
Supplementary Appendices

A Background – Omitted Details

A.1 Sparse grids - Visualizations of grid points

Ω[0,0] Ω[0,1] Ω[1,0] Ω[0,2]

G0,2 G1,2 G2,2 G3,2

ω0,2 ω1,2 ω2,2 ω3,2

Figure 4: Visualizations of grid points on [0, 1] × [0, 1]. From top to bottom: (row-1) rectilinear grids with
different resolution vectors, (row-2) sparse grids with different resolutions for d = 2, and (row-3) incremental
gain of grid points with resolution, i.e., ωℓ,d := Gℓ,d \

⋃
0≤l′≤ℓ−1 Gl′,d.

A.2 Sparse grids – Properties and Hierarchical Interpolation

Proposition 1 (Properties of Sparse Grid). Let Gℓ,d ⊂ [0, 1]d be a sparse grid with any resolution
ℓ ∈ N0 and dimension d ∈ N. Then the following properties hold:

(P1) |Gd
ℓ | = O(2ℓℓd−1),

(P2) ∀ℓ′ ∈ N, 0 ≤ ℓ
′ ≤ ℓ =⇒ Gℓ′ ,d ⊆ Gℓ,d,

(P3) Gℓ,d =
⋃

ℓ
i=0

(
Ωi ⊗ Gℓ−i,d−1

)
and Gℓ,1 =

⋃
ℓ
i=0Ωi.

Proof.
(P1) – size of sparse grids:

|Gd
ℓ | =

∑
{l∈Nd

0 |∥l∥1≤ℓ}

(2× 2l1−1)(2× 2l2−1) · · · (2× 2ld−1)

=
∑

{l∈Nd
0 |∥l∥1=ℓ}

2∥l∥1 ≤︸︷︷︸
summing over resolution

∑
0≤l′≤ℓ

(
l′ + d− 1

d− 1

)
︸ ︷︷ ︸
≤l′+d−1d−1

2l
′

≤ (ℓ+ d− 1)d−1
∑

0≤l′≤ℓ

2l
′
= O(ℓd−12ℓ)

(P2) – sparse grids with smaller resolution are in sparse grids with higher resolution:

∀ℓ′ ∈ N, 0 ≤ ℓ
′ ≤ ℓ, {l ∈ Nd

0 | ∥l∥1 ≤ ℓ
′} ⊆ {l ∈ Nd

0 | ∥l∥1 ≤ ℓ} =⇒ Gℓ′ ,d ⊆ Gℓ,d

13

(P3) – the recursive construction of sparse grids from rectilinear grids:

Let Lℓ,d be the set of d-dimensional vectors with L1 norm bounded by ℓ, i.e, Lℓ,d := {l ∈ Nd
0 | ∥l∥1 ≤

ℓ}. Notice that Lℓ,d satisfies recursion similar to P3. I.e., Lℓ,d =
⋃

ℓ
i=0

(
{i}⊗Lℓ−i,d−1

)
and Lℓ,1 =⋃

ℓ
i=0{i}. Next, P3 follows from the fact that Gℓ,d = {Ωl | l ∈ Lℓ,d}.

A.2.1 Sparse grids - A hierarchical surplus linear interpolation approach

This subsection demonstrates how to use hierarchical surplus linear interpolation for kernel interpola-
tion with sparse grids, however, we do not explore this method in our experiments. Nevertheless, we
believe that the steps taken in adopting this method to kernel interpolation might of interest to readers
and plausibly helpful for future exploration of kernel interpolation with sparse grids.

Our exposition to sparse grids in section A has been limited to specifying grid points, which can be
extended to interpolation by associating basis functions with grid points.

We introduce Lℓ,d := {(l, i) | xl,i ∈ Gℓ,d} and xl,i =
[
i1/2

l1+1, · · · , id/2ld+1
]
. Then, for any pair

of resolution and index vectors (l, i) ∈ Lℓ,d, a tensorized hat function φl,i(x)
4 is created such that

it is centered at location of the grid-point corresponding to (l, i) and has support for a symmetric
interval of length 2−li in the i dimension. For any function f : Rd 7→ R, the sparse grid interpolant
rule f ℓ : Rd 7→ R is given as:

f ℓ(x) =
∑

(l,i)∈Lℓ,d

∑
δ∈∆d

(−2)−∥δ∥0f(xl,i+δ)φl,i(x) (1)

where ∆d = {−1, 0, 1}d is stencil evaluation of the function f centered at grid-point xl,i [16].
Concretely, xl,i+δ ∈ Rd has kth position equal to (ik + δk)2

−lk . Figure 5 provides an illustration of
the above sparse grid interpolant rule for simple 1-dimensional functions. Notice that it progressively
gets more accurate as the resolution level ℓ increases.

Next to interpolate the kernel function, we need f ℓ(x) = wxθ, where wx ∈ R1×|Gd
ℓ | and θ ∈ R|Gd

ℓ | is
the evaluation of f on Gℓ,d. As given such a formula, we can write k(x,x′) ≈ cov(f ℓ(x), f ℓ(x′)) =
wxKGℓ,d

wT
x , where KGℓ,d

is the true kernel matrix on sparse grid. Furthermore, by stacking
interpolation weights wx into W matrix for all data points similar to SKI, we can approximate the
kernel matrix as K̃X = WKGℓ,d

WT .

Claim 1. ∀x ∈ Rd, ℓ ∈ N0,∃wx s.t. f ℓ(x) = wxθ where θ ∈ R|Gℓ,d| is the evaluation of f
on Gℓ,d , i.e, θ is made of {f(xl,i) | xl,i ∈ Gℓ,d} and indexed to match the columns of wxθ.

Proof. For brevity, we introduce, Qℓ,d := Lℓ,d \
⋃

0≤l′≤ℓ−1 Ll′,d, which is a partition of Lℓ,d based
on the resolution of grid points, i.e., Lℓ,d =

⋃
0≤l′≤ℓ Ql′,d.

4φl,i(x) :=
∏d

k=1 φlk,ik (xk) where ∀k, φlk,ik (xk) = φ(xk−ik.2
−lk

2−lk
) and φ(x) := max{1− |x|, 0}.

14

f ℓ(x) =
∑

(l,i)∈Lℓ,d

∑
δ∈∆d

(−2)−∥δ∥0f(xl,i+δ)φl,i(x)

=
∑

0≤l′≤ℓ

∑
(l,i)∈Ql′,d

 ∑
δ∈{−1 0 1}d

2−∥δ∥0f(xl,i+δ)

φl,i(x)

=
∑

0≤l′≤ℓ

∑
(l,i)∈Ql′,d

 ∑
δ∈{−1 0 1}d

2−∥δ∥0f(xl,i+δ)

φl,i(x)

=
∑

0≤l′≤ℓ

∑
(l,i′−δ)∈Ql′,d

∑
δ∈{−1 0 1}d

2−∥δ∥0φl,i′−δ(x)f(xl,i′) by substitution i = i
′ − δ

=
∑

0≤l′≤ℓ

 ∑
(l,i′−δ)∈Ql′,d

∑
δ∈{−1 0 1}d

2−∥δ∥0φl,i′−δ(x)

 f(xl,i′)

=
∑

0≤l′≤ℓ

 ∑
(l,i′)∈Ql′,d

∑
δ∈{−1 0 1}d

2−∥δ∥0φl,i′+δ(x)

 f(xl,i′)

=
∑

0≤l′≤ℓ

∑
(l,i′)∈Ql′,d

∑
δ∈{−1 0 1}d

2−∥δ∥0φl,i′+δ(x)f(xl,i′)

=
∑

0≤l′≤ℓ

∑
(l,i)∈Ql′,d

∑
δ∈{−1 0 1}d

2−∥δ∥0φl,i+δ(x)f(xl,i)

=
∑

(l,i)∈Lℓ,d

∑
δ∈{−1 0 1}d

2−∥δ∥0φl,i+δ(x)f(xl,i)

Though it may seem that not all φl,i+δ are on sparse grid as the components of i+ δ can be even.
Fortunately, it is true as xl,i = xl+1,2i by the construction of sparse grids, and we can apply the
following transformation to uniquely project (l, i+ δ) on Gℓ,d as follows:

∆(l, i, δ) =

(
l−#2(i+ δ),

i

2#2(i+δ)

)
,

where #2 computes exponent of 2 in its prime factorization component-wise. Notice that output of
∆(l, i, δ) is bound to be in Gℓ,d as the resultant-position index pair (i.e., (l, i)) will have level index l
≤ ℓ and position index i to be odd, for all components, respectively.

f ℓ(x) =
∑

(l,i)∈Lℓ,d

∑
δ∈{−1 0 1}d

(−2)−∥δ∥0φ∆(l,i,δ)(x)︸ ︷︷ ︸
:=wl,i(x)

f(xl,i) (2)

By setting wx as wl,i(x) from above equation for all (l, i) ∈ Lℓ,d, we have f ℓ(x) = wxθ.

A.3 Combination Technique for Sparse Grid Interpolation

The combination technique [15] provides yet another interpolant rule for sparse grids. Formally, for
any function f : Rd 7→ R, the sparse grid combination technique interpolant rule f ℓ

c : Rd 7→ R is:

15

−1

1

`
=

0
−1

1

`
=

1

−1

1

`
=

2

f (x) = 0.8
−1

1

`
=

3

f (x)

f `(x)

f (x) = sin(2πx) f (x) = −4x2 + 3.5x

Figure 5: Interpolation on sparse grids with increasing resolution (i.e., ℓ) for 1-dimensional functions.

f ℓ
c (x) =

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
{l∈Nd

0 ||l|1=ℓ−q}

fΩl
(x), (3)

where, fΩl
is an interpolant rule on the rectilinear grid Ωl [25, 15]. Consequently, it is trivial to extend

simplicial and cubic interpolation from rectilinear grid to sparse grids. Notice that the interpolant f ℓ
c

uses a smaller set of grids, i.e., only {Ωl | max{ℓ− d, 0} < |l|1 ≤ ℓ}. Nevertheless, ∀ ℓ & d, the
rectilinear grids used in f ℓ

c are always contained in Gℓ,d.

Equation 3 prototypes the construction of interpolation weights W matrix. Concretely, for each dense
grid Ωl in the sparse grid, interpolation weights are computed and stacked along columns. After that
columns are scaled by factor (−1)q

(
d−1
q

)
to satisfy f ℓ

c .

B Structured Kernel Interpolation on Sparse Grids – Omitted Details

B.1 Fast Multiplication with Sparse Grid Kernel Matrix

Indexing the kernel matrix KGℓ,d
. Recall P3 from proposition 1, i.e., the recursive construction of

sparse grids, Gℓ,d =
⋃

ℓ
i=0

(
Ωi ⊗ Gℓ−i,d−1

)
. We say Gi

ℓ,d := Ωi ⊗ Gℓ−i,d−1. From P3, we know that
KGℓ,d

can be written as the block matrix such that both rows and columns are indexed by all Gi
ℓ,d.

For all combinations of combinations Gi
ℓ,d, theKGℓ,d

is a (ℓ+ 1)× (ℓ+ 1) block matrix.

Similarly, without the loss of generality, any arbitrary vector v ∈ R|Gℓ,d| is indexed using Gi
ℓ,d and the

output vector after an MVM operation also follows indexing by Gi
ℓ,d. Concretely, we let u = KGℓ,d

v,

then ∀ 0 ≤ i ≤ ℓ, we can write ui =
∑ℓ

j=1 ṽij , where ṽij = KGi
ℓ,d,G

j
ℓ,d
vj , rows of v, rows of u and

rows and columns of K, are indexed by the Gi
ℓ,d.

Structure and redundancy in the kernel sub-matrices. Note that Gi
ℓ,d is the Cartesian product

between rectilinear grid Ωi and sparse grid Gℓ−i,d−1 imposing Kronecker structure on the matrix
KGi

ℓ,d,G
j
ℓ,d

, given that k is a product kernel. As a result, for each ui, we have:

ṽij = vec
[
KΩi,Ωj

mat(vj)K
T
Gℓ−i,d−1,Gℓ−j,d−1

]
(4)

where vec and mat are standard matrix reshaping operators used in multiplying vectors with a
Kronecker product of two matrices. Observe that both KΩi,Ωj

and KGℓ−i,d−1,Gℓ−j,d−1
are rectangular

16

and have many common entries across different pairs of i and j. For instance, ∀j > i, KΩi,Ωj ⊆
KGj,1 , similarly, we also have, ∀j ≤ i,KGℓ−i,d−1,Gℓ−j,d−1

⊆ KGℓ−i,d−1
as Gℓ−j,d−1 ⊆ Gℓ−i,d−1.

Efficient ordering for Kronecker product and exploiting redundancy in kernel sub-matrices.
Next, observing the two orders of computation for Equation 4 (i.e., first multiplying KΩi,Ωj

with ver-
sus KT

Gℓ−i,d−1,Gℓ−j,d−1
) and to leverage the above-mentioned redundancy, we divide the computation

as below5:

ui = ai + bi, where, ai =

ℓ∑
j>i

ṽij , and bi =

i∑
j=0

ṽij . (5)

In Algorithm 1, Ai and Bi are such that vec(Ai) = ai and vec(Ai) = bi.

Claim 2. With Ai := KGi,1
SGi,1,Ωi

mat(v), ∀0 ≤ i ≤ ℓ, ai can be given as follows:

ai = vec

∑
j>i

SΩi,Gj,1
AjSGℓ−j,d−1,Gℓ−i,d−1

KGℓ−i,d−1

Proof.

ai =

ℓ∑
j>i

ṽij

=

ℓ∑
j>i

vec
[
KΩi,Ωj

mat(vj)K
T
Gℓ−i,d−1,Gℓ−j,d−1

]
(from the Equation 4)

=

ℓ∑
j>i

vec
[
KΩi,Ωj mat(vj)SGℓ−j,d−1,Gℓ−i,d−1

KGℓ−i,d−1

]
(by expanding the kernel matrix)

= vec

 ℓ∑
j>i

(
KΩi,Ωj

mat(vj)SGℓ−j,d−1,Gℓ−i,d−1

)
KGℓ−i,d−1

 (using linearity of operations)

= vec

 ℓ∑
j>i

(
KΩi,Gj,1

SGj,1,Ωj
mat(v)SGℓ−j,d−1,Gℓ−i,d−1

)
KGℓ−i,d−1

 (by expanding kernel matrix)

= vec

 ℓ∑
j>i

(
SΩi,Gj,1

KGj,1
SGj,1,Ωj

mat(v)SGℓ−j,d−1,Gℓ−i,d−1

)
KGℓ−i,d−1

= vec

 ℓ∑
j>i

(
SΩi,Gj,1AjSGℓ−j,d−1,Gℓ−i,d−1

)
KGℓ−i,d−1

 (enables pre-computation using Aj)

Intuitively, the claim 2 demonstrates rationale behind the operator S , because (1) it reduces the compu-
tation from ℓ2

2 MVM with KΩi,Ωj to only ℓ MVM with KGi,1 Toeplitz matrices via pre-computing Ai,
and (2) it requires only ℓ MVM with KGℓ−i,d−1

instead of ℓ2

2 MVMs with KGℓ−i,d−1,Gℓ−j,d−1
via ex-

ploiting linearity of operations involved. Following analogous steps, bi can be derived bi = vec(Bi).

5This is in part inspired by Zeiser [28] as our algorithm also orders computation by first dimension of sparse
grid (i.e., Gi

ℓ,d).

17

Claim 3. With Bi := ViKGℓ−i,d−1
, ∀0 ≤ i ≤ ℓ, bi can be given as follows:

bi = vec

SΩi,Gi,1KGi,1

∑
j≤i

SGi,1,ΩjBjSGℓ−j,d−1,Gℓ−i,d−1

Proof.

bi =
∑
j≤i

ṽij

=
∑
j≤i

vec
[
KΩi,Ωj

mat(vj)K
T
Gℓ−i,d−1,Gℓ−j,d−1

]
(from Equation 4)

=
∑
j≤i

vec
[
KΩi,Ωj

VjKGℓ−j,d−1
SGℓ−j,d−1,Gℓ−i,d−1

]
=
∑
j≤i

vec
[
SΩi,Gi,1

KGi,1,Ωj
VjKGℓ−j,d−1

SGℓ−j,d−1,Gℓ−i,d−1

]
=
∑
j≤i

vec
[
SΩi,Gi,1

KGi,1
SGi,1,Ωj

VjKGℓ−j,d−1
SGℓ−j,d−1,Gℓ−i,d−1

]

= vec

SΩi,Gi,1KGi,1

∑
j≤i

SGi,1,ΩjBjSGℓ−j,d−1,Gℓ−i,d−1

Theorem 1. Let KGℓ,d
be the kernel matrix for a d-dimensional sparse grid with resolution ℓ

for a stationary product kernel. For any v ∈ R|Gℓ,d|, Algorithm 1 computes KGℓ,d
v in O(ℓd2ℓ)

time.

Proof. The correctness of the Algorithm 1. Equation 5, claim 2 and claim 3 establish the correctness
of the output of Algorithm 1, i.e., it computes KGℓ,d

v.

On the complexity of Algorithm 1. (We prove it by induction on d.)

Base case: For any ℓ and d = 1, the algorithm utilizes Toeplitz multiplication which require only
|Gℓ,1| log |Gℓ,1|, as |Gℓ,1| = 2ℓ+1, total required computation is O(ℓ2ℓ).

Inductive step: We assume that the complexity holds, i.e., O(ℓd2ℓ) for d− 1, then it’s sufficient to
show that Algorithm 1 needs only O(ℓd2ℓ) for d, in order to complete the proof. Below, we establish
the same separately for both pre-computation steps (i.e., Line 6 to 9) and the main loop (i.e., Line 11
to 15) of Algorithm 1. Before that, we state an important fact for the analysis of remaining steps:

ℓ∑
i=0

|Gi,1| × |Gℓ−i,d−1| =
ℓ∑

i=0

2× |Ωi| × |Gℓ−i,d−1| =︸︷︷︸
P3

2|Gℓ,d| = O(ℓd−12ℓ) (6)

Analysis of the pre-computation steps.

• For reshaping v into Vi’s, we need
∑ℓ

i=0 |Ωi| × |Gℓ−i,d−1| = |Gℓ,d| = O(ℓd−12ℓ).

• For the rearrangement Vi into SGi,1,Ωi
Vi, we need

∑ℓ
i=0 |Gi,1| × |Gℓ−i,d−1| as operator S

maps Vi directly into the result. Therefore, we need O(ℓd−12ℓ) using Equation 6.

• For the Ai step:

– ∀i, |Gℓ−i,d−1| vectors are multiplied with Toeplitz matrix of size |Gi,1| × |Gi,1|,

18

– so total computation for line 7 is,
∑ℓ

i=0 |Gi,1| log |Gi,1| × |Gℓ−i,d−1| =
∑ℓ

i=0 i ×
|Gi,1| × |Gℓ−i,d−1| ≤

∑ℓ
i=0 ℓ× |Gi,1| × |Gℓ−i,d−1| ≤︸︷︷︸

Eq. 6

ℓ×O(ℓd−12ℓ) = O(ℓd2ℓ).

• For the Bi step:

– ∀i, |Ωi| vectors need to be multiplied with KGℓ−i,d−1
,

– using induction, total computation for line 8 is,
∑ℓ

i=0 2
i×(ℓ− i)d2ℓ−i = 2ℓ

∑ℓ
i=0(ℓ−

i)d ≤ 2ℓ
∑ℓ

i=0 ℓ
d−1 = O(ℓd2ℓ).

Analysis of the main loop.

• For the Ai step,

– ℓ− i rearrangements and summations (i.e.,
∑
j>i

SΩi,Gj,1
AjSGℓ−j,d−1,Gℓ−i,d−1

) are per-

formed simultaneously (i.e., by appropriately summing Aj to the final result),

– therefore, the total computation for rearrangements and summation is,
∑ℓ

i=0(ℓ− i)×
|Ωi| × |Gℓ−i,d−1| ≤ ℓ

∑ℓ
i=0 |Ωi| × |Gℓ−i,d−1| =︸︷︷︸

P3

ℓ×O(ℓd−12ℓ) = O(ℓd2ℓ);

– ∀i, |Ωi| vectors need to be multiplied with KGℓ−i,d−1
, which is same computation as

used in the bi step, therefore, it is O(ℓd+12ℓ).

• For the Bi step,

– similar to Ai, i rearrangements and summation (required for∑
j≤i

SGi,1,Ωj
BjSGℓ−j,d−1,Gℓ−i,d−1

), are performed simultaneously,

– therefore, total computation for rearrangements and summation is,
∑ℓ

i=0 i× |Gi,1| ×
|Gℓ−i,d−1| ≤︸︷︷︸

Eq. 6

ℓ×O(ℓd−12ℓ) = O(ℓd2ℓ).

– the total MVM computation with KGℓ,1
is same as for the Ai step, therefore its O(ℓd2ℓ),

as shown earlier.

• Finally, for the last re-arrangement in line 14, all updates are accumulated on ui. All ui

jointly are as large as |Gℓ,d|, therefore O(ℓd−12ℓ) computation is sufficient.

Batching-efficient Reformulation of Algorithm 1.

In short, the main ideas behind iterative implementation can be summarized below:

• The recursions in Lines 8 and 12 can be batched together.
• Similarly, the recursion spawns many recursive multiplications with kernel matrices of the

form Gℓ′,d′ for 0 ≤ ℓ′ < ℓ and 1 ≤ d′ < d,

To achieve the above, we make following modifications:

• Re-organize computation of the Algorithm 1 and first loop over to compute Ai and Ai,
followed by second loop over Bi and Bi.

• Notice since the computation of ui depends on Bi, it implies that kernel-MVM with
remaining dimensions need to be computed. Therefore, we run second loop over Bi and Bi

in the reverse order of dimensions compared Algorithm 1.
• At all computation steps, vectors are appropriately batched before multiplying with kernel

matrices to improve efficiency.

19

B.2 Simplicial Interpolation on Rectilinear Grids – Omitted Details

For detailed exposition of simplicial interpolation with rectilinear grids, we refer readers to Halton
[11]. Briefly, the main idea is that each hypercube is partitioned into simplices, so the grid points
themselves are still on the rectilinear grid (i.e., the corners of the hypercubes). For each grid point,
the associated basis function takes value 1 at the grid point, and is non-zero only for the simplices
adjacent to that point, and takes value 0 at the corner of those simplices. Therefore, it’s linear on each
simplex.

Concretely, for any x ∈ Rd, following steps are used to find basis function values and find grid points
rectilinear grids that form the simplex containing x.

1. Compute local coordinates rx = [λ(x1, s1), · · ·λ(xd, sd)], where ∀i, λ(xi, si) = xi −
⌊xi/si⌋si and s ∈ Rd is the spacing of rectilinear grid, i.e., distance between adjacent
grid-points along all dimensions.

2. Sort local coordinates. We put rx in non-decreasing order, i.e., {o1,o2, · · · ,od} =
{1, 2, · · · , d} such that 1 ≥ rxo1

≥ rxo2
≥ · · · ≥ rxod

≥ 0 holds.

3. Compute interpolating basis values vx ∈ Rd+1 as[
1− rxo1

, rxo1
− rxo2

, rxo2
− rxo3

, · · · , rxod−1
− rxod

, rxod

]
.

4. Obtain neighbors by sorting the coordinates (columns) of the reference simplex (described
below) so that they follow the same sorting order as the local coordinates. I.e., we sort the
reference coordinates by the inverse sorting of the local coordinates.

Recall from the main text that there are several ways to partition the hypercube, i.e., several choices
to build reference simplex. We build reference simplex S ∈ Rd+1,d by stacking d+ 1 row vectors, in
particular, 1p ∈ R1×d vectors for p ∈ [0, d] are stacked, where 1p ∈ {0, 1}d has d−p zeros followed
by ones for the left-over entries.

C Experiments – Omitted Details and More Results

C.1 Hyperparameters, optimization and data processing details

We run our experiments on Quadro RTX 8000 with 48 GB of memory. For all experiments, we have
used RBF kernel with separate length-scale for each dimension. For the optimization marginal log-
likelihood, we use Adam optimizer with learning rate 0.1 for 100 number of epochs. The optimization
is stopped if no improvement is observed in the log-likelihood for 5 consecutive epochs.

The CG train and test tolerance are set to 1.0 and 0.01, which do not worsen perform in practice.
Both CG pre-conditioning rank and maximum are 100. Our data is split in the ratio of 4 : 2 : 3 to
form train, validation and test splits. All UCI datasets are standardized using the training data to have
zero mean and unit variance. For sparse-grid, we explore ℓ ∈ [2, 3, 4, 5] for Table 3. For dense-grid
with simplicial interpolation, we explored grid points per dimension until we run out of memory.

C.2 Another interpolation rule to apply sparse grids to large scale dataset

Recall that it’s the relatively higher number of rectilinear grids used in a sparse grid that slows them
down on large scale datasets. Analogous to the combination rule, we devise a new interpolation rule
that only considers rectilinear grids in {Ωl | ∥l∥1 = ℓ | (ℓ ∈ l OR ℓ− 1 ∈ l)}, i.e., d2/2 + d grids.
Similar to combination interpolation technique, all grid interpolation weights are scaled by one by
the total number of grids considered.

We focus on two large datasets with relatively higher dimensions, namely, Houseelectric and Airline
datasets. Houseelectric has ≈ 2.05 million data points with dimensionality d = 11. Similarly, Airline
dataset has ≈ 5.92 million data points with dimensionality d = 8. For Houseelectric, Sparse-grid
performs comparable to Simplex-GP while being 3.95X faster. For the airline dataset, SKIP and
SGPR go out-of-memory while Simplex-GP is slower by more than 4 orders of magnitude. These
results show that sparse grids when used with simplicial interpolation can be effective and efficient
for large scale dataset.

20

Table 3: Test root-mean-square error (RMSE) and inference time on two large datasets with dimensions d ≥ 8
and n ≥ 1M . See text for more details on datasets. All numbers are averaged over 3 trials. OOM is out of
memory. ⋆ number is taken from Kapoor et al. [13].

Methods Houseelectric Airline
RMSE Time (in secs) RMSE Time (in secs)

SGPR 0.067⋆ - OOM -
SKIP OOM - OOM -
Simplex-GP 0.078 0.186 0.922 142.891
Dense-grid 0.170 0.263 0.892 0.413
Sparse-grid 0.088 0.047 0.832 0.003

C.3 Sparse grid interpolation and GP inference for more synthetic functions.

102 103 104 105

|G|
10−3

10−2

10−1

In
te

rp
ol

at
io

n
E

rr
or

Dense (cubic)

Sparse (cubic)

Dense (simplicial)

Sparse (simplicial)

2 4 6 8
d

0.0

0.1

0.2

T
es

t
R

M
SE

Dense (cubic)

Sparse (cubic)

Dense (simplicial)

Sparse (simplicial)

102 103 104 105

|G|

10−3

10−2

10−1

In
te

rp
ol

at
io

n
E

rr
or

2 4 6 8
d

0.01

0.02

0.03

0.04

T
es

t
R

M
SE

Figure 6: Additional results for two more synthetic functions, namely, anisotropic and shifted cosine (top
panels) and corner-peak (bottom panels). Both left figures show that interpolation accuracy of sparse grids
is comparable or superior for both interpolation schemes (i.e., cubic and simplicial). Furthermore, both right
figures show that the advantage of sparse grids becomes more prominent as dimension increases. This effect
is relatively less prevalent in bottom panel as the corner-peak function attain smaller values with increase in
dimension. See text for precise function definitions.

Similar to section 4, we consider two more functions that are not isotropic (unlike cos(∥x∥1)): a)
anisotropic and shifted cosine function fas

d (x) := cos(2πw +
∑d

i=1 xici), b) corner-peak function
f cp
d (x) := (1 +

∑d
i=1 xici)

−d−1. Both w and c are selected randomly and remaining settings (i.e.,
noise, train and evaluation procedures) are same as in section 4.

21

