
A Related Work

A.1 Time Series Forecasting

We first briefly review the related literature of time series forecasting (TSF) methods as below.
Complex temporal patterns can be manifested over short- and long-term as the time series evolves
across time. To leverage the time evolution nature, existing statistical models, such as ARIMA [6]
and Gaussian process regression [7] have been well established and applied to many downstream
tasks [28, 29, 2]. Recurrent neural network (RNN) models are also introduced to model temporal
dependencies for TSF in a sequence-to-sequence paradigm [24, 9, 61, 40, 46, 50, 53]. Besides,
temporal attention [49, 59, 56] and causal convolution [3, 5, 54] are further explored to model the
intrinsic temporal dependencies. Recent Transformer-based models have strengthened the capability
of exploring hidden intricate temporal patterns for long-term TSF [67, 42, 65, 71]. On the other hand,
the multivariate nature of TSF is another topic many works have been focusing on. These works
treat a collection of time series as a unified entity and mine the inter-series correlations with different
techniques, such as probabilistic models [53, 50], matrix/tensor factorization [54, 55], convolution
neural networks (CNNs) [3, 40], and graph neural networks (GNNs) [26, 43, 70, 66, 8].

To improve the reliability and performance of TSF, instead of modeling the raw data, there exist
works inferring the underlying distribution of the time series data with generative models [69, 14].
Many studies have employed a variational auto-encoder (VAE) to model the probabilistic distribution
of sequential data [21, 23, 12, 10, 47]. For example, VRNN [12] employs the VAE to each hidden
state of RNN such that the variability of highly structured sequential data can be captured. To yield
predictive distribution for multivariate TSF, TLAE [47] implements nonlinear transformation by
replacing matrix factorization with encoder-decoder architecture and temporal deep temporal latent
model. Another line of generative methods for TSF focus on energy-based models (EBMs), such
as TimeGrad [51] and ScoreGrad [68]. EBMs do not restrict the tractability of the normalizing
constants [68]. Though flexible, the unknown normalizing constant makes the training of EBMs
particularly difficult.

This paper focuses on TSF with VAE-based models. Besides, as many real-world time series data
are relatively short and small [58], a coupled probabilistic diffusion model is proposed to augment
the input series, as well as the output series, simultaneously, such that the distribution space can be
enlarged without increasing the aleatoric uncertainty [34]. Moreover, to guarantee the generated
target series moving toward the true target, a multi-scaled score-matching denoising network is
plugged in for accurate future series prediction. To our knowledge, this is the first work focusing on
generative TSF with the diffusion model and denoising techniques.

A.2 Time Series Augmentation

Both the traditional methods and deep learning methods can deteriorate when limited time series data
are encountered. Generating synthetic time series is commonly adopted for augmenting short time
series [13, 18, 69]. Transforming the original time series by cropping, flipping, and warping [32, 15]
is another approach dedicated to TSF when the training data is limited. Whereas the synthetic time
series may not respect the original feature relationship across time, and the transformation methods
do not change the distribution space. Thus, the overfitting issues cannot be avoided. Incorporating the
probabilistic diffusion model for TSF differentiates our work from existing time series augmentation
methods.

A.3 Uncertainty Estimation and Denoising for Time Series Forecasting

There exist works aiming to estimate the uncertainty [34] for time series forecasting [48, 62, 25]
by epistemic uncertainty. Nevertheless, the inevitable aleatoric uncertainty of time series is often
ignored, which may stem from error-prone data measurement, collection, and so forth [63]. Another
line of studies focuses on detecting noise in time series data [45] or devising suitable models for noise
alleviation [22]. However, none of the existing works attempts to quantify the aleatoric uncertainty,
which further differentiates our work from priors.

It is necessary to relieve the effect of noise in real-world time series data [16]. [4, 39] propose to
preprocess the time series with smoothing and filtering techniques. However, such preprocessing
methods can only be applied to the noise raised by the irregular data of time series. Neural networks

1



are also introduced to denoise the time series [20, 57, 22, 33], while these deep networks can only
deal with specific types of time series as well.

A.4 Interpretability of Time Series Forecasting

A number of works put effort into explaining the deep neural networks [64, 35, 1] to make the
prediction more interpretable, but these methods often lack reliability when the explanation is
sensitive to factors that do not contribute to the prediction [37]. Several works have been proposed
to increase the reliability of TSF tasks [30, 31]. For multivariate time series, the interpretability
of the representations can be improved by mapping the time series into latent space [19]. Besides,
recent works have been proposed to disentangle the latent variables to identify the independent
factors of the data, which can further lead to improved interpretability of the representation and
higher performance [27, 41, 36]. The disentangled VAE has been applied to time series to benefit the
generated results [44]. However, the choice of the latent variables is crucial for the disentanglement
of time series data. We devise a bidirectional VAE (BVAE) and take the dimensions of each latent
variable as the factors to be disentangled.

B Proofs of Lemma 1 and Lemma 2

With the coupled diffusion process and Eqs. (5) and (6), as well as Proposition 1, introduced in
the main text, the diffused target series and generated target series can be decomposed as Ỹ (t) =

⟨Ỹ (t), δ
(t)

Ỹ
⟩ and Ŷ (t) = ⟨Ŷ (t), δ

(t)

Ŷ
⟩. Then, we can draw the following two conclusions:

Lemma 1. ∀ε > 0, there exists a probabilistic model fϕ,θ := (pϕ, pθ) to guarantee that
DKL(q(Ỹ

(t)
r )||pθ(Ŷ (t)

r )) < ε, where Ŷ (t)
r = fϕ,θ(X

(t)).

Proof. According to Proposition 1, Ŷr can be fully captured by the model. That is, ∥Yr − Ŷr∥ −→ 0
where Yr is the ideal part of ground truth target series Y . And, with Eq. (6) (in the main text),
Ỹ

(t)
r =

√
ᾱ′
tYr. Therefore, ∥Ỹ (t)

r − Ŷ
(t)
r ∥ −→ 0 when t→ ∞.

Lemma 2. With the coupled diffusion process, the difference between diffusion noise and generation
noise will be reduced, i.e., limt→∞ DKL(q(δ

(t)

Ỹ
)||pθ(δ(t)Ŷ

|Z(t))) < DKL(q(ϵY )||pθ(ϵŶ )) .

Proof. According to Proposition 1, the noise of Y consists of the estimation noise ϵŶ and residual
noise δY , i.e., ϵY = ⟨ϵŶ , δY ⟩ where ϵŶ and δY are independent of each other, then q(ϵY ) =
q(ϵŶ )q(δY ). Let ∆ = DKL(q(ϵY )||pθ(ϵŶ ))−DKL(q(ϵŶ )||pθ(ϵŶ )), we have

∆ = DKL(q(ϵŶ )q(δY )||pθ(ϵŶ ))−DKL(q(ϵŶ )||pθ(ϵŶ ))
= DKL(q(ϵŶ )||pθ(ϵŶ )) +DKL(q(δY )||pθ(ϵŶ ))−DKL(q(ϵŶ )||pθ(ϵŶ ))
= DKL(q(δY )||pθ(ϵŶ )) > 0 ,

which leads to DKL(q(ϵY )||pθ(ϵŶ )) > DKL(q(ϵŶ )||pθ(ϵŶ ) > 0. Moreover, both δ(t)
Ỹ

and δ(t)
Ŷ

are Gaussian noises, when t → ∞, ∃ ε′ > 0, we have DKL(q(δ
(t)

Ỹ
)||pθ(δ(t)Ŷ

|Z(t))) ≤ ε′ <

DKL(q(ϵY )||pθ(ϵŶ )).

C Extra Implementation Details

C.1 Experimental Settings

Datasets Description. The main descriptive statistics of the real-world datasets adopted in the
experiments of this work are demonstrated in Table 5.

Input Representation. We adopt the embedding method introduced in [71] and feed it to an RNN
to extract the temporal dependency. Then we concatenate them as follows:

Xinput = CONCAT(RNN(E(X)), E(X)) ,

2



Table 5: Statistical descriptions of the real-world datasets.

Datasets # Dims.
Full Data Sliced Data

Target Variable Time Interval
Time Span # Points Pct. of Full Data # Points

Traffic 862 2015-2016 17544 5% 877 Sensor 862 1 hour
Electricity 321 2011-2014 18381 3% 551 MT_321 10 mins
Weather 21 2020-2021 36761 2% 735 CO2 (ppm) 10 mins
ETTm1 7 2016-2018 69680 1% 697 OT 15 mins
ETTh1 7 2016-2018 17420 5% 871 OT 1 hour
Wind 7 2020-2021 45550 2% 911 wind_power 15 mins

Figure 6: Forecasting process of DeepAR, TimeGrad, and GP-copula. The sliding step is set to 1.

where X is the raw time series data and E(·) denotes the embedding operation. Here, we use a
two-layer gated recurrent unit (GRU), and the dimensionality of the hidden state and embeddings are
128 and 64, respectively.

Diffusion Process Configuration. Besides, the diffusion process is configured to be βt ∈ [0, 0.1] and
T = 100 for the Weather dataset, βt ∈ [0, 0.1] and T = 1000 for the ETTh1 dataset, βt ∈ [0, 0.08]
and T = 1000 for the Wind dataset, and βt ∈ [0, 0.01] and T = 1000 for the other datasets.

C.2 Implementation Details of Baselines

We select previous state-of-the-art generative models as our baselines in the experiments on synthetic
and real-world datasets. Specifically, 1) GP-copula [52] is a method based on the Gaussian process,
which is devoted to high-dimensional multivariate time series, 2) DeepAR [53] combines traditional
auto-regressive models with RNNs by modeling a probabilistic distribution in an auto-encoder fashion,
3) TimeGrad [51] is an auto-regressive model for multivariate probabilistic time series forecasting
with the help of an energy-based model, 4) Vanilla VAE (VAE for short) [38] is a classical statistical
variational inference method on top of auto-encoder, 5) NVAE [60] is a deep hierarchical VAE
built for image generation using depth-wise separable convolutions and batch normalization, 6)
factor-VAE (f-VAE for short) [36] disentangles the latent variables by encouraging the distribution
of representations to be factorial and independent across dimensions, and 7) β-TCVAE [11] learns
the disentangled representations with total correlation variational auto-encoder algorithm.

To train DeepAR, TimeGrad, and GP-copula in accordance with their original settings, the batch
is constructed without shuffling the samples. The instances (sampled with the input-lx-predict-ly
rolling window and lx = ly, as illustrated in Fig. 6) are fed to the training procedure of these three
baselines in chronological order. Besides, these three baselines employ the cumulative distribution
function (CDF) for training, so the CDF needs to be reverted to the real distribution for testing.

For f-VAE, β-TCVAE, and VAE, since the dimensionality of different time series varies, we design a
preprocess block to map the original time series into a tensor with the fix-sized dimensionality, which
can further suit the VAEs well. The preprocess block consists of three nonlinear layers with the sizes
of the hidden states: {128, 64, 32}. For NVAE, we keep the original settings suggested in [60] and
use Gaussian distribution as the prior. All the baselines are trained using early stopping, and the
patience is set to 5.
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Table 6: Performance comparisons of short-term and long-term TSF in real-world datasets in terms
of MSE and CRPS. For MSE and CRPS, the lower, the better. The best results are in boldface.

Model D3VAE NVAE β-TCVAE f-VAE DeepAR TimeGrad GP-copula VAE

Tr
af

fic

8
0.081±.003 1.300±.024 1.003±.006 0.982±.059 3.895±.306 3.695±.246 4.299±.372 0.794±.130

0.207±.003 0.593±.004 0.894±.003 0.666±.032 1.391±.071 1.410±.027 1.408±.046 0.759±.07

16
0.081±.009 1.271±.019 0.997±.004 0.998±.042 4.140±.320 3.495±.362 4.575±.141 0.632±.057

0.200±.014 0.589±.001 0.893±.002 0.692±.026 1.338±.043 1.329±.057 1.506±.025 0.671±.038

32
0.091±.007 0.126±.013 1.254±0.019 0.977±.002 4.234±.139 5.195±2.26 3.717±.361 0.735±.084

0.216±.012 0.422±.012 0.9370.007 0.882±.001 1.367±.015 1.565±.329 1.342±.048 0.735±.048

64
0.125±.005 1.263±0.014 0.903±.111 0.936±.190 3.381±.130 3.692±1.54 3.492±.092 0.692±.059

0.244±.006 0.940±0.005 0.839±.062 0.829±.078 1.233±.027 1.412±0.257 1.367±.012 0.710±.035

E
le

ct
ri

ci
ty

8
0.251±.015 1.134±.029 0.901±.052 0.893±.069 2.934±.173 2.703±.087 2.924±.218 0.853±.040

0.398±.011 0.542±.003 0.831±.004 0.809±.024 1.244±.037 1.208±.024 1.249±.048 0.795±.016

16
0.308±.030 1.150±.032 0.850±.003 0.807±.034 2.803±.199 2.770±.237 3.065±.186 0.846±.062

0.437±.020 0.531±.003 0.814±.002 0.782±.024 1.220±.048 1.240±.048 1.307±.042 0.793±.029

32
0.410±.075 1.302±0.011 0.844±.025 0.861±.105 2.402±.156 2.640±.138 2.880±.221 0.841±.071

0.534±.058 0.944±0.005 0.808±.005 0.797±.037 1.130±.055 1.234±.027 1.281±.054 0.790±.026

W
ea

th
er

8
0.169±.022 0.801±.024 0.234±.042 0.591±.198 2.317±.357 2.715±.189 2.412±.761 0.560±.192

0.357±.024 0.757±.013 0.404±.040 0.565±.080 0.858±.078 0.920±.013 0.897±.115 0.572±.077

16
0.187±.047 0.811±.016 0.212±.012 0.530±.167 1.269±.187 1.110±.083 1.357±.145 0.424±.141

0.361±.046 0.759±.009 0.388±.014 0.547±.067 0.783±.059 0.733±.016 0.811±.032 0.503±.068

32
0.203±.008 0.836±0.014 0.439±.394 0.337±.086 2.518±.546 1.178±.069 1.065±.145 0.329±.083

0.383±.007 0.777±0.007 0.508±.176 0.461±.031 0.847±.036 0.724±.021 0.747±.035 0.459±.045

64
0.191±.022 0.9320.020 0.276±.026 0.676±.484 3.595±.956 1.063±.061 0.992±.114 0.721±.496

0.358±.044 0.8360.009 0.463±.026 0.612±.176 0.994±.100 0.696±.011 0.699±.016 0.635±.204

E
T

T
m

1

8
0.527±.073 0.921±.026 1.538±.254 2.326±.445 2.204±.420 1.877±.245 2.024±.143 2.375±.405

0.5570.048 0.760±.026 1.015±.112 1.260±.167 0.984±.074 0.908±.038 0.961±.027 1.258±.104

16
0.968±.104 1.100±.032 1.744±.100 2.339±.270 2.350±.170 2.032±.234 2.486±.207 2.321±.469

0.821±.072 0.822±.026 1.104±.041 1.249±.088 0.974±.016 0.919±.031 0.984±.016 1.259±.132

32
0.707±.061 1.298±.028 1.438±.429 2.563±.358 4.855±.179 1.251±.133 1.402±.187 2.660±.349

0.697±.040 0.893±.010 0.953±.173 1.330±.104 1.787±.029 0.822±.032 0.844±.043 1.367±.083

E
T

T
h1

8
0.292±.036 0.483±.017 0.703±.054 0.870±.134 3.451±.335 4.259±1.13 4.278±1.12 1.006±.281

0.424±.033 0.461±.011 0.644±.038 0.730±.060 1.194±.034 1.092±.028 1.169±.055 0.762±.115

16
0.374±.061 0.488±.010 0.681±.018 0.983±.139 1.929±.105 1.332±.125 1.701±.088 0.681±.104

0.488±.039 0.463±.018 0.640±.008 0.760±.062 1.029±.030 0.879±.037 0.999±.023 0.641±.055

32
0.334±.008 0.464±0.007 0.477±.035 0.669±.092 6.153±.715 1.514±.042 1.922±.032 0.578±.062

0.461±.004 0.543±0.004 0.537±.019 0.646±.048 1.689±.112 0.925±.016 1.068±.011 0.597±.035

64
0.349±.039 0.425±.006 0.418±.021 0.484±.051 2.419±.520 1.1500.118 1.654±.117 0.463±.081

0.473±.024 0.5230.004 0.517±.013 0.551±.027 1.223±.127 0.835±.045 0.987±.036 0.546±.042

W
in

d

8
0.681±.075 1.854±.032 1.321±.379 1.942±.101 12.53±2.25 12.67±1.75 11.35±6.61 2.006±.145

0.596±.052 1.223±.014 0.863±.143 1.067±.086 1.370±.107 1.440±.059 1.305±.369 1.103±.100

16
1.033±.062 1.955±.015 0.894±.038 1.262±.178 13.96±.1.53 12.86±2.60 13.79±5.37 1.138±.205

0.757±.053 1.247±.011 0.785±.037 0.843±.066 1.347±.060 1.240±.070 1.261±.171 0.862±.092

32
1.224±.060 1.784±.011 1.266±.006 1.434±.126 5.398±.179 13.10±.955 15.331.904 1.480±.072

0.869±.074 1.200±.007 0.872±.010 0.920±.077 1.434±.013 1.518±.020 1.614±.118 0.987±.010

64
0.902±.024 1.652±.010 0.786±.022 0.898±.095 4.403±.301 3.857±.597 3.564±.293 1.374±1.02

0.761±.021 1.167±.005 0.742±.017 0.789±.048 1.361±.021 1.110±.143 1.152±.081 0.842±.215
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Table 7: Performance comparisons of TSF in 100%-Electricity and 100%-ETTm1 datasets in terms
of MSE and CRPS. The best results are highlighted in boldface.

Model D3VAE NVAE β-TCVAE f-VAE DeepAR TimeGrad GP-copula VAE
E

le
ct

ri
ci

ty 16
0.330±.033 1.408±.015 0.801±.001 0.765±.026 33.93±1.85 46.69±3.13 50.25±4.39 0.680±.022

0.445±.020 0.999±.006 0.723±.001 0.710±.013 2.650±.030 2.702±.079 2.796±.072 0.675±.008

32
0.336±.017 1.403±.014 0.802±.001 0.748±.033 46.10±2.00 30.94±1.70 32.13±1.96 0.727±.033

0.444±.015 0.997±.007 0.724±.001 0.703±.016 2.741±.011 2.476±.042 2.591±.064 0.692±.014

E
T

T
m

1 16
0.018±.002 2.577±.047 0.918±.015 1.285±.236 73.82±3.25 68.26±2.04 66.97±2.02 1.335±.156

0.102±.003 1.5090.016 0.766±.005 0.911±.090 1.136±.013 1.153±.019 1.111±.016 0.923±.056

32
0.034±.001 2.622±.057 0.929±.010 1.420±.073 68.11±2.60 53.47±26.1 63.67±1.14 1.223±.213

0.144±.006 1.524±.018 0.770±.004 0.960±.021 1.121±.024 1.083±.109 1.097±.008 0.888±.082

D Supplementary Experimental Results

D.1 Comparisons of Predictive Performance for TSF Under Different Settings

Longer-Term Time Series Forecasting. To further inspect the performance of our method, we
additionally conduct more experiments for longer-term time series forecasting. In particular, by
configuring the output length with 32 and 641, we compare D3VAE to other baselines in terms of
MSE and CRPS, and the results (including short-term and long-term) are reported in Table 6. We can
conclude that D3VAE also outperforms the competitive baselines consistently under the longer-term
forecasting settings.

Time Series Forecasting in Full Datasets. Moreover, we evaluate the predictive performance for
time series forecasting in two “full-version” datasets, i.e. 100%-Electricity and 100%-ETTm1. The
split of train/validation/test is 7:1:2 which is the same as the main experiments. The comparisons
in terms of MSE and CRPS can be found in Table 7. With sufficient data, compared to previous
state-of-the-art generative models, the MSE and CRPS reductions of our method are also satisfactory
under different settings (including input-16-predict-16 and input-32-predict-32). For example, in the
Electricity dataset, compared to the second best results, D3VAE achieves 52% (0.680 → 0.330) and
54% (0.727 → 0.336) MSE reductions, and 34% (0.675 → 0.445) and 36% (0.692 → 0.444) CRPS
reductions, under input-16-predict-16 and input-32-predict-32 settings, respectively.

Figure 7: The case study of forecasting results on the Traffic dataset under input-32-predict-32
settings. Only the last dimension is plotted. To demonstrate the forecasting results in a long range,
we show the predictions of three cases ordered chronologically without overlapping.

1The length of the input time series is the same as the output time series.
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Figure 8: Case study of the forecasting results from the Electricity dataset (same settings as Fig. 7).

Figure 9: Forecasting results (under the input-40-predict-40 setting) of a case from the Electricity
dataset with ω increasing from 0.1 to 0.9.

Figure 10: Forecasting results of a case from the Traffic dataset under the input-40-predict-40 setting.

Figure 11: Sensitivity analysis of the trade-off hyperparameters in reconstruction loss L. To highlight
the changes in prediction performance against hyperparameters, the relative value of MSE is used.

D.2 Case Study

We showcase the prediction results of our model and seven baseline models on the Traffic and
Electricity datasets in Figs. 7 and 8. Our model can provide the most accurate forecasting results
regarding trends and variations.

D.3 The Effect of Scale Parameter ω

We demonstrate the forecasting results with different values of ω on Electricity and Traffic datasets,
and the results are plotted in Figs. 9 and 10. It can be depicted that larger or smaller ω would lead
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Table 8: Performance comparisons of D3VAE w.r.t. varying the length of (input and output) time
series and the data size. The results are reported on the Electricity dataset.

Length Metric
Percentage of Full Electricity Data

100% 80% 60% 40% 20% 10% 5%

8
MSE 0.258±.019 0.227±.016 0.368±.019 0.389±.034 3.861±.480 0.693±.223 0.206±.018

CRPS 0.383±.015 0.355±.015 0.453±.009 0.504±.034 1.728±.110 0.673±.132 0.352±.016

16
MSE 0.330±.033 0.253±.018 0.343±.024 0.463±.089 4.428±.694 0.401±.068 0.247±.056

CRPS 0.445±.020 0.373±.014 0.433±.015 0.562±.049 1.858±.147 0.496±.047 0.378±.036

32
MSE 0.336±.017 0.300±.039 0.484±.048 0.739±.209 5.029±.811 0.884±.237 0.304±.094

CRPS 0.444±.015 0.413±.034 0.537±.025 0.693±.099 1.989±.172 0.723±.112 0.418±.065

Table 9: Performance comparisons of D3VAE w.r.t. varying the length of (input and output) time
series and the data size. The results are reported on the Traffic dataset.

Length Metric
Percentage of Full Traffic Data

100% 80% 60% 40% 20% 10% 5%

8
MSE 0.370±.021 0.215±.016 0.063±.002 0.062±.002 0.054±.004 0.210±.012 0.081±.003

CRPS 0.415±.013 0.347±.015 0.184±.003 0.179±.005 0.172±.008 0.251±.005 0.207±.003

16
MSE 0.272±.007 0.189±.006 0.063±.001 0.058±.003 0.056±.003 0.178±.006 0.081±.009

CRPS 0.334±.009 0.321±.008 0.180±.002 0.168±.006 0.169±.005 0.239±.007 0.200±.003

32
MSE 0.307±.015 0.197±.005 0.064±.002 0.063±.002 0.056±.004 0.191±.011 0.091±.007

CRPS 0.363±.008 0.335±.004 0.179±.002 0.179±.003 0.170±.005 0.235±.008 0.216±.012

to deviated prediction, which is far from the ground truth. Therefore, the value of ω does affect the
prediction performance, which should be tuned properly.

D.4 Sensitivity Analysis of Trade-off Parameters in Reconstruction Loss L

To examine the effect of the trade-off hyperparameters in loss L, we plot the mean square error (MSE)
against different values of trade-off parameters, i.e., ψ, λ and γ, in the Traffic dataset. Note that
the relative value of MSE is plotted to ensure the difference is distinguishable. This experiment is
conducted under different settings: input-8-predict-8, input-16-predict-16, and input-32-predict-32.
For ψ, the value ranges from 0 to 0.8, λ ranges from 0 to 1.6, and γ ranges from 0 to 0.5. The
results are shown in Fig. 11. We can see that the model’s performance varies slightly as the trade-off
parameters take different values, which shows that our model is robust enough against different
trade-off parameters.

D.5 Scalability Analysis of Varying Time Series Length and Dataset Size

We additionally investigate the scalability of D3VAE against different lengths of the time series and
varying amounts of available data. The experiments are conducted on the Electricity and Traffic
datasets, and the results are reported in Tables 8 and 9, respectively. We can observe that the predictive
performance of D3VAE is relatively stable under different settings. In particular, the longer the target
series to predict, the worse performance might be obtained. Besides, when the amount of available
data is shrunk, D3VAE performs more stable than expected. Note that on the 20%-Electricity dataset,
the performance of D3VAE is much worse than other subsets of the Electricity dataset, mainly because
the sliced 20%-Electricity dataset involves more irregular values.

E Disentanglement for Time Series Forecasting

Fig. 13 illustrates the disentanglement of latent variable Z for time series forecasting. It is difficult
to choose suitable disentanglement factors under the unsupervised learning of disentanglement.
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Figure 12: We showcase an instance from the Electricity dataset and demonstrate the results when
different numbers of factors in disentanglement are adopted. For each row, from left to right, the
prediction result of TSF, the learning curve of the discriminator, and the total correlation are plotted,
respectively.
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Figure 13: Disentangling latent variable Z of time series. Specifically, the inputX is first mapped into
Z. Then ∀zi ∈ Z is decomposed as zi = [zi,1, · · · , zi,m] and the metric of total correlation is utilized
to minimize the inter-dependencies among “hand-crafted” factors. In this way, the disentangled
factors tend to be not only discriminative but also informative.

Algorithm 3 Train a discriminator for time series disentanglement.
1: repeat
2: Initialize the loss of a discriminator Dφ: L(Dφ) = 0
3: Decompose the latent variable generated in Algorithm 1 as zi = [zi,1, zi,2, ..., zi,m] (i = 1, · · · , n)
4: for zi in Z do
5: L = L+

∑m
j=1 ∥Dφ(zi,j)− j∥2

6: end for
7: Optimize the discriminator: φ← argmin(L)
8: until Convergence

Therefore, we attempt to inspect the TSF performance against different numbers of factors to be disen-
tangled. We implement a simple classifier as a discriminator to further evaluate the disentanglement
quality in Fig. 12 (and Algorithm 3 demonstrates the training procedure of the discriminator). To be
specific, we take different dimensions of Z as the factors to be disentangled: zi = [zi,1, · · · , zi,m]
(zi ∈ Z), then an instance consisting of factor and label (zi,j , j) is constructed. We shuffle these m
examples for each zi and attempt to classify them with a discriminator, then the disentanglement can
be evaluated by measuring the loss of the discriminator. The learning curve of the discriminator can
be leveraged to assess the disentanglement, and the discriminator is implemented by an MLP with six
nonlinear layers and 100 hidden states. The results of prediction, discriminator loss, and the total
correlation w.r.t. different numbers of factors are plotted in Fig. 12, respectively. As shown in Fig. 12,
the number of factors does affect the prediction performance, as well as the disentanglement quality.
On the other hand, the learning curves can be converged when different factors are adopted, which
validates that the disentanglement of the latent factors is of high quality.

In addition to the above method evaluating the disentanglement indirectly, we adopt another metric
named Mutual Information Gap (MIG) [11] to evaluate the quality of disentanglement in a more
straightforward way. Specifically, for a latent variable zi ∈ Z, the mutual information between zi,j ,
and a factor vk ∈ [1,m] can be calculated by

Id(zi,j , vk) = Eq(zi,j ,vk)[log
∑

d∈Svk

q(zi,j |d)p(d|vk)] +H(zi,j) , (16)

where d denotes the sample of zi,j and Svk is the support set of vk. Then, for zi,j

MIG(zi,j) =
1

m

m∑
1

1

H(vk)
(max(Id(zi,j , vk))− submax(Id(zi,j , vk))) , (17)
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(a) (b) (c) (d)

Figure 14: We evaluate the quality of disentanglement on ETTm1 and ETTh1 datasets regarding the
mutual information gap (MIG). (a-b) The scatter plots of the MIG against varying weights γ in loss
function (refer to Eq. (14) in the main text). (c-d) MIG v.s. different numbers of factors.

where submax means the second max value of Id(zi,j , vk), then the MIG of Z can be obtained as

MIG(Z) =

n∑
i=1

MIG(zi), MIG(zi) =
1

m

m∑
j=1

MIG(zi,j) . (18)

We evaluate the quality of disentanglement in terms of MIG on ETTm1 and ETTh1 datasets, respec-
tively, which can be seen in Fig. 14. From Figs. 14a and 14b, when the weight of disentanglement (i.e.,
γ in Eq. (14) of the main text) grows, the disentangled factors are of higher quality. In other words,
the latent variables can be disentangled with the help of the disentanglement module in D3VAE. In
addition, we examine the changes in MIG against different numbers of factors. We can observe that
the difficulty of disentanglement climbs up as the number of factors increases.

F Model Inspection: Coupled Diffusion Process

To gain more insights into the coupled diffusion process, we demonstrate how a time series can be
diffused under different settings in terms of variance schedule β and the max number of diffusion
steps T . The examples are illustrated in Fig. 15. It can be seen that when larger diffusion steps or a
wider variance schedule is employed, the diffused series deviates far from the original data gradually,
which may result in the loss of useful signals, like, temporal dependencies. Therefore, it is important
to choose a suitable variance schedule and diffusion steps to ensure that the distribution space is
deviated enough without losing useful signals.

G Necessity of Data Augmentation for Time Series Forecasting

Limited data would result in overfitting and poor performance. To demonstrate the necessity of
enlarging the size of data for time series forecasting when deep models are employed, we implement
a two-layer RNN and evaluate how many time points are required to ensure the generalization ability.
A synthetic dataset is adopted for this demonstration.

According to [17], we generate a toy time series dataset with n time points in which each point is a
d-dimension variable:

wt = 0.5wt−1 + tanh(0.5wt−2) + sin(wt−3) + ϵ , X = [w1, w2, ..., wn] ∗ F + v

where wt ∈ R2, F ∈ R2×d ∼ U [−1, 1], ϵ ∼ N (0, I), v ∼ N (0, 0.5I), and d = 5. An input-8-
predict-8 window is utilized to roll this synthetic dataset. We split this synthetic dataset into training
and test sets with a ratio of 7:3. We train the RNN in 100 epochs at most, and the MSE loss of training
and testing are plotted in Fig. 16. It can be seen that the inflection points of the loss curves move
back gradually and disappear as increasing the size of the dataset. Besides, with fewer time points,
like, 400, the model can be overfitted more easily.
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Figure 15: Diffused time series with different variance schedules and diffusion steps. We randomly
choose a sample series from the synthetic dataset D2 and plot the original time series data, as well as
the diffused series.
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(a) 400 time points. (b) 800 time points. (c) 1000 time points.

(d) 1200 time points. (e) 1400 time points. (f) 1600 time points.
‘

Figure 16: The curves of training and testing losses when the available time series data are of different
sizes.
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