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Abstract

To unveil how the brain learns, ongoing work seeks biologically-plausible ap-
proximations of gradient descent algorithms for training recurrent neural net-
works (RNNs). Yet, beyond task accuracy, it is unclear if such learning rules
converge to solutions that exhibit different levels of generalization than their non-
biologically-plausible counterparts. Leveraging results from deep learning theory
based on loss landscape curvature, we ask: how do biologically-plausible gradient
approximations affect generalization? We first demonstrate that state-of-the-art
biologically-plausible learning rules for training RNNs exhibit worse and more vari-
able generalization performance compared to their machine learning counterparts
that follow the true gradient more closely. Next, we verify that such generalization
performance is correlated significantly with loss landscape curvature, and we show
that biologically-plausible learning rules tend to approach high-curvature regions in
synaptic weight space. Using tools from dynamical systems, we derive theoretical
arguments and present a theorem explaining this phenomenon. This predicts our
numerical results, and explains why biologically-plausible rules lead to worse and
more variable generalization properties. Finally, we suggest potential remedies that
could be used by the brain to mitigate this effect. To our knowledge, our analysis
is the first to identify the reason for this generalization gap between artificial and
biologically-plausible learning rules, which can help guide future investigations
into how the brain learns solutions that generalize.

1 Introduction

A longstanding question in neuroscience is how animals excel at learning complex behavior involving
temporal dependencies across multiple timescales and thereafter generalize this learned behavior
to unseen data. This requires solving the temporal credit assignment problem: how to assign the
contribution of past neural states to future outcomes. To address this, neuroscientists are increasingly
turning to the mathematical framework provided by recurrent neural networks (RNNs) to model
learning mechanisms in the brain [1, 2]. Temporal credit assignment in RNNs is typically achieved
by backpropagation through time (BPTT), or other gradient descent-based optimization algorithms,
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none of which are biologically-plausible (or bio-plausible for short). Therefore, the use of RNNs as a
framework to understand the computational principles of learning in the brain has motivated an influx
of bio-plausible learning rules that approximate gradient descent [1–3].

The performance of such rules is typically quantified by accuracy. Although the accuracy achieved
by these rules is often comparable to true gradient descent, little is known about the breadth of
the emergent solutions, namely how well they generalize. Broadly speaking, generalization refers
to a trained model’s ability to adapt to previously unseen data, and is typically measured by the
so-called generalization gap: the difference between training and testing error. This is especially
important when learning complex tasks with nonlinear RNNs where the loss landscape is non-
convex, and therefore, many solutions with comparable training accuracy can exist. These solutions,
characterized as (local) minima in the loss landscape, can nonetheless exhibit drastically different
levels of generalization (Figure 1). It is not clear if gradient-based methods like BPTT and the
existing bio-plausible alternatives have a different tendency to converge to loss minima that provide
better or worse generalization.

While the search for better predictors of the generalization performance remains an open issue in deep
learning research [4], recent extensive studies identify flatness of the loss landscape at the solution
point as a promising predictor for generalization [5–9]. Leveraging these empirical and theoretical
findings, we ask: how do proposed biologically-motivated gradient approximations affect the flatness
of the converged solution on loss landscape, and thereby, generalization?

Our overarching goal is to investigate generalization trends for existing bio-plausible temporal
credit assignment rules, and in particular, examine how truncation-based bio-plausible gradient
approximations can affect such trends. Specifically, our contributions are summarized as follows:

• In numerical experiments, we demonstrate across several well-known neuroscience and
machine learning benchmark tasks that state-of-the-art (SoTA) bio-plausible learning rules
for training RNNs exhibit worse and more variable generalization gaps, compared to true
(stochastic) gradient descent (Figure 2A-C).

• Using the same experiments, we show that bio-plausible learning rules tend to approach high-
curvature regions in synaptic weight space as measured by the loss’ Hessian eigenspectrum
(Figure 2D-F). Further, we verify that this correlates with worse generalization (Figure 2D-F
and 3), which is consistent with the literature.

• We present a theorem to explain this phenomenon by examining the weight update equation
as a discrete dynamical system, which sheds light on a potential connection between gradient
alignment and the preference over converging to narrower minima (Theorem 1, Figure 4).

Given the core components in designing artificial neural networks: data, objective functions, learning
rules and architectures [10], we investigate different learning rules while holding the data, objective
function and architecture constant. SoTA RNN learning rules investigated include a three-factor
rule with symmetric feedback (symmetric e-prop [11]), a three-factor rule using random feedback
weights (RFLO [12]) and a multi-factor rule using local modulatory signaling (MDGL) [13]. For
an in-depth explanation of how these rules are implemented and why they are bio-plausible, please
refer to Appendix A.2. We also encourage the reader to visit Appendix B for Theorem 1 proof and
discussion on loss landscape geometry. In the last paragraph of the Discussion section, we discuss
potential remedies implemented by the brain and provide preliminary results (Appendix Figure 5).
To our knowledge, our analysis is the first to highlight and quantitatively provide a mechanistic
explanation of the reason for this gap in solution quality between artificial and bio-plausible learning
rules for RNNs, thereby motivating further investigations into how the brain learns solutions that
generalize.

2 Related works

2.1 Bio-plausible gradient approximations

Investigating bio-plausible learning rules is of interest both to identify more efficient training strategies
for artificial networks and to better understand learning in the brain [2, 3, 14–43]. In order for
learning to reach a certain goal quantified by an objective, learning algorithms often minimize a loss
function [10]. The error gradient, if available, tells us how each parameter should be adjusted in
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Figure 1: Setup. A) Illustration of an RNN trained to minimize error/loss function L (left). Ex-
isting bio-plausible proposals for RNNs estimate the gradient by neglecting dependencies that are
biologically implausible to compute (right). B) Low training error/loss can be achieved by partially
following a gradient (right), but the preference for converging to minima with certain generalization
properties remains underexamined for these learning rules (left). C) Minima flatness matters: 1-D
loss landscape illustration with two solutions that equally minimize loss L, but exhibit drastically
different generalization properties: the narrower minima are more sensitive to perturbation.

order to have the steepest local descent. For training RNNs, which are widely used as a model for
neural circuits [44–63], standard algorithms that follow this gradient — real time recurrent learning
(RTRL) and BPTT — are not bio-plausible and have overwhelming memory storage demands [3, 64].
However, learning rules that only approximate the true gradient can sometimes be as effective as those
that follow the gradient exactly [10, 65]. Because of that, bio-plausible learning rules that approximate
the gradient using known properties of real neurons have been proposed and led to successful learning
outcomes across many different tasks in feedforward networks [1, 66–75], with recent extensions to
recurrently connected networks [11–13]. These existing bio-plausible rules for training RNNs [11–
13] are truncation-based (which is the focus of this study), so that the untruncated gradient terms can
be assigned with putative identities to known biological learning ingredients: eligibility traces, which
maintain preceding activity on the molecular levels [76–81], combined with top-down instructive
signaling [76, 77, 82–88] as well as local cell-to-cell modulatory signaling within the network [13,
89, 90]. For efficient online learning in RNNs, other approximations (not necessarily bio-plausible)
to RTRL [91–96] have also demonstrated to produce a good performance. Given the impressive
accuracy achieved by these approximate rules, several studies began to investigate their convergence
properties [97], e.g. for random backpropagation weights in feedforward networks [98, 99]. However,
the trend of generalization capabilities of these rules, especially in RNNs, is underexamined.

2.2 Loss landscape curvature and generalization performance

Given the central importance of understanding how neural networks perform in situations unseen
during training [4, 100–106], the deep learning community has made tremendous efforts to develop
tools for understanding generalization that we leverage here. That flat minima could lead to better
generalization was observed more than two decades ago [107]. Intuitively, under the same amount
of perturbation ε in parameter space (e.g. loss landscape changes due to the addition of new data)
worse performance degradation will be seen around the narrower minima (see Figure 1C). We note
that perturbations in parameter space can be linked to that in the input space [6]. Recently, many
empirical studies have consistently supported the usefulness of this predictor [108–115]. In particular,
the authors of [5] performed an extensive study and found that flatness-based measures have a
higher correlation with generalization than other alternatives. Motivated by this, several studies have
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characterized properties of the loss functions’s Hessian — whose eigenspectrum carries information
about curvature [116–120]. Connections between flatness and generalization performance have shed
light on the reason for greater generalization gaps in large batch training [111, 121–124], and also
have inspired optimization methods to favor flatter minima [108, 109, 125–132]. Despite the criticism
of scale-dependence of flatness [133], where parameter rescaling can drastically change flatness but
not always generalization quality, flatness — with parameter scales taken into account [134, 135] —
are connected to PAC-Bayesian generalization error bounds [7–9]. Moreover, a recent theoretical
study rigorously connects the flatness of the loss surface to generalization in classification tasks under
the assumption that labels are (approximately) locally constant [6]. Leveraging the great progress
from the deep learning community, we aim to study the generalization properties of bio-plausible
learning rules from a geometric perspective.

3 Results

In this section, we first describe the network and learning setup we use (Figure 1A). Next, we
present a number of numerical experiments where we compute the generalization gap directly on
three commonly used ML and neuroscience tasks (Figure 2A-C), for truncation-based bio-plausible
gradient approximations. For the same experiments, we also quantify loss landscape curvature along
learning trajectories, and connect these quantities to generalization behavior (Figures 2D-F and 3).
Finally, we provide theoretical arguments and a theorem that explains how gradient alignment in
bio-plausible gradient approximations can affect curvature preference (Theorem 1, Figure 3) and thus,
generalization. Through additional experiments, we verify the predictive power of our theory. We
conclude with discussions on potential remedies used by the brain (Appendix Figure 5) and future
directions.

FD E Delayed match-to-samplePattern generation Sequential MNIST

A CB Delayed match-to-samplePattern generation Sequential MNIST
Generalization gap historgrams

Generalization gap vs leading Hessian eigenvalue

Figure 2: Bio-plausible temporal credit assignment rules show worse and more variable gen-
eralization gap, which can be informed by loss landscape curvature. A-C) Generalization gap
distributions computed at the end of training across different random weight initializations for several
well-known neuroscience and machine learning tasks. The higher the generalization gap, the worse
the generalization performance. BPTT (black), bio-plausible alternatives (magenta, yellow and green).
D-F) Scatter plots showing the trend of generalization gap v.s. leading loss Hessian eigenvalue across
many runs; each point corresponds to a single run of the same runs as in A-C.

3.1 Network and learning setup

The detailed governing equations of our setup can be found in Methods (Appendix A). We consider
a RNN with Nin input units, N hidden units and Nout readout units (Figure 1A). We verified that
trends hold for different network sizes and refer the reader to Appendix A.3 for more details. The
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update formula for ht ∈ RN (the hidden state at time t) is governed by:

ht+1 = φ(Whf(ht),Wxxt), (1)

where φ(·) : RN → RN is the hidden state update function, f(·) : RN → RN is the activation
function, Wh ∈ RN×N (resp. Wx ∈ RNin×N ) is the recurrent (resp. input) weight matrix and
x ∈ RNin is the input. For φ, we consider a discrete-time implementation of a rate-based recurrent
neural network (RNN) similar to the form in [136] (details in Appendix A). Readout ŷ ∈ RNout , with
readout weights w ∈ RNout×N , is defined as

ŷ = 〈w, f(ht)〉. (2)

We performed experiments on three tasks: sequential MNIST [137], pattern generation [138] and
delayed match-to-sample tasks [139]. The objective is to minimize scalar loss L ∈ R, which is
defined as

L(Wh) =

{
1

2TB

∑B
i=1

∑T
t=1

∑Nout

k=1 (ŷ
(i)
k,t − y

(i)
k,t)

2, for regression tasks
−1
TB

∑B
i=1

∑T
t=1

∑Nout

k=1 π
(i)
k,tlogπ̂

(i)
k,t, for classification tasks

(3)

given target readout y ∈ RNout , task duration T ∈ R and batch size B ∈ R. πk,t ∈ R is the
one-hot encoded target for readout unit k at time t and π̂k,t = softmaxk(ŷ1,t, . . . , ŷNOUT ,t) =
exp(ŷk,t)/

∑
k′ exp(ŷk′,t) is the predicted category probability.

Different learning algorithms examined in this work are BPTT (our benchmark), which update
weights by computing the exact gradient (∇L(Wh) ∈ RN×N ):

∆Wh = −η∇L(Wh), (4)

and three SoTA bio-plausible learning rules that update weights using approximate gradient:

∆̂Wh = −η∇̃L(Wh), (5)

where ∇̃L(Wh) ∈ RN×N denotes a gradient approximation and η ∈ R denotes the learning rate.
These three learning rules are explained further in Appendix A (Methods) but we note that these
bio-plausible learning rules are based on truncations of dependency paths — on the computational
graph for the exact gradient— that are biologically implausible to compute (Figure 1A). In all figures,
learning rules are labeled as "Three-factor" (symmetric e-prop), "RF Three-factor" (RFLO) and
"MDGL", respectively. We remark that the focus here is on comparing artificial to bio-plausible learn-
ing rules, rather than between biological rules. Finally, we note that tasks were learned with mostly
comparable training accuracies for all learning rules, and that generalization gaps reflect a testing
departure from these values. We refer the reader to the Appendix for more details (Appendix A.3).

3.2 Generalization gap and loss landscape curvature

To study generalization performance, our first step is to compute the generalization gap empirically.
Generalization gap is defined as train accuracy minus test accuracy; the larger the generalization gap,
the worse the generalization performance. For various learning rules, we plot the generalization gap
histogram at the end of training across runs with distinct initializations; different colors represent
different learning rules (Figure 2A-C). Notice that these bio-plausible rules achieve worse and more
variable generalization performance than their machine learning counterpart (BPTT).

We now investigate if the generalization gap behavior described above correlates well with Loss
landscape curvature. We use the leading eigenvalue of the loss’ Hessian (where derivatives are taken
with respect to model parameters) as a measure for curvature following previous practice [121] and
note that it is practical for both empirical [118] and theoretical analyses (Theorem 1). There exist
other measures for flatness and due to the scale-dependence issue of Hessian spectrum [133], we also
test using parameter scale-independent measures (see Appendix Figures 7 and 8). When we plot
generalization gap points from Figure 2A-C against the corresponding leading Hessian eigenvalue,
a statistically significant correlation is observed (Figure 2D-F). We also observed such correlation
across runs with the learning rule fixed (Appendix Figure 12). We note that we did not expect this
relationship to be very tight since in addition to the worse generalization gap on average, bio-plausible
learning rules exhibit increased variance. This is an important and consistent trend we observed but
might have been overlooked in previous studies.
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Figure 3: Bio-plausible gradient approximations tend to approach high curvature regions in
loss landscape. Dominant Hessian eigenvalues are plotted throughout training for bio-plausible
learning rules and BPTT. This analysis is done for A) sequential MNIST, B) pattern generation and
C) delayed match-to-sample tasks. Solid lines/shaded regions: mean/standard deviation of dominant
Hessian eigenvalue curves across five independent runs.

So far, we investigated the endpoints of optimization trajectories, where training performance has
converged. Now, we visualize the whole training trajectory. This done is for two reasons: 1) account
for early stopping that can halt training anywhere along the trajectory due to time constraints; 2)
flatness during training could give indications of avoiding or escaping high-curvature regions. We
observe that the biologically motivated gradient approximations tend to rapidly approach high-
curvature regions compared to their machine learning counterpart (Figure 3). Together, these results
demonstrate a clear trend and a link between the generalization gap and loss landscape curvature:
both being increased and more variable for bio-plausible rules. We also stopped BPTT early to match
the test accuracy of the three-factor rule, and observed similar trends as in the main text (Appendix
Table 1). We also note that the curvature convergence behavior seems to be a shared problem of
temporal truncations of the gradient (Appendix Figure 9), which is what the existing bio-plausible
gradient approximations for RNNs are based on. Next, we provide a theoretical argument as to why
truncated temporal credit assignment rules favor high curvature regions of the loss landscape.

3.3 Theoretical analysis: link between curvature and gradient approximation error

We discussed how generalization can be linked to curvature, and we now examine the link between
curvature and gradient alignment during learning dynamics. We represent approximate gradients in
a rule-agnostic manner, where an arbitrary approximation is represented in terms of its component
along the gradient direction plus an arbitrary orthogonal vector (Figure 4A):

~̂g = ρ~g + ~e, (6)

where ~g := ∇L(Wh) ∈ RN2

and ~̂g ∈ RN2

are the exact and approximate gradients, respectively
(we reshaped ∇L(Wh) into a vector here); ~e ∈ RN2

is an arbitrary orthogonal vector to ~g. Here,
scalar ρ ∈ R represents the relative step length along the gradient direction that the approximate rule
is making. As we will see in Theorem 1, ρ is an important quantity in our analysis. One can easily
compute ρ from ~g and ~̂g by ρ =

~̂gT~g
~gT~g

.

We express weight updates as discrete dynamical systems (with weights Wh as the state variables):

W+
h ←W−h + F (W−h ) = W−h − η∇L(W−h ), for BPTT (7)

W+
h ←W−h + F̂ (W−h ) = W−h − η∇̃L(W−h ), for an approximate rule, (8)

where η is the learning rate, ∇̃ is an approximate gradient, and F : RN2 → RN2

(resp. F̂ : RN2 →
RN2

) denotes the map defined by BPTT (resp. an approximate) weight update rule. Notation W+

and W− denotes W at the next and current step, respectively. We note in passing that dynamical
systems view of weight updates have been used previously [140, 141].

We introduce additional notations before presenting Theorem 1. J ∈ RN2×N2

(resp. Ĵ ∈ RN2×N2

)
is the Jacobian of the dynamical system of BPTT (resp. an approximate rule) in Eq. 7 (resp. Eq. 8).
λJ1 ∈ R (resp. λ̂J1 ∈ R) is the leading eigenvalue for BPTT (resp. an approximate rule) Jacobian.
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λH1 ∈ R is the leading eigenvalue of the loss’ Hessian matrix. W ∗B ∈ RN×N (resp. W ∗e ∈ RN×N ) is
the final fixed point for BPTT (resp. an approximate rule). We now present Theorem 1.
Theorem 1. Consider an RNN defined in Eq. 1 with a single scalar output ŷ and least squares loss
as in Eq. 3 presented only at the last time step T , and weights are updated according to the difference
equation for BPTT 7 (resp. an approximate rule 8) on a single example (stochastic gradient descent)
using learning rate ηB (resp. ηe). In the limit of stable fixed point convergence with zero training
error, the dominant loss’ Hessian eigenvalue attained by BPTT (resp. approximate rule) is bounded
by |λH1 (W ∗B)| < 1

ηB
(resp. |λH1 (W ∗e )| < 1

|ρ|ηe ).

Proof. Full proof is in Appendix B. Here is a summary of the main steps involved:

1. The Jacobian of BPTT dynamical system (Eq. 7) is the loss’ Hessian scaled by a constant;

2. Using the above relationship, we can bound |λH1 | from |λJ1 | < 1, which is the condition for
a discrete-time dynamical system to converge to a fixed point

3. However, the link between the Jacobian of an approximate update rule and the loss’ Hessian
is less obvious. Thus, we derive a link between |λ̂J1 | and |λJ1 |, and then apply the step above

The consequence of the upper bound derived in Theorem 1 is that truncated gradient rules can converge
to minima with a higher dominant Hessian eigenvalue than BPTT, with the leading eigenvalue bound
inversely proportional to |ρ| (|ρ| < 1 usually). In practice, ρ can vary depending on task settings
and in our setup, we observed it to be somewhere between 0.02 and 0.3. We remark that this higher
upper bound is consistent with the increased spread of curvature and generalization observed for
bio-plausible rules in experiments. Theorem 1 highlights scalar ρ (Eq. 6), relative step length along
the gradient direction, as an important factor in the curvature bound. To test that, we eliminate the
factor of ρ by reducing the learning rule of BPTT such that its step length is matched to that of the
three-factor rule. This resulted in the blue curves in Figure 4, which is still trained using BPTT but
with the update scaled by a factor of ρ. By matching the step length of BPTT and a three-factor rule
along the gradient direction, similar convergence behaviors were observed. Similar observations were
also made when the matching step experiment was repeated at three times the learning rate for all rules
(Appendix Figure 12C). This result then attributes the curvature preference behavior to relative
step length along the gradient direction, and thereby indicating a link between curvature and
gradient alignment under certain conditions. Consistent with earlier results, when the step length
of BPTT is matched to that of a three-factor rule, its generalization performance also worsened
(Appendix Figure 6).

We make a few more remarks regarding Theorem 1. ρ is usually less than 1 because otherwise
the additional orthogonal component ~e would imply a larger update size for the approximate rule
compared to BPTT. This would make the approximate rule more prone to numerical instabilities
(Eq. 9) and would require a change in solver hyperparameters such as overall learning rate which
in turn, influence the update size. In our experiments, when the three-factor rule was scaled up to
match the along-gradient update sizes of BPTT, we quickly ran into numerical overflow (values of
NaNs in the network), which is expected for a very large learning rate. The exact point for when
this numerical instability is reached depends on many factors such as the model, task, numerical
precision as well as the consistency of update direction. We have also equated numerical instabilities
in simulations as a proxy for situations problematic for the brain in Discussion. Curiously, ~e did not
seem to play a helpful role in finding flatter minima; this could be due to that approximation error ~e is
not well aligned with the sharpest directions (Appendix Figure 10). In fact, ~e being orthogonal to the
leading Hessian eigenvectors is a consequence of the assumptions behind Theorem 1. Despite making
assumptions including scalar output, MSE loss and loss available at the last step, our empirical results
indicate that our conclusions also extend to other setups: vector output, cross-entropy loss and loss
that accumulates over time steps (Figure 4). In Appendix B.3, we discuss the generality of Theorem 1
by using quadratic expansion of the loss function and assuming that ~e is orthogonal to the leading
Hessian eigenvectors.

One might assume increasing the learning rate of the approximate rules could compensate for the
reduced step length due to ρ. However, this can raise other issues. Suppose ∆W = −η~g for the
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Figure 4: Preference for high curvature regions connected to worse gradient alignment under
certain conditions. A) An arbitrary gradient approximation, ~̂g, its component along the gradient
direction, ρ~g, and orthogonal to the gradient ~e (Eq. 6). The scalar ρ represents the relative step length
along the gradient direction. B) Illustration for Theorem 1: if gradient ~g is aligned with the sharpest
directions but error ~e is not (see Appendix Figure 10), smaller step length along the gradient direction
can make it harder to step over narrow minima. C-E) Leading loss Hessian eigenvalue v.s. training
iteration for the three-factor rule, BPTT, and modified BPTT (three-factor, theory). For the latter, step
length along the gradient direction of BPTT was matched to three-factor rule by multiplying BPTT
update with a factor of ρ, which recovers curvature trends of the three-factor rule.

exact gradient and we increase the learning rate of the approximate update until ∆̂W = −η~g − η~e
(magnitude of ~e is scaled accordingly), and because ~g ⊥ ~e:

‖∆̂W‖2 = η2‖~g‖2 + η2‖~e‖2 > η2‖g‖2 = ‖∆W‖2 (9)

In other words, if approximate updates ∆̂W make the same amount of progress as BPTT along the
gradient direction, ∆̂W would have a larger magnitude due to the orthogonal component ~e, and
large update magnitude can be very problematic for numerical stability [142]. Thus, the magnitude
of ~e limits the learning rate that can be used. Because of the numerical issues associated with
increasing the learning rate for approximate rules (due to ~e), the differences in generalization
and curvature convergence between rules cannot be reduced by increasing the learning rate
for approximate rules. To balance between this numerical stability issue and the potential benefit of
large learning rates, one can consider using a large learning rate early in training to prevent premature
stabilization in sharp minima followed by gradual decay to mitigate the stability issue (see Appendix
Figure 5).

Taken together, Theorem 1 and Eq. 9 connect gradient alignment with the curvature of the converged
solution under certain conditions. For an approximation that is aligned poorly with the exact
gradient, large orthogonal approximation error vector ~e limit the step length for numerical
stability reasons (Eq. 9) and small relative step length ρ correspond to a larger curvature
bound (Theorem 1).

4 Conclusion

While developing bio-plausible learning rules is of interest for both answering neuroscience questions
and searching for more efficient training strategies for artificial networks, the generalization properties
of solutions found by these rules are severely underexamined. Through various well-known machine
learning and working memory tasks, we first demonstrate empirically that existing bio-plausible
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temporal credit assignment rules attain worse generalization performance, which is consistent with
their tendency to converge to high-curvature regions in loss landscape. Second, our theoretical
analysis offers an explanation for this preference for high curvature regions based on worse alignment
to the true gradient. This regime corresponds to the situation where the step length along the gradient
direction is small and the approximation error vector is large. Finally, we test this theory empirically
by matching the relative step length along the gradient direction resulting in similar convergence
behavior (Figure 4).

5 Discussion

Our study — a stepping stone toward understanding biological generalization using deep learning
methods — raises many exciting questions for future investigations, both on the front of stronger
deep learning theory and more sophisticated biological ingredients.

Deep learning theory and its implications: In this study, we investigate generalization properties
using loss landscape flatness, a promising predictor with recent rigorous connection to generalization
gap [6]. Yet, to what extent can flatness explain generalization is still an open question in deep
learning. For instance, curvature is a local measure, which means that its informativeness of robustness
against global perturbation is limited. Moreover, the theoretical association between flatness and
generalization is provided in the form of upper bound [6, 9] and the bound may not always be tight,
which is consistent with more variability in the generalization gap for bio-plausible learning rules but
offers less predictive power. Despite observing a significant correlation between the generalization
gap and a curvature-based measure in Figure 2, the relationship appears to be messy, suggesting other
factors involved in explaining generalization. Given that developing better predictors of generalization
is still a work in progress [4], we anticipate stronger theoretical tools to be applied for studying
biological generalization in the future. Our results are also consistent with existing findings linking
learning rate to loss landscape curvature in deep networks [123]. In the case of bio-plausible gradient
approximations, small step length along the gradient direction cannot be compensated by increasing
the learning rate, as that would inadvertently increase the error vector, causing numerical issues
(Eq. 9). Curiously, the approximation error vector ~e did not seem to play a role other than restricting
the learning rate. While it is well-known that stochastic gradient noise (SGN) can help with finding
flat minima due to the alignment of SGN covariance and Hessian near minima [122, 143–145],
that may not apply to approximation error vector ~e resulting primarily from temporal truncation
of the gradient (see Figure 1A and Appendix Figure 10). This indicates that noise with different
properties (e.g. different directions) could affect generalization differently, thereby motivating future
investigations into how a broad range of biological noises — which may differ from noise in ML
optimization (e.g. SGN) — can impact generalization.

Moreover, our results are closely related to a series of studies that examined the "catapulting" behavior
in learning [146–150]. This can happen when the second order Taylor term of the loss function would
dominate over the first, which would cause learning to cross the threshold for step size stability and
"catapult" into a flatter region that can accommodate the step size. If the truncation noise is only
aligned with the eigendirections associated with negligible eigenvalues, then it can only have limited
contributions to the second-order Taylor term. On top of that, the orthogonal noise term would
require a smaller learning rate to be used to avoid numerical issues, as explained earlier. Overall,
these would lead to a weaker second-order Taylor term relative to the first for bio-plausible temporal
credit assignment rules, which would then increase the threshold for step size stability. This increased
stability is closely tied to the greater dynamical stability (for the weight update difference equation) of
approximation rules predicted by Theorem 1, due to the correspondence between loss’ Hessian matrix
and the Jacobian matrix of the weight update difference equation (the correspondence is explained in
Theorem 1 proof in Appendix B).

Toward more detailed biological mechanisms: On the front of more sophisticated biological
ingredients that may improve generalization performance, we see two lines of approaches: 1- develop
bio-plausible learning rules that align better with the gradient, as suggested by our rule-agnostic
analysis (Theorem 1, Figure 4); and 2- instead of studying learning rules in isolation, consider also
other neural circuit components [151–158] that could interact with the learning rule. An important
component would be the architecture, including connectivity structure and neuron model, found
through evolution [156] (see also [159]). To address our main question, this study varies learning rules
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while holding data, objective function and architecture constant (see [10]). However, these different
components can interact, and more sophisticated architecture can facilitate task learning [159–166].
Given the exploding parameter space resulting from such interactions, we believe it requires careful
future analysis and is outside of the scope for this one paper.

Additionally, learning rate modulation [167, 168] could be one of many possible remedies employed
by the brain. We conjecture that neuromodulatory mechanisms could be coupled with these learning
rules to improve the convergence behavior through our scheduled learning rate experiments (Appendix
Figure 5), where an initial high learning rate could prevent the learning trajectory from settling in
sharp minima prematurely followed by gradual decay to avoid instabilities. One possible way to
realize such learning rate modulation could be through serotonin neurons via uncertainty tracking,
where the learning rate is high when the reward prediction error is high (this can happen at the
beginning of learning) [169]. Since the authors of [169] showed that inhibiting serotonin led to
failure in learning rate modulation, we conjecture that such inhibition might have an impact on the
generalization performance of learning outcomes. On the topic of balancing numerical instabilities
and potential advantages of large learning rates, while the analog nature of biology may seem to
avoid finite precision representation in digital computers that give rise to numerical instabilities,
the same problems that lead to numerical instabilities in digital computers, such as big ranges
between quantities added or multiplied, remains an issue for biology since quantities must be
stored in noisy activity patterns of neurotransmitter release. Future investigations could investigate
potential homeostatic mechanisms that regulate biological quantities to avoid such instabilities,
thereby enabling larger "learning rates” to be used so as to find flatter minima. Other ingredients for
future investigations could include intrinsic noise with certain structures [153, 170, 171] (including
directions and bias/variance properties) that would make them more favorable for generalization.
Taken together, we hope to see follow-up investigations — riding on the rapid advancements both
at the front of deep learning theory and sophisticated biological mechanisms — into how the brain
attains solutions that generalize.
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