that with probability at least 1− π2

3 exp(−2t2),

P̃{f ≤ 0} ≤ inf
δ∈(0,1]

[
1

n

n∑
i=1

ϕ

(
f(Xi,Wi)

δ

)
+

8L(ϕ)

δ
Rn(F)

+
(
t+

√
log log2 2δ−1

)√τmin

n
+Bn

]
. (44)
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From (44), with probability at least 1− π2

3 exp(−2t2), it holds that

EW
[
P̃{f ≤ 0}

]
≤ EW

[
inf

δ∈(0,1]

[
1

n

n∑
i=1

ϕ

(
f(Xi,Wi)

δ

)
+

8L(ϕ)

δ
Rn(F)

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

]
(45)

≤ inf
δ∈(0,1]

[
1

n

n∑
i=1

EW
[
ϕ

(
f(Xi,W )

δ

)]
+

8L(ϕ)

δ
Rn(F)

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

]
. (46)

From (46), we obtain (38). Similarly, we can achieve (39).

4 Extension to High-Order Markov Chains

In this subsection, we extend our results in previous sections to m-order homogeneous Markov chain.
The main idea is to convert m-order homogeneous Markov chains to 1-order homogeneous Markov
chain and use our results in previous sections to bound the generalization error. We start with the
following simple example.
Example 7. [m-order moving average process without noise] Consider the following m-order
Markov chain

Xk =

m∑
i=1

aiXk−i, k ∈ Z+. (47)

Let Yk := [Xk+m−1, Xk+m−2, · · · , Xk]T . Then, from (47), we obtain Yk+1 = GYk, ∀k ∈ Z+

where

G :=


a1 a2 · · · am−1 am
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (48)

It is clear that {Yn}∞n=1 is an order-1 Markov chain. Hence, instead of directly working with the
m-order Markov chain {Xn}∞n=1, we can find an upper bound for the Markov chain {Yn}∞n=1.

To derive generalization error bounds for the Markov chain {Yn}∞n=1, we can use the following
arguments. For all f ∈ F and (xk, xk+1, · · · , xk+m−1), by setting f̃(xk, xk+1, · · · , xk+m−1) =

f(xk) where f̃ : Sm → R, we obtain

1

n

n∑
i=1

1{f(Xi) ≤ 0} =
1

n

n∑
i=1

1{f̃(Yi) ≤ 0}. (49)

Hence, by applying all the results for 1-order Markov chain {Yn}∞n=1, we obtain corresponding
upper bounds for the sequence of m-order Markov chain {Xn}∞n=1.

This approach can be extended to more general Markov chain. See Section 4 in the Supplementary
Material for details.

5 Conclusions

In this paper, we derive upper bounds on generalization errors for machine learning and deep neural
networks based on a new assumption that the dataset has Markov or hidden Markov structure. We also
propose a new method to convert all these bounds to Bayesian deep learning and machine learning.
Extension to m-order Markov chains and a mixture of Markov chains are also given. An interesting
future research topic is to develop some new algorithms to evaluate performance of these bounds on
real Markov datasets.
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