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Abstract

Designing and analyzing model-based RL (MBRL) algorithms with guaranteed
monotonic improvement has been challenging, mainly due to the interdependence
between policy optimization and model learning. Existing discrepancy bounds
generally ignore the impacts of model shifts, and their corresponding algorithms
are prone to degrade performance by drastic model updating. In this work, we
first propose a novel and general theoretical scheme for a non-decreasing perfor-
mance guarantee of MBRL. Our follow-up derived bounds reveal the relationship
between model shifts and performance improvement. These discoveries encour-
age us to formulate a constrained lower-bound optimization problem to permit
the monotonicity of MBRL. A further example demonstrates that learning models
from a dynamically-varying number of explorations benefit the eventual returns.
Motivated by these analyses, we design a simple but effective algorithm CMLO
(Constrained Model-shift Lower-bound Optimization), by introducing an event-
triggered mechanism that flexibly determines when to update the model. Experi-
ments show that CMLO surpasses other state-of-the-art methods and produces a
boost when various policy optimization methods are employed.

1 Introduction

Reinforcement learning (RL) has driven impressive advances in many complex decision-making
problems in recent years [36, 48]. Many of these advances are obtained by model-free (MFRL) meth-
ods, whose desirable asymptotic performance yet comes at the cost of sample efficiency. Hence their
applications are mostly limited to simulation scenarios [45, 33, 35]. In contrast, Model-Based RL
(MBRL) methods, which learn a transition model directly from orders-of-magnitude fewer samples
and then derive the optimal policy from the learned model, have become an appealing alternative in
small-data and more practical cases [37, 9, 41, 18].

In general, MBRL methods alternate between the two stages: model learning and policy optimiza-
tion (e.g. the general Dyna-style [50, 51]). A more accurate model will lead to a better policy. Vari-
ous attempts have been proposed to improve model accuracy by investigating high-capacity models
(the model ensemble technique [27, 8] and better function approximators [15, 38]) or amending the
policy optimization stage based on model bias [24, 39, 28, 20, 7, 57]. Even so, their resultant models
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are just accurate in a local and relative sense, since the learning is conditional on a fixed number of
state-action tuples explored by the policy at the current step, other than the full transition dynamics
of the environment. Indeed, it is tricky to determine how much we should explore. Insufficient
exploration would trap the model and the following policy optimization, whereas excessive newly-
encountered state-action pairs would confuse the model and later cause policy chattering. To derive
a “truly” accurate model, we need a smarter scheme to choose different numbers of explorations at
different times, instead of the unchanged setting in current methods.

From an optimization point of view, the thinking of how to derive an accurate model for MBRL in
a global sense also motivates us to investigate the monotonicity of the optimization target (i.e. the
return of the learned model and policy in MBRL), which, unfortunately, is less explored and not
well guaranteed in current works. However, discussing the monotonicity guarantee for MBRL is
challenging by any means, arising from the coupling of the model learning and policy optimization
processes. Although there has been recent interest in related subjects, most of the theoretical works
seek to characterize the monotonicity in terms of a fixed model of interest [49, 34, 20, 12, 28], which
does not naturally fit our case when the model is dynamically shifted.

In this paper, we study how to guarantee the optimization monotonicity theoretically, upon which
we then develop an event-triggered strategy that learns the model from a dynamically-varying num-
ber of explorations. In particular, we interestingly find that the lower bound of the performance
improvement between two adjacent alternation steps in MBRL is dependent on the one-step model
accuracy plus the constraint of the model shifts under certain mild assumptions. This discovery
encourages us to formulate a constrained optimization problem, in order to permit positive perfor-
mance improvement and thus the optimization monotonicity for MBRL. We also give a feasible
solution example to show that dynamical alternation between model learning and policy exploration
does benefit performance monotonicity. To resolve the constrained optimization problem, we de-
sign a simple but effective algorithm CMLO (Constrained Model-shift Lower-bound) equipped with
an event-triggered mechanism. This mechanism first estimates whether the model shifts meet the
constraint and then decides when to train the model.

We evaluate CMLO on several continuous control benchmark tasks. The results show that CMLO
learns much faster than other state-of-the-art MBRL methods and yields promising asymptotic per-
formance compared with the model-free counterparts. Note that our optimization framework is
general and can be applied to different backbones of policy optimization algorithms, which is also
ablated in our experiments.

2 Related works

Model-based reinforcement learning methods have shown great potential for sequential decision-
making both in simulation and in the real world due to their sample efficiency [9, 21]. Generally,
these MBRL algorithms can be grouped into several categories to highlight the range of uses of
predictive models [55]. And our work falls into the Dyna-style category. In Dyna-style algorithms,
training alternates between model learning under policy iterations with the real environments, and
policy optimization using the model rollouts [50–52, 13]. Many attempts have been devoted to
improving these two stages.

For model learning stage, previous main concerns are function approximators and training objectives.
The dynamics approximator has advanced from Gaussian processes [26, 9], time-varying linear
dynamics [29, 30] to neural network predictive models [15, 38]. And training objectives vary from
Mean Square Error (MSE) [38, 34], Negative Log Likelihood (NLL) [8, 20], etc. Moreover, the deep
ensemble technique is appealing for improving the robustness to model error. Our method adopts an
ensemble of probabilistic networks similarly as in [8, 20].

The policy optimization stage allows Dyna-style algorithms to leverage various off-the-shelf model-
free methods, such as SAC [16], TRPO [44], and TD3 [14]. Much owing to the progress of model-
free methods, our method is to invoke any reasonable optimization oracle for the empirical models,
rather than entangle a particular policy optimization algorithm.

A consensus of MBRL is that a smart policy requires an accurate model. However, model bias cannot
be eliminated because the state-action distribution of the samples in the model learning stage and
policy optimization stage is quite different. Many prior works attend to this distribution mismatch
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issue and then tailor the data used for policy optimization according to the model bias. Janner
et al. [20], Buckman et al. [7] encourage truncated rollout lengths. Besides, the ratio of real to
model-generated data can be dynamically tuned according to the model uncertainty [24, 39, 28]. Yu
et al. [57] penalizes rewards by the model uncertainty. Our method incorporates the truncated model
rollouts mechanism. Moreover, we further explore how real interactions affect overall performance
which is rarely studied before. We construct an event-triggered mechanism to cope with overfitting
in a small-data regime and suffering generalization error when facing a drastic distribution shift.

Monotonic improvement guarantee has been a fundamental concern in both model-free and model-
based avenues. In MFRL methods, both CPI [22] and TRPO [44] can be understood as approximat-
ing and optimizing the performance gap by forcing the new policy to be not too far away from the
current policy. However, in Model-based settings, their trust-region constraints cannot directly be
satisfied because the policies highly depend on the randomness of the models. While constructing
such a bound for performance gap is straightforward, it has not been explored in previous MBRL
theorectical analyses, instead they [49, 34, 20, 12, 28] turn to bound the discrepancy between re-
turns under a model and those in the real environment. Although they could guarantee that the lower
bound of policy performance improves under a certain model, this guarantee may face several issues
regarding model updating. In contrast, we construct the performance difference scheme for MBRL
algorithms and perform monotonicity analysis under this scheme.

Another line of theoretical works focus on regret bounds [10, 23] or sample complexity proper-
ties [1, 5, 47], focusing on the convergence performance and sample complexity for model-based
approaches.

3 Preliminaries

Markov Decision Process A discounted Markov Decision Process (MDP) is a quintuple M =
(S,A, PM , rM , γ), where S is the state space, A represents the action space, PM denotes the transi-
tion function, r : S ×A → [−R,R] stands for the reward function, and γ ∈ (0, 1) is the discount
factor. For a fixed policy π and model M , we define V π

M (µ) as the return of the model M with the
starting state distribution µ, and V π(µ) denotes the returns under the real environment,

V π
M (µ) = E

at∼π(·|st)
st+1∼PM (·|st,at)

[ ∞∑
t=0

γtrM (st, at)|π, s0
]
. (3.1)

We make a mild assumption that the model M to be identical to the real MDP except the transition
function. Let dπk

Mi
(s, a;µ) denote the visitation probability s, a when starting at s0 ∼ µ and follow-

ing πk under the dynamics PMi . We will omit it as dπk

Mi
henceforth for brevity. Besides, we denote

M as a (parameterized) family of models of interest, and let Π be a family of policies.

Generative Model Many previous works [31, 25, 1] focus on a stylized generative model. By
assuming an access to the generative model, we collect N samples for each state-action pair (s, a) ∈
S ×A: sis,a

i.i.d∼ P (·|s, a) which allows us to construct an empirical model defined as follows:

∀s′ ∈ S, P̂ (s′|s, a) = 1

N

N∑
i=1

1{sis,a = s′}. (3.2)

where 1{·} is the indicator function. This leads to an empirical MDP M̂ = (S,A, P̂ , r, γ).

4 Monotonic improvement under model shifts

This section provides theoretical analyses for monotonic improvement of MBRL, factoring in the
interdependence between policies and models. We first construct a general scheme for a non-
decreasing performance guarantee and follow it up by characterizing the lower bound when shifting
the model. Towards a non-negative lower bound, we restrict the model shifts and then obtain a re-
fined bound. These discoveries encourage us to translate the bound maximization to a constrained
optimization problem to permit monotonicity. By deriving an instance solution under the generative
model setting, we demonstrate the merits of the dynamic model learning interval.
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4.1 Monotonic improvement with policy optimization oracle

Our goal is to construct a general recipe for a monotonicity guarantee. Naturally, we seek to build a
performance difference scheme for model-based algorithms.

Definition 4.1 (Performance Difference Bound Scheme). V πi|Mi(µ) denotes the return of the
policy πi ∈ Π in the real environment, whereas πi is derived from the dynamical model Mi ∈ M.
Then, the lower bound on the true return gap of π1 and π2 can be stated in the form,

V π2|M2(µ)− V π1|M1(µ) ≥ C. (4.1)

Such a statement guarantees that the policy allows non-decreasing performance in the real environ-
ment when C is non-negative.

Although there has been interest in non-decreasing performance guarantee, previous works [34, 20]
commonly derive under a "discrepancy bound" scheme disregarding the model shifts (i.e. M1 =
M2). Their results imply that once a policy update π1 → π2 increases the returns under the same
model (V π2

M1
> V π1

M1
), the lower bound on the policy performance evaluated in the real environment

improves accordingly, inf{V π2|M1} > inf{V π1|M1}.

When the model shift is introduced, establishing the performance difference bound turns out to
be rather difficult, mainly due to the coupling of the policy optimization and model learning: the
estimated model is generated from the policy explorations, while the policy derives from the model
rollouts. Hence, we need to consider the performance gap arising from the integration of the two
stages, which, unfortunately, has never been explored before. Since the performance of the policy
with a fixed model is already well guaranteed, it is natural to make the following assumptions.
Assumption 4.2 (Policy Optimization Oracle). The policy optimization oracle is defined as the
one that takes as input a model M and returns a ϵopt-optimal policy π satisfying: V ∗

M (µ)− ϵopt ≤
V π
M (µ) ≤ V ∗

M (µ). We assume that our policy optimization stage always meets the policy optimiza-
tion oracle given its corresponding estimated model M .

Such assumption usually holds in practice when we explore existing off-the-shelf model-free algo-
rithms [43, 1, 16, 44]. With this assumption, we can focus directly on the eventual performance
difference under the real environment encountering the model updating.

The bound C we seek can be expressed in terms of two kinds of gaps: the inconsistency gap between
the model and the environment, and the optimal returns gap between the two models. When a
policy πk samples in a model Mi, it will encounter states not consistent with those generated by the
real environment. We denote this inconsistency by ϵπk

Mi
= Es,a∼dπk [DTV(P (·|s, a)∥PMi(·|s, a))].

Besides, for each model Mi ∈ M, a remarkable property is that there always exists a policy that
maximizes the value function V π

Mi
(µ) [53]. Hence, we define the ceiling performance of model

M as V ∗
Mi

(µ) = supπ∈Π V π
Mi

(µ). We will omit µ henceforth for simplicity unless confusion exists.
With these two terms well-defined, we now present our bound.
Theorem 4.3 (Performance Difference Bound for Model-based RL). Let Mi ∈ M be the esti-
mated models and πi be the ϵopt-optimal policy for Mi. Recalling κ = 2Rγ

(1−γ)2 where R is the bound
of the reward function, we have the performance difference of π1 and π2 evaluated under the real
environment be bounded as below,

V π2|M2 − V π1|M1 ≥ κ · (ϵπ1

M1
− ϵπ2

M2
) + V ∗

M2
− V ∗

M1
− ϵopt. (4.2)

Proof. See Appendix B, Theorem B.1.

This bound implies that if the model update M1 → M2 can (1) shorten the divergence between the
estimated dynamics and the true dynamics and (2) improve the ceiling performance on the model, it
may guarantee overall performance improvement under the true dynamics.

4.2 Lower-bound optimization with model shift constraints

Theorem 4.3 provides a general performance difference bound that suggests models with higher
ceiling performance and lower bias would raise the overall performance. However, finding a non-
negative lower bound may face several issues regarding a drastic model shift in practice. On the one
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hand, performing an abrupt model update could potentially lead to a tumble in ceiling performance
and then fail to make incremental improvements. On the other hand, huge distribution divergence
between model rollouts would confound the policy optimization stage and hamper its access to
optimal policies. Thus, we shoot for refining the bound upon adding model shifts constraint.

First, we seek to further unfold the ceiling performance gap, which serves as the main building block
toward the desired bound. During derivation, we additionally introduce the L-Lipschitz assumption.

Assumption 4.4 (L-Lipschitzness of Value Function). We call a value function V π
M on the esti-

mated dynamical model M is L-Lipschitz w.r.t to some norm ∥ · ∥ in the sense that

∀s, s′ ∈ S, |V π
M (s)− V π

M (s′)| ≤ L · |s− s′|. (4.3)

We assume that our estimated model M ∈ M satisfies the Lipschiz character, inspired from [4, 34].
Under the L-Lipschitzness assumption, we can derive a bound for the ceiling return gap.

Theorem 4.5 (Ceiling Return Gap under Model Shift). For an estimated model Mi ∈ M, the
ceiling return gap is bounded as:

V ∗
M2

− V ∗
M1

≥ − γ

1− γ
L · sup

π∈Π
Es,a∼dπ

M2

[
|PM2(·|s, a)− PM1(·|s, a)|

]
. (4.4)

Proof. See Appendix B, Theorem B.2.

This conclusion reveals the connection between the ceiling return gap and models’ disagreement. In
a benign scenario, the term of ceiling performance gap in the RHS of Eq. 4.2 should be dominated
by the term κ · (ϵπ1

M1
− ϵπ2

M2
) when the model shift is sufciently small. A sharp model shift, however,

risks a massive reduction in ceiling performance that is hardly bridged by the other parts in Eq. 4.2,
and therefore corrupts monotonicity. This inspires us to introduce the constraint of the model shift.
We further refine our performance difference bound to better characterize the relationship between
performance gap and model shift.

Theorem 4.6 (Refined Bound with Constraint). Let policy πi ∈ Π denotes the ϵopt optimal policy
under the dynamical model Mi ∈ M, and σM1,M2 be the constraint threshold for M1 and M2.
Note that L ≥ R

1−γ . Then we can refine performance difference lower bound under the model shifts
constraint as,

V π2|M2 − V π1|M1 ≥ κ ·
{
Es,a∼dπ1DTV

[
P (·|s, a)∥PM1

(·|s, a)
]

−Es,a∼dπ2DTV

[
P (·|s, a)∥PM2

(·|s, a)
]}

− γ

1− γ
L · (2σM1,M2

)− ϵopt,
(4.5)

s.t. DTV(PM2(·|s, a)∥PM1(·|s, a)) ≤ σM1,M2 , ∀(s, a) ∈ S ×A. (4.6)

Proof. See AppendixB, Theorem B.3.

Theorem 4.6 implies that policy π2 is guaranteed to outperform policy π1 once it makes the RHS
in Eq. 4.5 greater than zero under the constraint Eq. 4.6. More specifically, to guarantee a non-
decreasing performance, M2 and π2 should meet the following two requirements,

E
s,a∼dπ2

[ ∑
s′∈S

|P (s′|s, a)− PM2
(s′|s, a)|

]
≤ 2ϵπ1

M1
− (1− γ)L

R
(2σM1,M2

)− 2

κ
· ϵopt, (R1)

DTV(PM2
(·|s, a)∥PM1

(·|s, a)) ≤ σM1,M2
, ∀(s, a) ∈ S ×A. (R2)

R1 encourages us to alleviate model bias as much as possible. Moreover, when the policy π1 samples
too many states not encountered by the model M1, it may lead to excessive generalization errors
during model learning, i.e. the estimated model will suffer extrapolation error in these unexperienced
regions, which further causes instability or crashes in the following derived sub-optimal policies.
Thus, the introduction of the R2 constraint can help solve the above problem. Finally, we abstract
these two requirements to a constrained optimization problem.
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Proposition 4.7 (Constrained Lower-Bound Optimization Problem). We reduce the issue of find-
ing a non-negative C to the following constrained optimization problem. Here, πi is still the sub-
optimal policy under model Mi. The minimal objective in E.q. 4.7 leads to the maximum of C. Then
the overall optimization problem can be formalized as,

min
M2∈M
π2∈Π

E
s,a∼dπ2

[ ∑
s′∈S

|P (s′|s, a)− PM2(s
′|s, a)|

]
,

s.t. sup
s∈S,a∈A

DTV(PM1(·|s, a)∥PM2(·|s, a)) ≤ σM1,M2 .
(4.7)

4.3 A feasible example for constrained optimization problem

We first remark that, Proposition 4.7 provides a useful guide for acquiring performance improvement
through restricting the upcoming model shift into a safe zone. In this section, we give an instance
for a feasible solution of the constrained optimization problem under the generative model setting [1,
31]. Specifically, we construct an empirical model M1 from the N samples per state-action pair that
stems from the generative model. Upon encountering another k samples on each state-action pair,
we segue into the model updating stage, which outputs M2 given these newly collected samples as
input. Towards obtaining a non-decreasing performance, we yield the following feasible solution
for model training interval through satisfying requirements R1 and R2.

Corollary 4.8. Here, vol(S) denotes the volume of the state coverage simplex. For simplicity, we
denote δMi(·|s, a) = |P (·|s, a)−PMi(·|s, a)| for each model Mi ∈ M. Under the generative model
setting, with a probability larger than 1− ξ, we can provide a non-negative C when given,

k =
2

ϵ2
log

2vol(S) − 2

ξ
−N. (4.8)

Here, ϵ = δM1(·|s, a)−
(1−γ)L

R · (2σM1,M2)−
(1−γ)2

Rγ · ϵopt and ξ ∈ (0, 1) is a constant.

Proof. See Appendix B, Corollary B.4.

One can deduce from Corollary 4.8 that dynamically adjusting the model training interval according
to the model bias and the model shifts constraints threshold does benefit monotonicity. Along with
the model bias δM1

(·|s, a) decaying, the model training interval k requires to be scaled up to obtain
adequate newly encountered samples for training M2. Besides, once gathering excessive samples,
we risk violating the model shifts constraint, thus impairing performance. This instance supports
the insight that determining “when to update your model” is vital for performance improvement and
motivates a smarter scheme to choose different numbers of explorations at different times instead of
the unchanged setting in current methods.

5 CMLO framework

It is nontrivial to tackle the proposed constrained optimization problem in Proposition 4.7, since
one cannot directly assign a value to the optimization variable M2. We decouple the optimization
objective and the constraint as “how to train the model” and “when to train the model” through an
event-triggered mechanism towards dynamic alternation.

Objective minimization. Minimizing the objective function involves improving the model accu-
racy. Specifically, we adopt the model-ensemble technique to reduce model bias. For practical
implementation, the probabilistic models { ˆfϕ1

, ˆfϕ2
, . . . , ˆfϕK

} are fitted on shared but differently
shuffled replay buffer De, and the target is to optimize the Negative Log Likelihood (NLL).

Constraint estimation. The unobserved model M2 makes the constraint function incalculable,
and here we seek to design an estimator for it. Recall that DTV(PM1(·|s, a)∥PM2(·|s, a)) =
1
2

∑
s′∈S |PM1(s

′|s, a) − PM2(s
′|s, a)|, then we can find that the distance arises from two parts,

the state space coverage, and the models’ disagreement. We estimate the policy coverage (state-
space coverage) by computing the volume vol(SD) of the convex closure SD =

{∑
si∈D λiSi :
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λi ≥ 0,
∑

i λi = 1
}

constructed on the replay buffer D. We exploit the average prediction error
on these new samples data to estimate the disagreement on newly encountered data (∆D) and get
L(∆D) = E(s,a,s′)∈∆D

[
1
K

∑K
i=1 ∥s′ − ˆfϕi

(s, a)∥
]
. Combining these two components, we can ob-

tain an estimation for the model shift, i.e., vol(SD) · L(∆D). This practical overestimation for the
model shifts makes the constraint stay satisfied during objective optimization.

Event-triggered mechanism. We design an event-triggered mechanism to determine the occasion
to pause collecting and turn to solve the optimization objective. Remark that although diverting to
train models as long as not to violate the constraint is theoretically reasonable, we refrain from doing
so in practice because performing an update on data with a minor shift in coverage and distribution
is wasteful and may risk overfitting. Therefore, we trigger when the constraint boundary is touched
to reduce computational cost and escape overfitting. The event-triggering mechanism is based on
the following condition:

vol(SD∪∆D(τ))

vol(SD)
· L(∆D(τ)) ≥ α. (5.1)

Here, τ is the event-triggering time, and α is a given constant.

Policy optimization oracle. Clearly, we can leverage many model-free RL methods (SAC [16],
TRPO [44], PPO [46] etc.) as our policy optimization oracle. Besides, we adopt a truncated short
model rollouts technique to mitigate compounding error while encouraging model usage. Based on
the fresh model rollouts, we perform the policy optimization oracle, employing SAC as an example.

Algorithm Overview. We briefly give an overview of our proposed CMLO in algorithm 1. No-
tably, the event-triggered mechanism subtly determines the occasion to perform model updating,
promoting performance monotonicity and reducing computation load.

Algorithm 1: CMLO

initialize :policy πθ, ensemble models ˆfϕ1 ,
ˆfϕ2 , . . . ,

ˆfϕK
, environment buffer De and model

buffer Dm

repeat
Sample ∆De ∼ πθ from real environment; add to De

Estimate model shifts by vol(SDe)L(∆De)
if Event-triggered condition (E.3) is reached then

Train all models ˆfϕ1
, ˆfϕ2

, . . . , ˆfϕK
on De

Perform h-step model rollouts using policy πθ; add to Dm

Update πθ on Dm through SAC [16]
until the policy performs well in the environment;

6 Experiments

Our experimental evaluation aims to investigate the following questions: (1) How well does our
algorithm perform on standard reinforcement learning benchmarks compared to prior state-of-the-
art model-based and model-free algorithms? (2) Does the performance with or without the constraint
consistent with previous theoretical analyses?

6.1 Comparative evaluation

To illustrate the effectiveness of our method, we contrast several popular model-based and model-
free baselines. Model-free counterparts include: (1) SAC [16], the state-of-the-art in terms of
asymptotic performance. (2) PPO [46] that explores monotonic improvement as well. Model-based
baselines include: (3) PETS [8], which employs models directly for planning, different from the
Dyna-style. (4) SLBO [34], that explores monotonicity under the discrepancy bound scheme. (5)
MBPO [20], that employs a similar design of model ensemble technique (ensemble of probabilistic
dynamics networks) and policy optimization oracle (SAC) as we do. (6) AutoMBPO [28], a variant
of MBPO, that uses an automatic hyperparameter controller to tune the model-training frequency
but suffers from high pre-training cost and lacks theoretical analysis on parameters rationality.
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Figure 1: Comparison of learning performance on continuous control benchmarks. We evaluate each
algorithm on the standard 1000-step versions. Solid curves indicate the average performance among
seven trials under different random seeds, while the shade corresponds to the standard deviation over
these trails. The dashed lines are the asymptotic performance of SAC (at 5M steps) and MBPO.

We evaluate CMLO and these baselines on six continuous control tasks in OpenAI Gym [6] with
the MuJoCo [54] physics simulator, including HalfCheetah, Hopper, Walker2d, Swimmer, Ant, Hu-
manoid. For fair comparison, we adopt the standard full-length version of these tasks and align the
same environment settings.

Figure 1 shows the learning curves of all compared methods, along with the asymptotic performance.
These results show that our algorithm is far ahead of the model-free method in terms of sample effi-
ciency, coupled with an asymptotic performance comparable to that of the state-of-the-art model-free
counterparts SAC. Compared to model-based baselines, our method gains faster convergence speed
and better eventual performance. Notably, credit to the event-triggered mechanism, our method en-
joys a more stable training curve. The better monotonic property of the learning curve agrees with
our previous analyses.

6.2 Ablation studies

Next, we make ablations and modifications to our method to validate the effectiveness and general-
izability of the mechanism we devised.

The necessity of event-triggered mechanism. To verify the necessity of event-triggered mech-
anism, we compare to three unconstrained cases (given fixed model training interval) under two
environments. The training curve and triggered times are shown in Figure 2. Clearly, our mecha-
nism improves the performance while reducing the total times of model training. Besides, we notice
that the performance is comparable to other MBRL baselines (MBPO etc.) when fixing our model
training interval at 250. Still it performs worse than that equipped with a smart mechanism to decide
whether to train the model at current exploration step.

To better understand why the event-triggered mechanism brings up our outperformance, we asses
its main bricks. Model shift, which reflects the current ability to digest new data, is the basis of
triggered condition. And we estimate model shift from two parts, policy coverage and prediction er-
ror. In Figure 3 we observe that, gradually, as the training progresses, the policy coverage increases,
which reflects our policy has new explorations at every stage without falling into a local optimum
prematurely. Also, the prediction error gradually decreases, which implies that our estimated dy-
namics come closer to the true dynamics in the explored region. Figure 4 implies that the number
of samples required to hit the constraint tends to grows and the model training frequency then goes
down. This is also consistent with our intuition that, as the model refines and the exploration novelty
fades, then the sample size required to reach a certain level of model shifts grows up. The result
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Figure 2: Ablation on event-triggered mecha-
nism. These experiments are average over 5
random seeds. (a) shows the average return
with or with-out event-triggered mechanism in
HalfCheetah and Ant benchmarks. (b) shows the
number of triggered times per 10k step.
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Figure 3: Visualization of the policy coverage
and prediction error on HalfCheetah and Ant.
Each stage contains 60k steps. (a) implies that
policy coverage expands over stages. (b) shows
the prediction error over newly collected data.
The bars are average values of each stage.
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Figure 4: Visualization of our event-triggered mechanism on HalfCheetah and Ant benchmarks.
Solid lines show the model shifts estimation and dotted lines reveals the threshold of triggered
condition. Note that here we apply log value.

agrees with our theoretical analyses which describe that a dynamic alternation subject to the model
shifts constraint does benefit to monotonicity rather than an assigned one.
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Figure 5: Ablation on generalizability via vari-
ous policy optimization oracles. Line plots re-
flect the average return and the standard devia-
tion over 5 trails. Bar plots indicate the total
triggered times and the y-axis is scaled to [0,1].

The generalizability of event-triggered mecha-
nism. We further investigate the generalizabil-
ity of our proposed mechanism through ablation
on policy optimization oracle, and results are
shown in Figure 5.

1) under Dyna-style. We adopt TRPO [44] as
the policy optimization oracle and test the per-
formance with or without event-triggered mech-
anism in Halfcheetah and Ant benchmarks. Ob-
servably, our mechanism can effectively guaran-
tee the overall performance improvement and al-
leviate the local optimization issue.

2) jumping off Dyna-style. We utilize
iLQR [3] and then conduct ablation experiments
in the DKitty-Stand [2] and Panda-Reaching [19]
scenarios. The result shows that adding
event-triggered mechanism has a comparable
asymptotic performance as the most-frequently
triggered case but enjoys a lower computation
cost.
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7 Conclusion

We have investigated the role of the decision on "when to update the model" in joint optimization
procedures through theoretical and empirical lens. We devise a general novel scheme for exploring
the monotonicity of MBRL methods, distinguished from the existing discrepancy bound scheme.
We then derive lower bounds under the scheme, suggesting that models with higher ceiling perfor-
mance and lower bias guarantee a non-decreasing performance evaluated in the real environment.
An effective constrained optimization problem comes from the follow-up refined bound to seek a
non-negative lower bound. Further, the instance under the generative model setting further verifies
the effectiveness of learning models from a dynamically varying number of explorations. The algo-
rithm CMLO, stemming from these analyses, has asymptotic performance rivaling the best model-
free algorithms and boasts better monotonicity. Further ablation studies reveal that the proposed
mechanism scales to various policy optimization oracles and benefits computation cost reduction.
Currently, we observed empirically that the event-triggered condition is usually related to specific
environments, which will cost a little time for tuning. Thus, one direction that merits further investi-
gation is to construct the dual problem of our constrained optimization problem for better exploring
optimality and monotonicity.
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