
Appendix565

Diverse, multi-modal behaviors generated by our models on different environment are best experi-566

enced and understood in a video. We invite you to visit https://submission0.github.io to see567

BeT models in action.568

A Environment and Dataset Details569

Point mass environments: In the point mass environment, we have a simple point-mass agent570

with two-dimensional observation and action spaces. The observation of the agent denotes the (x, y)571

position of the agent, while the action sets the immediate (∆x,∆y) displacement of the agent in the572

next timestep.573

To show the effects of unimodal and multimodal behavioral cloning algorithms more cleanly, we574

also add a “snapping" effect to the environment which moves the agent close to the nearest integer575

coordinates after each step.576

We generate random trajectories for each of our Multipath experiment datasets.577

1. In the first one (Fig. 2), our dataset has two modes, which are colored differently in the578

figure based on the path taken at the fork.579

(a) In the first set of demonstrations, the point mass follows the trajectory580

(1, 2), (2, 2), (2, 3), (2, 4), (3, 4), (4, 4), (4, 3), (4, 2), (5, 2).581

(b) In the second set of demonstrations, the point mass follows582

(1, 2), (2, 2), (2, 1), (2, 0), (3, 0), (4, 0), (4, 1), (4, 2), (5, 2).583

2. For the second Multipath environment (Fig. 5), there are three modes of demonstration,584

which are colored in the figure according to their first step direction.585

(a) In the first set of demonstration, the point mass follows x = y from (0, 0) to (8, 8) with586 √
2 size step increments.587

(b) In the second set of demonstration, the point mass follows straight lines from (0, 0) →588

(0, 4) → (4, 4) → (8, 4) → (8, 8) with step size 1.589

(c) In the third set of demonstration, the point mass follows straight lines from (0, 0) →590

(4, 0) → (4, 4) → (4, 8) → (8, 8) with step size 1.591

CARLA environment: We use the CARLA [19] self-driving environment to examine BeT perfor-592

mance in environments with high-dimensional observation spaces. CARLA uses the Unreal Engine593

to provide a photo-realistic driving simulation. We create our environment on the Town04 map in594

CARLA 0.9.13. The observation space is 224× 224× 3 RGB images from the vehicle, which are595

processed by an ImageNet-pretrained, frozen ResNet-18 to a 512-dimensional real-valued vector.596

The action space is [−1, 1]2 with an accelerator-brake axis and a steering axis.597

The dataset on this environment is collected with the built-in PID agent with minor tuning. We fix598

waypoints in the trajectory that the demonstration agent needs to follow. The waypoints fork around599

two central blocks: one set of trajectories thus go to the left, while another set of demonstration600

trajectories go to the right. While collecting the demonstrations, we add some noise in the environment601

before executing an action so that there is some variation in the set of 100 total demonstrations that602

we collect in the environment.603

We do not introduce any traffic participants in this environment intentionally as we intend to show604

the effects of cleanly bi-modal distributions on the learning algorithms in an environment more605

complicated than the point-mass environments.606

Block-push environment: We use a simulated environment similar to Multimodal Push environ-607

ment described in [23]. We take the environment implementation directly from the PyBullet [14] based608

implementation provided by Florence et al. [23] in https://github.com/google-research/609

ibc/tree/master/environments.610

In our environment, an XArm robot is situated in front of two blocks in a 0.75 × 1 plane. On the611

plane there are also two square targets. The goal of the agent is to push the blocks inside of the612
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squares. However, the exact order of the block being pushed, or the combination of which block is613

pushed in which square doesn’t matter. A block is considered successfully pushed if the center of the614

block is less than 0.05 away from a square.615

On initialization, the blocks’ positions are randomly shifted within a rectangle of side lengths616

(0.2, 0.3), while the squares are randomly shifted within a rectangle of size (0.01, 0.015). Addition-617

ally, the blocks were rotated at an uniformly arbitrary angle, while the target squares were rotated at618

an angle between (π6 ,−
π
6 ).619

The demonstrations in this environments were collected with a hard-coded controller. There are two620

modes of multimodality inherent in the controller generated demonstartions. The controller:621

1. Selects a block to start pushing first,622

2. At the same time, independently chooses a target for the block to be pushed into.623

3. Once the first block is pushed to a target, it pushes the second block to the remaining target.624

Thus combinatorially, the controller is capable of four different modes of behavior. There are625

additional stochasticity in the controller behavior since there are many ways of pushing the same626

block into the same target.627

The controller pushes the blocks to their targets following specific behavior primitives, such as628

moving to origin position, moving to a place collinear with a block and its target, and making a629

straight motion from that position towards the target unless the block rotates too much from its630

starting position.631

Our models were trained on 1,000 demonstrations, all generated from the controller under the above632

randomized modes.633

Franka kitchen environment: For the final set of experiments, we use the Franka Kitchen envi-634

ronment originally introduced in the Relay Policy Learning [30] paper. In that paper, the authors635

introduce a virtual kitchen environment where human participants in VR manipulated seven different636

objects in the kitchen: one kettle, one microwave, one sliding door, one hinged door, one light switch,637

and two burners. In total, we use 566 demonstrations collected by the researchers in that paper, where638

in each demonstration episode, each participant performed four manipulation task specified by the639

researchers in advanced.640

The manipulator agent in simulator is a Franka Emika Panda robot, which is controlled through a 9-641

dimensional action space controlling the robot’s joint and end-effector position. The 60-dimensional642

observation space is split into two parts, the first 30 dimension contains information about the643

current position of the interesting factors in the environment, while the last 30 dimensions contain644

information about the goal of the demonstrator or the agent. Note that in our demonstrations and our645

environments, we zero out the last 30 dimensions in all cases since we assume goal is not labelled in646

the demonstrations and is not specified in the unconditioned rollouts of the model.647

One thing to note that, while the D4RL [24] paper also has three versions of the dataset, we chose648

to use the original version of the collected data from the Relay Policy Learning [30] paper. That649

is because the relay policy learning dataset is not labeled with intended tasks of the participants or650

rewards, while the D4RL dataset is geared towards that.651

B Implementation Details and Hyperparameters652

B.1 Baselines653

Multi-layer Perceptron with MSE For our MLP with MSE baselines, we trained fully connected654

neural networks with optionally BatchNorm layers. In each of our environment, we varied the depth655

and the width of the MLPs to fit them best according to the bias-variance trade-off, while training656

them on 95% of the dataset and testing on the remaining 5% on the dataset in terms of MSE loss.657

Nearest Neighbor Nearest Neighbor is conceptually the simplest baseline we show in this paper.658

During training, our Nearest Neighbor model simply stores all the (o, a) pairs. During test time,659
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given a query observation, o, we find the observation o′ with the minimum Euclidean distance to that660

in the representation space, and execute the associated action a′ in the environment.661

While it is a simple baseline, we show that it has a surprisingly high effectiveness in simple envi-662

ronments like CARLA, or dense environments like Kitchen where there is less of a chance in going663

OOD simply by executing seen actions. On the other hand, in environments like Block-push where664

the model needs to interpolate or extrapolate more, the NN model fails more.665

k-Nearest Neighbor with Locally Weighted Regression A slightly more robust version of NN for666

regression problems, k-NN with locally weighted regression or LWR, is the next baseline we use. In667

this baseline, we take the k-nearest neighbors (in all our cases, 5) in the observation representation668

space, and take a weighted average of their associated actions. The weighting is based on the negative669

exponent of the distance, or namely, exp−||o− o′||, as seen in [56]. This model is better than simple670

Nearest Neighbors in interpolations, and thus we see a higher success in the Kitchen environment.671

Continuous Generative Model: VAE with Gaussian Prior Following prior works[60], we use672

variational auto-encoders (VAE) for encoding and decoding sequences of actions into a smaller latent673

space. The VAE here learns to compress a sequence of T = 10 actions into a single latent variable z674

of 10 dimensions. The hyperparameters for training the VAE has been taken directly from Pertsch675

et al. [60].676

Concurrently with training the VAE, we train a state-conditioned latent prior model that tries to predict677

P (z | o). This latent generator produces a vector of µ and σ which is sampled to find latent z, and678

we feed a Gaussian distributed variable z back into the decoder network where the action sequence679

is reconstructed. For the current observation ot, sequence of reconstructed actions at, · · · , at+9 are680

performed in a simulated environment.681

The design choices of this algorithm has been heavily inspired by [60]. Although this model shows682

promise in theory, we found in practice that unconditional rollout from this model is not very683

successful. We believe the shortcoming is a result of random sampling from the z space that does not684

take into account the recently executed actions, and using a single-mode Gaussian as the state prior685

similar to [60], and thus this baseline is only slightly better than the MLP-MSE model.686

Continuous Generative Models: Normalizing Flow with and without Prior Similar to Singh687

et al. [70], we use a Normalizing Flow [18] based generative model. We follow the architectural688

choices and the hyperparameters from [70] in our baseline implementation.689

Our observation-conditioned Flow model is trained on the distribution P (a | o) to continuously690

transform it into an identity Gaussian distribution of the same dimensions as a. To find a better prior691

than simply an identity Gaussian, we also trained a prior model that generates µ, σ of a Gaussian692

distribution given the observation o. We found that the prior improves the quality of the rollouts,693

however slightly.694

We believe the under-performance of these continuous generative approaches were based on two695

major problems. One is that they fail to take historical context in concern, and by being a continuous696

distribution, returned less likely actions that led to more rollouts going OOD. Second, they were697

designed with a focus of making RL approachable by compressing the action space, which requires698

having a prior that is not so strict. However, most of BeT’s performance comes from having a strong699

prior over the actions, which is only augmented by the action offset prediction.700

Implicit Behavioral Cloning Implicit Behavioral Cloning (IBC) [23] takes a different approach in701

behavioral cloning, where instead of learning a model f(o) := a, we learn an energy based model702

E(o, a) where the intended action a at any observation is defined as argmina E(o, a). While this703

suffers from all the classic issues of training an EBM, like higher sample complexity and higher704

complexity in sampling, IBC models have been shown to have higher success in learning multi-modal705

and discontinuous actions.706

As a baseline, we use the official implementation provided in https://github.com/707

google-research/ibc For the CARLA environment, we use equivalent hyperparameters from the708

“pushing from pixels” hyperparameters. For the Block-pushing environment, we use the “pushing709

from states” hyperparameters. Finally, for the Kitchen environment, we use the “D4RL kitchen”710

hyperparameters.711
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While IBC is our strongest baseline, in our experience it is also one that is quite easy to overfit to712

our datasets. As a result, we monitored test performance over the training and had to employ early713

stopping for both the CARLA and the Block-pushing tasks.714

Trajectory Transformers Trajectory Transformers [35], especially the variant that is trained715

without any rewards only on states and actions from demonstrations, seem similar to our approach,716

there are a few crucial differences. While we agree that BeT and Trajectory Transformer based717

behavior cloning both use some type of discretization to fit demonstration datasets with a minGPT,718

we believe that is where the similarities end. The primary differences between the algorithms is719

in our design choices: namely what distributions they model, and consequently how they treat the720

observations. The differences are explained more thoroughly below.721

• Modeled distribution: From a provided set of demonstrations, trajectory transformers722

model the joint distribution P(action, observations). On the other hand, BeT models the723

conditional distribution P(action | observations). Modeling the joint distribution requires724

MinGPT to model the forward dynamics of the environment, which can be arbitrarily725

difficult based on the environment.726

• Observation discretization: Because trajectory transformers have to model the observations727

as well, it needs to discretize the observation space. As a result, TT cannot extend to high728

dimensional observational spaces, such as visual observations. This limitation is also729

acknowledged by the authors of Trajectory Transformers. BeT, on the other hand, does730

not model the observations and thus does not need to discretize them. Thus BeT can731

scale to arbitrarily high dimensional observations, as we show in the CARLA environment732

experiments, where BeT learns behaviors from high dimensional visual observations.733

• Efficient historical encoding: Trajectory transformer encodes each (state, action) pair into734

a total of |S|+ |A| input/output tokens, while BeT encodes them into one input/output token.735

On a base MinGPT implementation that means a O((|S|+ |A|)2) efficiency gain for BeT, or736

for example 4761x less compute for the same historic context in the Kitchen environment.737

As a baseline, we trained and rolled out Trajectory Transformer on the Kitchen environment.738

It failed to complete any tasks for unconditioned, greedy, or beam search rollouts. We would739

like to note that the Kitchen environment is more complicated than the MuJoCo environments740

(HalfCheetah, Hopper, Walker2d, and Ant) that the paper experimented on. At the same time,741

this environment has an order of magnitude fewer samples on the training set (106 vs. approx-742

imately 120k). We tried both our own implementation and the implementation from https:743

//github.com/Howuhh/faster-trajectory-transformer with the recommended parameters744

for the AntMaze environment, which is the largest environment used by the authors.745

B.2 Algorithm Details746

Loss function details: In this paper, we use two loss functions that are inspired by practices in747

computer vision, in particular object detection. The first of them is the Focal loss [44], and the second748

one is the Multi-task loss [26].749

The Focal loss is a simple modification over the cross entropy loss. While the normal cross entropy750

loss for binary classification can be thought of Lce(pt) = − log(pt), the Focal loss adds a term751

(1− pt)
γ to this, to make the new loss752

Lfocal(pt) = −(1− pt)
γ log(pt)

This loss has the interesting property that its gradient is more steep for smaller values of pt, while753

flatter for larger values of pt. Thus, it penalizes and changes the model more for making errors754

in the low-probability classes, while is more lenient about making errors in the high probability755

classes. Using this error in the object detection world has helped with class imbalance between756

different classes, and here it helps BeT learn to predict different k-means from the dataset even if757

their appearance in the dataset is not completely balanced.758

For the multi-task loss, we use the formulation759

MT-Loss
(
a,

(
⟨â(j)i ⟩

)k

j=1

)
=

k∑
j=1

I[⌊a⌋ = j] · ∥⟨a⟩ − ⟨â(j)⟩∥22
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This helps us penalize only the offset for the ground truth class, thus making sure the MinGPT is not760

trying to predict the right action offset through all classes and instead only trying to predict the action761

offset through the right class.762

In practice, we optimize the combined loss, Lfocal + αLmt while α is a hyperparameter that just763

makes sure at initialization the two losses are of the same order of magnitude.764

Compute details: All of our code was run in a single NVIDIA RTX 3080 GPU for state-based765

environments and RTX 8000 for image-based environments.766

Performance measurement details: We measured the performance reported in the Section 3.5 in767

an NVIDIA RTX 3080 machine with AMD Threadripper 5950x CPUs. We took the average over768

three runs to minimize inter-run variances, and measured wall-clock time to report in the paper.769

In terms of raw computation time to determine one action from the observations, in the Kitchen770

environment, BeT took 2.8 ms, while IBC took 52 ms and MLP, as the fastest point of comparison,771

took 0.5 ms. On the same environment, a single step of Trajectory Transformer took 867.86 ms, on772

an implementation that used more advanced tricks such as attention caching.773

Hyperparameters list: We present the BeT hyperparameters in Table 4 below:774

Table 4: Environment-dependent hyperparameters in BeT.
Hyperparameter Point-mass CARLA Block-push Kitchen
Layers 1 3 4 6
Attention heads 2 4 4 6
Embedding width 20 256 72 120
Dropout probability 0.1 0.6 0.1 0.1
Context size 2 10 5 10
Training epochs 10 40 350 50
Batch size 64 128 64 64
Number of bins k 2; 3 32 24 64

However, we have found that as long as the model does not overfit, a wide range of parameters all775

yield favorable results for BeT; thus, this table should be taken as reference values for reproducing776

our results rather than the only parameter sets that work.777

Apart from that, we have some hyperparameters that are shared across all BeT experiments. They are778

reproduced in Table 5.779

Table 5: Shared hyperparameters for BeT training
Name Value
Optimizer Adam
Learning rate 1e-4
Weight decay 0.1
Betas (0.9, 0.95)
Gradient clip norm 1.0

B.3 Pseudocode780

See the pseudocode described on Algorithm 1.781

B.4 Architecture and Implementation782

For our implementation, we used the MinGPT [36] repository almost as-is. We modified the input783

token conversion layer to a linear projection layer to handle our continuous, instead of discrete, inputs.784

Apart from that, we followed the MinGPT architecture quite exclusively, with successive attention785

layers with a number of attention head and embedding dimensions. Between the layers, we used786

dropout regularization same as [36].787
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Algorithm 1 Learning Behavior Transformer from a dataset of behavior sequences.

Input: Dataset (ot,i, at,i)t,i for 0 ≤ i ≤ number of demonstrations, 0 ≤ t ≤ maximum episode
lengths, intended number of clusters k and context history length h.

Initialize: θM the parameters for MinGPT, {Ai}ki=1 cluster centers randomly in the action space.

Learn k-means encoder/decoder:
Using all possible at,i, learn the k cluster centers using the k means algorithm.
Set {Ai}ki=1 as the learned cluster centers.

Define functions:
⌊a⌋ := argminki=1 ||a−Ai||
⟨a⟩ = a− ⌊a⌋
Enc(a) = (⌊a⌋, ⟨a⟩)
Dec(⌊a⌋, ⟨a⟩) = A⌊a⌋ + ⟨a⟩

Train MinGPT trunk of BeT:
while Not converged do

Sample trajectory subsequence (ot, at), · · · , (ot+h−1, at+h−1) from the dataset.
Feed in the observations (ot, ot+1, · · · , ot+h−1) into the MinGPT.
Get categorical distribution probabilities pτ,c for t ≤ τ ≤ t+ h− 1, 1 ≤ c ≤ k.
Compute focal loss Lce of pτ,c against ground truth class ⌊aτ⌋, for all τ, c .
Get the residual action offset per class, ⟨aτ,c⟩, for all τ, c from MinGPT.
Calculate the multi-task loss, Lmt, against true class predicted offset,

∑
τ ||⟨aτ,⌊aτ⌋⟩ − ⟨aτ ⟩||22

Backprop using the normalized loss, Lce+αLmt where α makes the losses of equal magnitude.

Running on the environment:
while Episode not completed do

Stack the last h observations in the environment, (ot, ot+1, · · · , ot+h−1) and feed into MinGPT.
Get categorical probabilities pτ,c for t ≤ τ ≤ t+ h− 1, 1 ≤ c ≤ k from the MinGPT.
Sample a class c from pt+h−1,c for 1 ≤ c ≤ k.
Get the associated action offset, ⟨at+h−1,c⟩ from the MinGPT.
Decode into full continuous action, at+h−1 := Dec(c, ⟨at+h−1,c⟩)
Execute decoded action at+h−1 into environment.

For the smallest tasks, like point-mass environments, we used models with approximately 104788

parameters, which went up to around 106 for Kitchen environments.789

C Ablation studies790

In this section, we provide more details about the ablation studies presented in the main paper, as791

well as present detailed plots of our ablation studies that compare different versions of the BeT792

architecture.793

C.1 Ablating historical context794

One of the reasons why we used transformer-based generative networks in our work is because of795

our hypothesis that having historical context helps our model learn better behavioral cloning. Our796

experiments are performed by using the same model and simply providing sequences of length one797

on training and test time. As we can see on Sec. 3.5, having some historical context helps our model798

learn much better.799

C.2 Ablating the number of discrete bin centers, k800

Since BeT is trained with a sum of focal loss for the binning head and MSE loss for the offset head,801

the number of cluster centers present a trade-off in the architecture. Concretely, as the number of bins802
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go up, the log-likelihood loss goes up but the MSE loss goes down. In Sec. 3.5, we showed that using803

only one bin (k = 1) decreases the performance level of BeT.804

In this section, we present the plot of the variation in performance as k value changes.805

Figure 6: Ablating the number of discrete bin centers k for BeT. Reward is normalized with respect to the best
performing model.

C.3 Ablating the core model in the architecture806

To ablate the core MinGPT transformer model in the architecture, we replace it with a fully-connected807

MLP network, an LSTM network, and a temporal convolution architecture.808

Since generally MLP networks are not capable of taking in historical context in consideration, we809

instead stack the last t frames of observation to pass into the MLP network. Near the beginning of a810

trajectory, the stack of observation is zero-padded to t frames. For the intermediate layers in the MLP,811

we keep the same width and the number of layers as the corresponding MinGPT.812

For the LSTM network and the temporal convolution, we simply replace the MinGPT trunk with an813

LSTM trunk and try to train the same sequence-to-sequence model with the same historical context814

size.815
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