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Abstract

Simulation-based inference (SBI) solves statistical inverse problems by repeatedly
running a stochastic simulator and inferring posterior distributions from model-
simulations. To improve simulation efficiency, several inference methods take a
sequential approach and iteratively adapt the proposal distributions from which
model simulations are generated. However, many of these sequential methods are
difficult to use in practice, both because the resulting optimisation problems can be
challenging and efficient diagnostic tools are lacking. To overcome these issues,
we present Truncated Sequential Neural Posterior Estimation (TSNPE). TSNPE
performs sequential inference with truncated proposals, sidestepping the optimi-
sation issues of alternative approaches. In addition, TSNPE allows to efficiently
perform coverage tests that can scale to complex models with many parameters.
We demonstrate that TSNPE performs on par with previous methods on established
benchmark tasks. We then apply TSNPE to two challenging problems from neuro-
science and show that TSNPE can successfully obtain the posterior distributions,
whereas previous methods fail. Overall, our results demonstrate that TSNPE is
an efficient, accurate, and robust inference method that can scale to challenging
scientific models.

1 Introduction

Computational models are an important tool to understand physical processes underlying empirically
observed phenomena. These models, often implemented as numerical simulators, incorporate
mechanistic knowledge about the physical process underlying data generation, and thereby provide an
interpretable model of empirical observations. In many cases, several parameters of the simulator have
to be inferred from data, e.g., with Bayesian inference. However, performing Bayesian inference in
these models can be difficult: Running the simulator may be computationally expensive, evaluating the
likelihood-function might be computationally infeasible, and the model might not be differentiable. In
order to overcome these limitations, Approximate Bayesian Computation (ABC) methods [Beaumont
et al., 2002, 2009], synthetic likelihood approaches [Wood, 2010], and neural network-based methods
[e.g., Papamakarios and Murray, 2016, Hermans et al., 2020, Thomas et al., 2022] have been
developed.
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Figure 1: APT vs
TSNPE. Top: Prior
(gray) and true pos-
terior (black). APT
matches true posterior
within the prior bounds
but ‘leaks’ into region
without prior support.
TSNPE (ours) matches
true posterior.

A subset of neural network-based methods, known as neural posterior
estimation (NPE) [Papamakarios and Murray, 2016, Lueckmann et al.,
2017, Greenberg et al., 2019], train a neural density estimator on simulated
data such that the density estimator directly approximates the posterior.
Unlike other methods, NPE does not require any further Markov-chain
Monte-Carlo (MCMC) or variational inference (VI) steps. As it provides
an amortized approximation of the posterior, which can be used to quickly
evaluate and sample the approximate posterior for any observation, NPE
allows the application in time-critical and high-throughput inference scenar-
ios [Gonçalves et al., 2020, Radev et al., 2020, Dax et al., 2021], and fast
application of diagnostic methods which require posterior samples for many
different observations [Cook et al., 2006, Talts et al., 2018]. In addition,
unlike methods targeting the likelihood (e.g., neural likelihood estimation,
NLE [Papamakarios et al., 2019, Lueckmann et al., 2019]), NPE can learn
summary statistics from data and it can use equivariances in the simulations
to improve the quality of inference [Dax et al., 2021, 2022].

If inference is performed for a particular observation xo, sampling effi-
ciency of NPE can be improved with sequential training schemes: Instead
of drawing parameters from the prior distribution, they are drawn adaptively
from a proposal (e.g., a posterior estimate obtained with NPE) in order to
optimize the posterior accuracy for a particular xo. These procedures are
called Sequential Neural Posterior Estimation (SNPE) [Papamakarios and
Murray, 2016, Lueckmann et al., 2017, Greenberg et al., 2019] and have
been reported to be more simulation-efficient than training the neural net-
work only on parameters sampled from the prior, across a set of benchmark
tasks [Lueckmann et al., 2021].

Despite the potential to improve simulation-efficiency, two limitations have impeded a more
widespread adoption of SNPE by practitioners: First, the sequential scheme of SNPE can be unstable.
SNPE requires a modification of the loss function compared to NPE, which suffers from issues that
can limit its effectiveness on (or even prevent their application to) complex problems (see Sec. 2).
Second, several commonly used diagnostic tools for SBI [Talts et al., 2018, Miller et al., 2021,
Hermans et al., 2021] rely on performing inference across multiple observations. In SNPE (in contrast
to NPE), this requires generating new simulations and network retraining for each observation, which
often prohibits the use of such diagnostic tools [Lueckmann et al., 2021, Hermans et al., 2021].

Here, we introduce Truncated Sequential Neural Posterior Estimation (TSNPE) to overcome these
limitations. TSNPE follows the SNPE formalism, but uses a proposal which is a truncated version
of the prior: TSNPE draws simulations from the prior, but rejects them before simulation if they
lie outside of the support of the approximate posterior. Thus, the proposal is (within its support)
proportional to the prior, which allows us to train the neural network with maximum-likelihood in
every round and, therefore, sidesteps the instabilities (and hence ‘hassle’) of previous SNPE methods.
Our use of truncated proposals is strongly inspired by Blum and François [2010] and Miller et al.
[2020, 2021], who proposed truncated proposals respectively for regression-adjustment approaches
in ABC and for neural ratio estimation (see Discussion). Unlike methods based on likelihood(-ratio)-
estimation [Miller et al., 2021, Hermans et al., 2021], TSNPE allows direct sampling and density
evaluation of the approximate posterior, and thus permits computing expected coverage of the full
posterior quickly (without MCMC) and at every iteration of the algorithm, thus allowing to diagnose
failures of the method even for high-dimensional parameter spaces (we term this ‘simulation-based
coverage calibration’ (SBCC), given its close connection with simulation-based calibration, SBC,
Cook et al. [2006], Talts et al. [2018]).

We show that TSNPE is as efficient as the SNPE method ‘Automatic Posterior Transformation’ (APT,
Greenberg et al. [2019]) on several established benchmark problems (Sec. 4.1). We then demonstrate
that for two challenging neuroscience problems, TSNPE—but not APT—can robustly identify the
posterior distributions (Sec. 4.2).
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Figure 2: Truncated Sequential Neural Posterior Estimation (TSNPE). The method starts by
sampling from the prior, running the simulator, and training a neural density estimator with maximum-
likelihood to approximate the posterior. In subsequent rounds, parameters are sampled from the prior,
but rejected if they lie outside of the support of the approximate posterior. With these proposals, the
neural density estimator can be trained with maximum-likelihood in all rounds.

2 Background

In Neural Posterior Estimation (NPE), parameters are sampled from the prior p(✓) and simulated
(i.e., x is sampled from p(x|✓)). Then, a neural density estimator q�(✓|x) (in our case a normalizing
flow), with learnable parameters �, is trained to minimize the loss:

min
�

L = min
�

E✓⇠p(✓) Ex⇠p(x|✓)[� log q�(✓|x)],

which is minimized if and only if, for a sufficiently expressive density estimator, q�(✓|x) = p(✓|x)
for all x 2 supp(p(x)) [Paige and Wood, 2016, Papamakarios and Murray, 2016]. Throughout this
study, we refer to training with this loss function as maximum-likelihood training, although the neural
density estimator targets the posterior directly.

Sequential Neural Posterior Estimation (SNPE) aims to infer the posterior distribution p(✓|xo) for a
particular observation xo. SNPE initially performs NPE and, thereby, obtains an initial estimate of
the posterior distribution. It then samples parameters from a proposal p̃(✓), which is often chosen to
be the previously obtained estimate of the posterior p̃(✓) = q�(✓|xo), and retrains the neural density
estimator [Papamakarios and Murray, 2016]. This procedure can be repeated for several rounds.

Importantly, if parameters ✓ are sampled from the proposal p̃(✓) rather than from the prior p(✓),
the estimator q�(✓|x) that minimizes the maximum-likelihood loss function no longer converges
to the true posterior. If one used the maximum-likelihood loss on data sampled from p̃(✓), i.e.,
L = E✓⇠p̃(✓) Ex⇠p(x|✓)[� log q�(✓|x)], then L would be minimized by q�(✓|x) / p(✓|x) p̃(✓)p(✓) ,
which is not the true posterior. Multiple schemes have been developed to overcome this [Papamakarios
and Murray, 2016, Lueckmann et al., 2017]. The most recent of these methods, Automatic Posterior
Transformation (APT, or SNPE-C, in its atomic version) [Greenberg et al., 2019, Durkan et al., 2020]
employs a loss that aims to classify the parameter set that generated a particular data point among
other parameter sets (details in Appendix Sec. 6.5).

While APT has been reported to significantly outperform previous methods, several studies have also
described cases in which the approach exhibits performance issues: Both the original APT paper
[Greenberg et al., 2019] and Durkan et al. [2020] reported that APT can show ‘leakage’ of posterior
mass outside of bounded priors. We demonstrate this issue on a simple 1-dimensional simulator with
bounded prior (Fig. 1, Appendix Fig. 7). The posterior estimated by APT is only required to match
the true posterior density within the support of the prior (details in Appendix Sec. 6.5). Thus, after
five rounds of APT, while the approximate posterior matches the true posterior within the bounds of
the prior, a substantial fraction of posterior mass lies in regions with zero prior probability. In simple
models, approximate posterior samples that lie outside of the prior bounds can be efficiently rejected.
However, in models with high numbers of parameters, the rejection rate can become so large that
drawing posterior samples which lie inside of the prior bounds is prohibitive. For example, Glöckler
et al. [2022] reported a rejection rate of more than 99.9999% in a model with 31 parameters, thus
requiring approximately one minute to draw a single posterior sample from within the prior bounds.
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Algorithm 1: TSNPE

Inputs: prior p(✓), observation xo, simulations per round N , number of rounds R, ✏ that defines
the highest-probability region (HPR✏)

Outputs: Approximate posterior q�.
Initialize: Proposal p̃(✓) = p(✓), dataset X = {}
for r 2 [1, ..., R] do

for i 2 [1, ..., N ] do
✓i ⇠ p̃(✓)
simulate xi ⇠ p(x|✓i)
add (✓i,xi) to X

�⇤ = argmin� � 1
N

P
(✓i,xi)2X log q�(✓i|xi)

Compute expected coverage(p̃(✓), q�) ; // see Alg. 2

p̃(✓) / p(✓) · 1✓2HPR✏ ; // see Alg. 3

We overcome these limitations by using ‘truncated’ proposal distributions. This allows us to train
with maximum-likelihood at every round, thereby sidestepping issues of previous SNPE methods.

3 Methodology

3.1 Truncated proposals for SNPE

Given a particular observation xo, we suggest to restrict the proposals p̃(✓) to be proportional to the
prior p(✓) at least in the 1� ✏ highest-probability-region (HPR✏, the smallest region that contains
1� ✏ of the mass) of p(✓|xo), i.e.

p̃(✓) / p(✓) · 1✓2M

with HPR✏(p(✓|xo)) ✓ M. Thus, p̃(✓) is a ‘truncated’ proposal. The key insight is that, when using
such a proposal and ✏ = 0, one can train q�(✓|x) with maximum likelihood:

min
�

L = min
�

E✓⇠p̃(✓) Ex⇠p(x|✓)[� log q�(✓|x)],

and q�(✓|xo) will still converge to p(✓|xo) (Proof in Appendix Sec. 6.2).

We estimate M as the HPR✏ of the approximate posterior M = HPR✏(q�(✓|xo)). Since the
maximum-likelihood loss employed to train q�(✓|x) is support-covering, the HPR✏ of q�(✓|xo)
tends to cover the HPR✏ of p(✓|xo) [Bishop and Nasrabadi, 2006].

In order to obtain the HPR✏ of q�(✓|xo), we define a threshold ⌧ on the approximate posterior density
q�(✓|xo). To do so, we use a normalizing flow as q�(✓|x), which allows for closed-form density
evaluation and fast sampling. We then approximate the HPR✏ of q�(✓|xo) as

HPR✏(q�(✓|xo)) ⇡ 1q�(✓|xo)>⌧ .

We chose ⌧ as the ✏-quantile of approximate posterior densities of samples from q�(✓|xo), and
evaluated TSNPE for ✏ = 10�3, 10�4, and 10�5. Values of ✏ > 0 yield a proposal prior which has
smaller support than the current estimate of the posterior, e.g., using ✏ = 10�3 neglects 0.1% of mass
from the approximate-posterior support. Thus, this approach leads to errors in posterior estimation,
e.g., to ‘under-covered’ posteriors (Appendix Sec. 6.10). However, empirically, the error induced
by this truncation is negligible, as we will demonstrate on several benchmark tasks. We note that
TSNPE can be trained on data pooled from all rounds (Appendix Sec. 6.2). TSNPE is summarized in
Alg. 1 (Fig. 2).

3.2 Sampling from the truncated proposal

To generate training data for subsequent rounds, we have to draw samples from the truncated proposal
p̃(✓), and here we explored rejection sampling and sampling importance resampling (SIR) [Rubin,
1988]. For rejection sampling, we sample the prior ✓ ⇠ p(✓) and accept samples only if their
probability under the approximate posterior q�(✓|x) is above threshold ⌧ .
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Figure 3: Diagnostic tool. (a)
Parameter ✓⇤ (green) lies within
the 1-↵ confidence region (gray)
of the estimated posterior. (b)
log(p(✓⇤|x)) is above the 1-↵
quantile of posterior samples. (c)
1-↵ versus empirical coverage,
averaged over ✓⇤.

This strategy samples from the truncated proposal exactly, but can fail if the rejection rate be-
comes too high. To deal with these situations, we used SIR. For each sample from the truncated
proposal, SIR draws K samples from the approximate posterior, computes weights wi=1...K =
p(✓i)1✓i2M/q�(✓i|x), normalizes wi such that they sum to one, draws from a categorical dis-
tribution with weights s ⇠ Categorical(wi), and selects the posterior sample with index s. SIR
requires a fixed sampling budget of K posterior samples per sample from the truncated proposal and
returns exact samples from the truncated proposal for K ! 1. Too low values of K lead to too
narrow proposals and posterior approximations. When run for a number of rounds, this behaviour
reinforces itself and can lead to divergence of TSNPE (Appendix Fig. 13). We, thus, chose a high
value K = 1024. In our experiments, we did not observe poor SIR performance, but we emphasise
the importance of using tools to diagnose potential failures of TSNPE (see below) or SIR (e.g. by
inspecting the effective sample size, Appendix Sec. 6.12). When SIR fails, methods such as nested
sampling, adaptive multi-level splitting, or sequential Monte-Carlo sampling could be viable alterna-
tives [Skilling, 2004, Cérou and Guyader, 2007, Doucet et al., 2001]. We discuss computational costs
of rejection sampling and SIR in Appendix Sec. 6.11.

3.3 Coverage diagnostic

In order for the estimated posterior q�(✓|xo) to converge to p(✓|xo), TSNPE requires
supp(p(✓|xo)) ✓ HPR✏(q�(✓|xo)), i.e., the estimated posterior must be broader than the true
posterior (proof in Appendix Sec. 6.2). In order to diagnose whether the posterior is, on average,
sufficiently broad, we perform expected coverage tests as proposed in Dalmasso et al. [2020], Miller
et al. [2021], Hermans et al. [2021].

As described in Dalmasso et al. [2020], Rozet et al. [2021] and illustrated in Fig. 3, the coverage of
the approximate posterior can be computed as

1� ↵ =

Z
q�(✓|x⇤)1(q�(✓

⇤|x⇤) � q�(✓|x⇤))d✓

where ✓⇤ is sampled from the truncated proposal and x⇤ is the corresponding simulator output.
In order to approximate this integral, one has to either evaluate the approximate posterior on a
grid [Dalmasso et al., 2020, Hermans et al., 2021] or apply a Monte-Carlo average which includes
repeatedly sampling (and evaluating) the (unnormalized) approximate posterior [Miller et al., 2021,
Rozet et al., 2021]. The first option does not scale to high-dimensional spaces whereas the second
is computationally expensive for methods estimating likelihood(-ratios) and, thus, require MCMC.
In contrast, the TSNPE-posterior can be sampled from and evaluated in closed-form, leading to a
computationally efficient and scalable diagnostic which can be run after every training round.

Expected coverage can be computed as an average of the coverage across multiple pairs (✓⇤,x⇤)
[Miller et al., 2021, Hermans et al., 2021] and should match the confidence level for all confidence
levels (1 � ↵) 2 [0, 1] (Fig. 3c). We term this procedure of computing the empirical coverage
‘simulation-based coverage calibration‘ (SBCC), due to its close connection with SBC [Cook et al.,
2006, Talts et al., 2018] (identical under certain conditions, Appendix Sec. 6.6). For TSNPE, it is
important that the empirical expected coverage matches the confidence level for high confidence
levels (i.e., for small ↵), since overconfidence in these regions would indicate that ground-truth
parameters ✓⇤ are falsely excluded from the HPR✏=↵. SBCC is summarized in Appendix Alg. 2.
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Figure 4: Performance on six benchmark tasks. Left three columns: classifier two-sample test
accuracy (C2ST) of NPE (left), APT (middle), and TSNPE (right) for three simulation budgets. Forth
column: Fraction of prior samples within the approximate-posterior HPR✏ in each round for each
simulation budget. Fifth column: Fraction of true-posterior samples within the approximate-posterior
HPR✏. TSNPE with ✏ = 10�4 and rejection sampling from truncated proposal.

4 Results

We evaluated TSNPE on several benchmark tasks and on two complex problems from neuroscience.
We found that TSNPE performs as well as APT on the benchmark tasks and that it is robust to choices
of ✏. In addition, we found that, in contrast with APT, TSNPE can successfully infer the posterior
distribution for complex models with large numbers of parameters.

4.1 Performance on benchmark tasks

We compared TSNPE with NPE and APT on six benchmark tasks for which samples from the
ground-truth posterior are available (see Appendix Sec. 6.9 for tasks) [Lueckmann et al., 2021]. We
quantified the performance with a classifier two-sample test (C2ST), for which 0.5 indicates that
the approximate posterior is identical to the ground-truth posterior, whereas 1.0 implies that the
distributions can be completely separated by a classifier. Overall, APT and TSNPE perform similarly
well and both outperform NPE (Fig. 4, left three columns). On two of the six tasks (Gaussian Linear
and SLCP), APT has slightly better performance than TSNPE, whereas on two other tasks (SIR
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Figure 5: Pyloric network inference. (a) Data [Haddad and Marder, 2021]. (b) APT approximate
posterior (1D-marginal) exhibits leakage (red: prior bounds). (c) APT approximate posterior when
forcing the density estimator into constrained space. The spike at the upper prior bound is at odds with
previously published posterior distributions [Gonçalves et al., 2020, Deistler et al., 2021, Glöckler
et al., 2022] and produces poor predictive samples (Appendix Fig. 19). (d) TSNPE posterior predictive
sample matches summary statistics of the experimental data.

and Lotka-Volterra), TSNPE outperforms APT. Overall, TSNPE and APT perform similarly well,
demonstrating that TSNPE is competitive with previous methods on benchmark tasks.

In order to get insights into the improved performance of TSNPE as compared to NPE, we computed
the fraction of prior samples that lie within the HPR✏ of the approximate posterior (Fig. 4, fourth
column). In tasks with broad posteriors and few simulations, the HPR✏ is almost as wide as the
prior and thus the performances of NPE and TSNPE are similar (e.g., SLCP with 1k simulations).
In other tasks and with more simulations, the HPR✏ is much narrower than the prior, leading to an
improvement in simulation efficiency (e.g., Lotka-Volterra with 100k simulations).

Finally, we evaluated whether the HPR✏ of the approximate posterior contains the support of the true
posterior (Fig. 4, fifth column). We computed the fraction of true-posterior samples within the HPR✏

of the approximate posterior. For most tasks, fewer than 0.1% of samples were excluded, and the rate
of erroneously rejected samples decreased as more simulations were used. In the Lotka-Volterra task
with 1k and 10k simulations, many ground-truth samples were rejected and TSNPE performed poorly,
but NPE and APT also failed to solve the task. Thus, while truncated proposals can potentially induce
posterior biases, these only have a negligible effect on the performance of TSNPE. We note that
TSNPE performance is qualitatively unaffected by the choice of ✏  10�4 and proposal sampling
scheme (Appendix Fig. 8, Fig. 9, Fig.10). Applying truncated proposals to APT leads to equally good
or worse performance than ’standard’ APT, depending on the task (Appendix Fig. 14).

4.2 Efficient and robust inference in two complex neuroscience problems

Next, we evaluate the performance of TSNPE on two challenging neuroscience problems, where the
competitive advantage of TSNPE is fully realized.

Pyloric network We applied TSNPE to a challenging real-world simulator from neuroscience: The
pyloric network of the stomatogastric ganglion in the crab Cancer Borealis [Prinz et al., 2003, 2004].
The model has 31 parameters and simulates 3 voltage traces that we reduce to 18 summary statistics.
The prior distribution is uniform within previously described parameter ranges [Prinz et al., 2004,
Gonçalves et al., 2020]. We identify the posterior distribution given experimentally observed data
[Haddad and Marder, 2021] (Fig. 5a) with APT and TSNPE (13 rounds, 30k simulations per round).

When applying APT ‘out of the box’ (from ‘sbi’ toolbox [Tejero-Cantero et al., 2020]), the rate
of approximate-posterior samples within the prior bounds was 0.02% after the second round and
0.0000% after the third round (Fig. 5b), which rendered a fourth round too computationally expensive.

We attempted to overcome these issues by appending a transformation T to the density estimator
q�(✓|x) such that its support is constrained to match the support of the prior. In practice, we used a
sigmoid transformation. While the resulting approximate posterior exhibited no leakage, this setup
revealed another problem when running APT: In transformed (i.e., unbounded) space, the density
estimator q�(✓|x) can put significant mass in regions outside of the training data. When forced into
constrained space, these ‘leaking’ regions lead to spikes at the bounds of the parameter space (Fig. 5c,
further details in Appendix Sec. 6.5; illustration, additional tests and full posterior in Appendix
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Figure 6: TSNPE on L5PC. (a) Cell morphology. (b) Observation. (c) Four prior samples for the
Step 1 protocol. (d) Coverage for 1 and 10 neural nets. (e) Posterior. True parameter in red. (f) Three
posterior predictives for the Step 1 protocol. (g) One posterior predictive for all protocols.

Figs. 17, 16 and 18). These spikes are at odds with previously published posterior distributions
[Gonçalves et al., 2020, Deistler et al., 2021, Glöckler et al., 2022] and samples from these parameter
regions do not produce good simulations (Appendix Fig. 19). This demonstrates that leakage occurs
in APT even when the density estimator is forced into constrained space and that these issues lead to
an incorrect posterior approximation as well as to poor predictive samples.

We applied TSNPE to this task for 13 rounds without any issue. The resulting posterior produces
samples that closely match the observed data (Fig. 5d, more samples in Appendix Fig. 15, posterior
distribution across all 31 parameters in Appendix Fig. 20). The obtained posterior is similar to
previously published posteriors [Gonçalves et al., 2020, Deistler et al., 2021, Glöckler et al., 2022].

Multicompartment model of a single neuron Finally, we turn to a landmark problem in neuro-
science for which the posterior has not yet been identified: A morphologically detailed model of a
thick-tufted layer 5 pyramidal cell (L5PC) from the neocortex [Ramaswamy et al., 2015, Markram
et al., 2015, Van Geit et al., 2016]. The model describes the response of a neuron to current stimuli
of different strengths. The model has approximately 7000 separate compartments which compose
the anatomy of the cell (Fig. 6a). Each compartment has dynamics based on the Hodgkin-Huxley
equations [Hodgkin and Huxley, 1952] and contains multiple ion channels (details in Van Geit et al.
[2016]). The model has 20 free parameters which are the maximal channel conductances and time
constants of the ion channels. The simulation consists of four separate simulations corresponding to
experimental protocols which describe the voltage response to different stimuli. For the first three
protocols (Step 1, Step 2, Step 3), each voltage response is characterized by 10 summary statistics.
The fourth protocol models the back-propagation of the voltage response through the dendritic tree
and is captured by 5 additional summary statistics (bAP soma, bAP dend. 1, bAP dend. 2). In total,
the model produces 35 summary statistics, to which we add Gaussian noise with diagonal covariance
matrix capturing the response variability of previously reported measurements [Hay et al., 2011].

Our goal is to infer the posterior distribution over 20 parameters given 35 summary statistics that
were simulated—and thus have a known ground-truth parameter set— to resemble experimentally
observed activity (Fig. 6b). The prior is a uniform distribution within previously established bounds
[Van Geit et al., 2016]. A major difficulty in fitting this model is that a large fraction of prior samples
generate summary statistics that are very different from the observed data: In particular, about 99.98%
of prior predictives contain at least one summary statistic that is undefined, e.g., time to first spike is
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undefined in the absence of spikes (Fig. 6c). When a summary statistic is undefined, we assign it a
value that is substantially outside the range of the observed data (Appendix Sec. 6.14).

We ran TSNPE over six rounds (hyperparameters in Appendix Sec. 6.15). In each round, we ran 30k
simulations, leading to a total of 180k simulations. After every round, we evaluated the expected
coverage with SBCC. After the first round, the approximate posterior exhibited poor expected
coverage (Fig. 6d top). Therefore, as suggested by Hermans et al. [2021], we used an ensemble of 10
neural density estimators to ensure that the approximate posterior is sufficiently broad (Fig. 6d bottom).
Although the approximate posterior remains underconfident, the empirical expected coverage closely
matches the confidence level for high-confidence levels, which is crucial for TSNPE (Sec. 3.3).

The TSNPE-posterior has several parameters with broad marginals, demonstrating that this model
exhibits ‘degeneracy’, a widespread phenomenon in biological systems [Marder and Taylor, 2011]
(Fig. 6e, Appendix Sec. 6.14 for parameter names). Other marginals are narrow, demonstrating that
the model is sensitive to changes in these parameters. Posterior predictive samples closely match
the observed data (Fig. 6f,g; more samples in Appendix Fig. 22). We emphasize that fitting such
morphologically-detailed neuron models is a challenging and widespread problem in neuroscience,
one for which commonly used methods [e.g., genetic algorithms, Druckmann et al., 2007, Van Geit
et al., 2016] are often simulation-inefficient or do not estimate the full posterior distribution. We show
promising results, suggesting that TSNPE could be applied to other complex single-neuron models.

In contrast, with ‘out of the box’ APT, none of the 10M approximate-posterior samples was within
the prior bounds after the second round. This rendered a third round too computationally expensive.
Overall, the results on the pyloric network model and on the multicompartment model demonstrate
that TSNPE is an efficient and robust method that scales to complex and high-dimensional models
that were inaccessible to the state-of-the-art method APT.

5 Discussion

We presented a new method to perform Bayesian inference in implicit models, which we call Trun-
cated Sequential Neural Posterior Estimation (TSNPE). Like previous methods, TSNPE adaptively
selects parameters to improve simulation-efficiency and allow posterior inference in complex models
with many parameters. The key ingredient is that TSNPE samples parameters from a ‘truncated’
region of the prior, and thus overcomes instabilities of previous methods while maintaining simulation
efficiency. In order to diagnose potential errors of TSNPE, we developed a coverage test that can be
run quickly and at every round of TSNPE. TSNPE presents a new variant of SNPE which is at least
as powerful as previous variants on benchmark tasks, but provides a powerful alternative which is
able to solve inference problems on which the state-of-the-art method APT failed.

Related work TSNPE differs from automatic posterior transformation (APT, SNPE-C) in its
proposal and its loss function: TSNPE uses a truncated prior as proposal, while APT can flexibly use
any proposal, which, e.g., allows for more sophisticated active learning rules [Lueckmann et al., 2019,
Järvenpää et al., 2019]. However, APT’s flexibility requires a modification of NPE loss function,
which can be an impediment to its usage in practice: First, the modification can lead to ‘leakage’,
which can make it prohibitive to draw samples within prior bounds. Second, APT loss requires an
explicit prior and thus, cannot be applied to models in which the prior can only be sampled [Ramesh
et al., 2022]. Third, current formulations of APT cannot discard parameters leading to invalid
simulations as the posterior mass would ‘leak’ into parameter regions which only produce invalid
simulations (Appendix Sec. 6.5). It might be possible that these issues are resolved using a modified
formulation of APT, e.g., by combining its atomic loss with additional loss terms, or preventing
leakage by penalizing ‘bad’ parameters [Greenberg et al., 2019]. In cases in which leakage prevents
application of APT (in particular, in high-dimensional problems), TSNPE provides an alternative.

Our method is inspired by previous work that introduced a mechanism to post-hoc correct samples
obtained by an Approximate Bayesian Computation (ABC) algorithm [Blum and François, 2010],
i.e., ‘regression adjustment ABC’. Their method draws samples from a truncated region of the prior
to avoid correction terms, but estimates the posterior density with ABC samples—rather than using a
flexible neural density estimator—and estimates the support by training a dedicated support-vector
machine. In addition, the method runs a single round of truncation and retraining, whereas we
demonstrate that TSNPE can be robustly applied across 10 rounds.
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Truncated proposals have also been proposed for neural ratio estimation [Truncated Marginal Neural
Ratio Estimation (TMNRE) Miller et al., 2021]: TMNRE uses truncated proposals to efficiently
infer selected posterior marginals while being amortised around the observation, allowing to test the
coverage properties of the selected marginals, e.g., with SBC [Cook et al., 2006, Talts et al., 2018].
In addition, truncating based on the marginals allows TMRNE to sample from the truncated proposal
without rejection or SIR sampling. In contrast, TSNPE aims at efficiently inferring the full posterior
distribution by proposals that avoid the correction of SNPE loss function. Truncating the proposal
based on the full posterior rather than on the marginals can lead to drastically narrower proposals:
E.g., on the pyloric network problem, truncation based on posterior marginals rejects 20% of prior
samples versus 99.94% rejection based on the posterior joint. In addition, while TMNRE uses the
expected coverage to test the consistency of the posterior marginals, TSNPE can test the expected
coverage of the full posterior distribution.

Possible failure modes The main failure mode of TSNPE will occur if the truncated proposal
excludes significant portions of density mass of the true posterior (e.g., if the estimate misses posterior
modes). In these cases, the learned approximate posterior will put systematically too little mass in the
excluded regions. We recommend the use of diagnostic tools such as SBCC to identify such failures
[Cook et al., 2006, Miller et al., 2021, Hermans et al., 2021, Rozet et al., 2021].

In addition, if the true posterior has unbounded support, any finite values of ✏ > 0 will lead to a
biased approximate posterior which puts too little weight in the posterior tails. In that case, and
when running TSNPE across many rounds, the errors from each individual round could accumulate.
Although we did not observe this bias to significantly affect the algorithm performance on several
benchmark tasks, we cannot exclude the possibility of a substantial performance degradation when
running TSNPE for a larger number of rounds (�10).

Finally, unlike SNPE methods that use the previous estimate of the posterior as the proposal distribu-
tion, our method requires a scheme to sample from a truncated proposal. If the sampling scheme is
inaccurate (i.e., if it does not produce a proposal distribution that is proportional to the prior within the
truncated region), the results of TSNPE will be biased. To avoid this, we recommend using rejection
sampling by default and using SIR or sequential Monte-Carlo methods only if rejection sampling is
too computationally expensive. For SIR, it is important to use a large oversampling factor K (e.g.,
K = 1024) and use diagnostic tools such as effective sample size (Appendix Sec. 6.12, Fig. 13).

Simulation-based coverage calibration In order to diagnose whether the approximate posterior is
broader than the true posterior, we applied SBCC, a coverage test for TSNPE [Cook et al., 2006, Rozet
et al., 2021]. SBCC evaluates the expected coverage of the approximate posterior without evaluating it
on a grid [Dalmasso et al., 2020, Hermans et al., 2021] and, unlike diagnostic tools for methods based
on learning the likelihood(-ratio), does not require MCMC runs for multiple observations x [Miller
et al., 2021]. This allows SBCC to be run quickly and for models with many parameters. In addition,
in contrast to diagnostic tools for likelihood-free inference with Approximate Bayesian Computation,
SBCC does not require an additional step to estimate the density of approximate posterior samples
[Prangle et al., 2014]. We note that, since SBCC is a variation of SBC [Cook et al., 2006, Talts et al.,
2018], it only ensures that the HPR✏ is correct on average across observations, not for a particular
observation. In principle, SBCC could be applied to other SNPE variants, although empirically the
impact of arbitrary proposals on SBCC performance is currently unclear.

Conclusion Overall, TSNPE combines the simulation-efficiency of sequential neural posterior
estimation with the robustness and coverage-tests of non-sequential methods. We demonstrated that
it allows to scale neural posterior estimation to complex and high-dimensional scientific problems.
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