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1 Optimization and Regularization

Image Loss Our renderer uses physically-based shading and produces images with high dynamic
range. Therefore, the objective function must be robust to the full range of floating-point values.
Following recent work in differentiable rendering [4, 11], our image space loss, Limage, computes
the L1 norm on tonemapped colors. As tone map operator, T , we transform linear radiance values, x,
according to T (x) = Γ(log(x+ 1)), where Γ(x) is the sRGB transfer function [16]:

Γ(x) =

{
12.92x x ≤ 0.0031308

(1 + a)x1/2.4 − a x > 0.0031308
(1)

a = 0.055.

Regularizers While it is desirable to minimize regularization, in our setting with multi-view images
with constant lighting, we have to rely on several priors to guide optimization towards a result with
a good separation of geometry, materials, and lighting. As mentioned in the paper, we rely on
smoothness regularizers for albedo, kd, specular parameters, korm and geometric surface normal, n,
following:

Lkd
=

1

|xsurf|
∑
xsurf

|kd (xsurf)− kd (xsurf + ϵ)| , (2)

where xsurf is a world space position on the surface of the object and ϵ ∼ N (0, σ=0.01) is a
small random displacement vector. Regularizing the geometric surface normal (before normal map
perturbation) is novel compared to NVDIFFREC and helps enforce smoother geometry, particularly in
early training.

We note that normal mapping (surface normals perturbed through a texture lookup) also benefits from
regularization. While normal mapping is a powerful tool for simulating local micro-geometry, the
decorrelation of the geometry and surface normal can be problematic. In some optimization runs, we
observe that with normal mapping enabled, the environment light is (incorrectly) leveraged as a color
dictionary, where the normal perturbation re-orients the normals of a geometric element to look up a
desired color. To prevent this behavior, we use the following regularizer. Given a normal perturbation
n′ in tangent space, our loss is defined as

Ln′ =
1

|xsurf|
∑
xsurf

1− n′ (xsurf) + n′ (xsurf + ϵ)

|n′ (xsurf) + n′ (xsurf + ϵ)|︸ ︷︷ ︸
Half-angle vector

·(0, 0, 1). (3)

Intuitively, we enforce that normal perturbations, modeling micro-geometry, randomly selected in a
small local area, have an expected value of the unperturbed tangent space surface normal, (0, 0, 1).
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Figure 1: The impact of our light regularizer on the Hotdog scene from the synthetic NeRF dataset.
The regularizer is particularly effective in this example, as the dataset contains high frequency lighting
with sharp shadows. As shown in the top row, without regularization most of the lighting and shadow
is baked into the kd texture because it is the quickest way for the optimizer to minimize loss. While
our regularized result is not perfect (some texture detail on the hotdog bun is incorrectly baked into
lighting), the lighting is accurately captured and kd contains mostly chrominance, as expected. The
light probe is also significantly more detailed.

As mentioned in the paper, we additionally regularize based on monochrome image loss between the
demodulated lighting terms and the reference image:

Llight = |Y (T (cd + cs))− V (T (Iref)) |1. (4)

Here, T is the tonemap operator described in the previous paragraph. cd is demodulated diffuse
lighting, cs is specular lighting, and Iref is the target reference image. Monochrome images are
computed through the simple luminance operator, Y (x) = (xr + xg + xb) /3, and HSV-value,
V (x) = max (xr,xg,xb). While the regularizer is limited by our inability to demodulate the
reference image, we show in Figure 1 that it greatly increases lighting detail, which is particularly
effective in datasets with high frequency lighting. Figure 18 shows the impact of the regularizer on a
larger set of scenes.

We compute the final loss as a weighted combination of the image loss and regularizer terms:

L = Limage + λkd︸︷︷︸
=0.1

Lkd
+ λkorm︸ ︷︷ ︸

=0.05

Lkorm + λn︸︷︷︸
=0.025

Ln + λn′︸︷︷︸
=0.25

Ln′ + λlight︸︷︷︸
=0.15

Llight, (5)

where we show the default weights used for most results (unless otherwise noted).

Optimization details We use Adam [7] (default settings) to optimize parameters for geometry,
material, and lighting. Referring to DMTet [14], geometry is parameterized as SDF values on a
three-dimensional grid, with a perturbation vector per grid-vertex. Material and lighting are encoded
in textures, or neural network (e.g., an MLP with positional encoding) encoded high-frequency
functions. We typically use different learning rates for geometry, material, and lighting, with lighting
having the highest learning rate and material the lowest. We closely follow the publically available
NVDIFFREC code base and refer to that for details. In Figure 2, we visualize two examples of
optimizing the light probe, and note that we can capture high-frequency lighting details for specular
objects.

We note that the early phases of optimization (starting from random geometry with large topology
changes) are crucial in producing a good final result. The shadow test poses a challenge since changes
in geometry may drastically change the lighting intensity in a previously shadowed area, causing the
optimization process to get stuck in bad local minima. This is shown in Figure 3, where the optimizer
fails to carve out the shape of the object. We combat this by incrementally blending in the shadow
term as optimization progresses.
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Diffuse Specular

Figure 2: We compute direct lighting by integrating the BSDF over the hemisphere using Monte
Carlo. For diffuse scenes (left), the BSDF has a wide lobe, and the extracted probe often contains
significant noise. For specular scenes, the BSDF lobe is sharper, which allow us to recover high
frequency lighting.
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Figure 3: Illustration of the impact of gradually blending in the shadow term in the early stages of
optimization. In early stages, there are large changes in topology, and local changes in geometry
can have a large (global) impact on color and shading. As shown in the top row, early convergence
suffers, and the optimization fails to carve out some geometry. By incrementally ramping up the
shadow term, as shown in the bottom row, we improve geometry reconstruction.

Recall from the main paper that we compute the color according to the rendering equation:

L(ωo) =

∫
Ω

Li(ωi)f(ωi, ωo)(ωi · n)dωi, (6)

where Li(ωi) = L′
i(ωi)H(ωi) can be separated into a lighting term, L′

i(ωi), and visibility term,
H(ωi). Rather than using binary visibility, we introduce a light leakage term, τ , and linearly fade in
the shadow contributions over the first 1750 iterations:

H(ωi, τ) =

{
1− τ if intersect ray(ωi)

1 otherwise
. (7)

In Figure 3 we note that gradually blending in the shadow term has a large impact on early convergence.
In particular, since we start from a random topology, carving out empty space or adding geometry
may have a large impact on overall shading, causing spiky and noisy gradients.

The denoiser may also interfere with early topology optimization (blurred visibility gradients). This
is particularly prominent when the denoiser parameters are trained along with scene parameters.
Therefore, we similarly, ramp up the spatial footprint, σ, in the case of a bilateral denoiser. For neural
denoisers, which have no easily configurable filter width, we instead linearly blend between the noisy
and denoised images to create a smooth progression.
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Figure 4: The effect of using different denoising algorithms during optimization at low sample
counts on three different scenes of increasing complexity (from left to right). We plot averaged
PSNR scores over 200 novel views, rendered without denoising, using high sample counts. The most
complex scene (Porsche) failed to converge at 8 spp without denoising. This experiment is identical
to the denoising ablation in the paper, except including results from a jointly optimized single-frame
version of the kernel prediction network (KPN) architecture from Hasselgren et al. [5]. Inherent
problems of live-training the denoiser, such as baking features into the denoiser weights instead of
the desired parameters, become apparent from deteriorating results, even at higher sample counts.

2 Denoising

Bilateral Denoiser As a representative bilateral denoiser, we adapt the spatial component of
Spatiotemporal Variance-guided Filtering [13] (SVGF), Our filter is given by

ĉ (p) =

∑
q∈Ω c (q) · w (p, q)∑

q∈Ω w (p, q)
, (8)

where c are the pixel colors, w (p, q) are the bilateral weights between pixels p and q, and Ω denotes
the filter footprint. The bilateral weight is split into three components as follows

w (p, q) = e−
|p−q|2

2σ2︸ ︷︷ ︸
w

e−
|z(p)−z(q)|

σz|∇z(p)·(p−q)|︸ ︷︷ ︸
wz

max(0,n (p) · n (q))σn︸ ︷︷ ︸
wn

. (9)

The spatial component, w, is a Gaussian filter with its footprint controlled by σ. We linearly increase
σ from 1e-4 to 2.0 over the first 1750 iterations. The depth component, wz implements an edge
stopping filter based on image space depth. It is a soft test, comparing the depth differences between
pixels z(p) and z(q) with a linear prediction based on the local depth gradient ∇z(p). The final
component, wn, is computed as the scalar product over surface normals n(p) and n(q). Following
SVGF, we use σz = 1 and σn = 128. We also omitted the Á-Trous wavelet filtering of SVGF, which
is primarily a run-time performance optimization, and evaluate the filter densely in the local footprint.
We propagate gradients back to the renderer, i.e., the noisy input colors, but no gradients to the filter
weights.

Neural denoisers For OIDN, we use the pre-trained weights from the official code [1], and wrap
the model (a direct-prediction U-Net) in a PyTorch module to allow for gradient propagation to the
input colors. We also propagate gradients to the network weights, in order to fine-tune the denoiser
per-scene, but unfortunately, the direct-prediction architecture of OIDN made live-training highly
unstable in our setting.

For the kernel-predicting neural denoiser, we leverage the architecture from Hasselgren et al. [5],
but omit the adaptive sampling part and the recurrent feedback loop. The network weights were
initialized to random values using Xavier initialization. The hierarchical kernel prediction in this
architecture constrains the denoiser, and enables live-trained neural denoising in our setting. That
said, in our evaluations, the live-trained variant produce worse reconstructions than the pre-trained
denoisers.

We study the impact of different denoising algorithms on scene reconstruction, including jointly
optimizing the denoising network, in Figure 4. Unfortunately, when fine-tuning the denoiser to
the specific scene as part of optimization, we note a tendency for features to get baked into the
denoiser’s network weights instead of the desired scene parameters (overfitting), negatively impacting
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Reference No denoising Bilateral OIDN (pre-trained) KPN (live-trained)

8 spp 26.24 36.15 35.94 35.21
18 spp 33.98 35.86 35.74 35.36
32 spp 35.87 35.72 35.65 35.19
128 spp 36.08 35.43 35.51 35.21

Figure 5: The effect of denoising when optimizing HDR environment lighting, using a diffuse
version of the Hotdog scene. In this test, geometry and material are fixed to study the effect of
optimizing the lighting in isolation. Top: Resulting light probes at 8 spp for each method tabulated
above. Bottom: Tabulated average PSNR over 200 novel views using high sample count without
denoising.

Reference No denoising Bilateral OIDN (pre-trained) KPN (live-trained)

8 spp 11.50 28.43 17.31 23.84
18 spp 22.12 30.99 28.85 29.07
32 spp 25.93 30.71 30.46 27.36
128 spp 30.44 30.95 30.76 27.76

Figure 6: Impact of denoising when jointly optimizing geometry, materials and environment lighting,
using the NeRFactor Hotdog scene. Top: Reconstruction results at 32 spp for each of the methods
tabulated above. Bottom: Tabulated average PSNR (dB) over 200 novel views using high sample
count without denoising.

the reconstruction quality. We showcase the isolated effect of denoising on light probe optimization
in Figure 5. Figure 6 illustrates the effect of denoising when jointly optimizing geometry, material
and lighting.

3 Visibility Gradients from Shadows

In Figure 7 we show the impact of the visibility gradients [9, 2] for the shadow test on a few targeted
reconstruction examples. In this ablation, we disabled denoising, and applied a full shadow term
directly (instead of linearly ramping up the shadow contribution, as discussed in Section 1). While
clearly beneficial in the simpler examples, e.g., single-view reconstruction and targeted optimization
(finding the light position), for multi-view reconstruction with joint shape, material, and environment
light optimization, the benefits of the shadow visibility gradients is less clear. In our experiments,
gradients from the shadow rays in the evaluation of direct lighting in the hemisphere, typically
have negligible impact compared to gradients from primary visibility. Below, we report the view-
interpolation scores over the validation sets for three scenes.

PSNR↑ SSIM↑
Chair Lego Porsche Chair Lego Porsche

w/ gradients 29.15 27.03 27.83 0.948 0.918 0.941
w/o gradients 29.06 26.83 28.21 0.948 0.918 0.945

In contrast, we observed that the shadow ray gradients sometimes increase noise levels and degrade
reconstruction quality. We show a visual example in Figure 8.
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Figure 7: We show a few examples illustrating the benefits of shadow visibility gradients for inverse
rendering setups. White: we optimize the position of a point light source, using a pure white material.
Here, shadow gradients are necessary for the optimization to succeed. Lambert: we redo the same
experiment, but with a Lambertian material including an n · l shading term. Now, both the shadow
and shading terms provide gradients to the light position, and the optimization succeeds even without
shadow gradients. Single-view: we optimize shape from a single view (purposely chosen to hide
the hole in the model), using a known point light source. Here, the shadow gradients provide useful
information, and improves the reconstruction to capture the hole in the model. Multi-view: the same
setup, but optimized using multiple views. Here, there is no clear benefit of using shadow gradients
(the primary visibility gradients from each view dominate the geometry reconstruction).

4 Sampling

In Figure 9, we examine the effect of importance sampling strategies on reconstruction quality. We
compare cosine sampling, BSDF importance sampling [6], light probe importance sampling (using
piecewise-constant 2D distribution sampling [12]), and multiple importance sampling [17] (MIS)
using the balance heuristic. MIS consistently generates high quality reconstruction for a wide range
of materials.

For unbiased results, the forward and backward passes of the renderer should use independent
(decorrelated) random samples. However, we observe drastically reduced noise levels, hence
improved convergence rates, when using correlated samples, i.e., re-using the same random seeds
in the forward and backward pass, especially for low sample count optimization runs. This effect
mainly stems from gradients flowing back to the exact same set of parameters which contributed
to the forward rendering, instead of randomly selecting another set of parameters, which naturally
increases variance. In Figure 10, we compare the two approaches over a range of sample counts.

5 Geometry

In Table 1 we relate our method to Table 8 (supplemental) of the NVDIFFREC paper [11], and
note similar geometric quality as NVDIFFREC. The Lego scene is an outlier caused by our normal
smoothness regularizer from Eq. 3. The scene is particularly challenging for geometric smoothing
since it contains very complex geometry full of holes and sharp edges. Please refer to Figure 11 for a
visual comparison.

6



PSNR: 28.21 dB, SSIM: 0.945 PSNR: 27.82 dB, SSIM: 0.941
w/o shadow gradients w/ shadow gradients

Figure 8: Comparing the influence of shadow visibility gradients in our full pipeline with joint
optimization of shape, materials, and lighting. We observe slightly higher noise levels on the
geometry reconstructions with shadow visibility gradients enabled, as can be seen in the visualization
of surface normals. The error metrics are average view interpolation scores over 200 novel views.

Diffuse Plastic Metallic
Cosine sampling 46.81 34.88 25.61
BSDF sampling 46.81 34.78 31.66
Light sampling 42.70 34.23 24.38
MIS 46.50 35.40 35.82

Figure 9: Comparison of different imaportance sampling strategies, using a diffuse, plastic and
metal version of the Spot model. Lighting and materials are optimized, and geometry is kept fixed.
The hemisphere is sampled using 32 spp, and denoising is disabled for this test. Tabulated average
validation PSNR of the forward renderings using high sample count and no denoising over 200
frames.

6 Relighting and View Interpolation

We present relighting results with per scene breakdown for all synthetic datasets in Table 2. Fig-
ures 12, 13, and 14 show visual examples of the NeRFactor synthetic dataset. This dataset is
intentionally designed to simplify light and material separation (low frequency lighting, no prominent
shadowing, direct lighting only). Figures 15, 16, and 17 show visual examples from the NeRF
synthetic dataset. This dataset was designed view-interpolation, and contains particularly hard scenes
with all-frequency lighting. Table 3 presents per-scene view interpolation scores for the synthetic
datasets.

Table 1: Chamfer L1 scores on the extracted meshes. Lower score is better.

Chair Hotdog Lego Materials Mic

PhySG 0.1341 0.2420 0.2592 N/A 0.2712
NeRF (w/o mask) 0.0185 4.6010 0.0184 0.0057 0.0124
NeRF (w/ mask) 0.0435 0.0436 0.0201 0.0082 0.0122
NVDIFFREC 0.0574 0.0272 0.0267 0.0180 0.0098
Our 0.0566 0.0297 0.0583 0.0162 0.0151
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Figure 10: Correlated vs. decorrelated samples during gradient backpropagation. Although clearly
biased, convergence at lower sample counts improves drastically when explicitly re-using samples in
the backward pass (correlated), as gradients are propagated to the exact same set of parameters which
contributed to the forward rendering.
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Figure 11: Extracted mesh quality visualization examples using the synthetic NeRF Chair, Hotdog,
and Lego datasets. For these visualizations, the normal mapping shading term which simulates small
geometric detail (used by Our and NVDIFFREC) is disabled.
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Table 2: Relighting results for all synthetic datasets with per-scene quality metrics. The synthetic
NeRFactor and NeRF train sets use 100 images from random viewpoints, and our dataset use 200
images for Apollo and 256 images for Porsche and Roller. The test sets used to compute relighting
quality use eight novel views. Each view is relit by eight low resolution (32× 16 pixel) light probes
for NeRFactor, and four high resolution (2048× 1024 pixels) light probes for NeRF and our dataset.

NeRFactor synthetic dataset
PSNR↑ SSIM↑ LPIPS↓

Drums Ficus Hotdog Lego Drums Ficus Hotdog Lego Drums Ficus Hotdog Lego

Our 23.6 29.3 30.0 21.2 0.926 0.968 0.952 0.853 0.062 0.025 0.040 0.113
NVDIFFREC 22.4 27.8 29.5 19.4 0.915 0.962 0.936 0.825 0.066 0.028 0.048 0.109
NERFACTOR 21.6 21.6 25.5 20.3 0.911 0.921 0.916 0.839 0.065 0.075 0.087 0.121

NeRF synthetic dataset
PSNR↑ SSIM↑ LPIPS↓

Chair Hotd. Lego Mats. Mic Chair Hotd. Lego Mats. Mic Chair Hotd. Lego Mats. Mic

Our 27.0 25.9 23.4 25.1 30.9 0.946 0.929 0.890 0.923 0.972 0.044 0.073 0.088 0.047 0.025
NVDIFFREC 25.1 20.3 21.4 19.9 29.7 0.921 0.853 0.861 0.847 0.967 0.060 0.126 0.089 0.079 0.026

Our synthetic dataset
PSNR↑ SSIM↑ LPIPS↓

Apollo Porsche Roller Apollo Porsche Roller Apollo Porsche Roller

Our 25.6 28.2 27.5 0.931 0.965 0.952 0.045 0.030 0.027
NVDIFFREC 24.7 26.1 20.4 0.926 0.952 0.898 0.049 0.029 0.067

Table 3: View interpolation results for all synthetic datasets with per-scene quality metrics. The
synthetic NeRFactor and NeRF training sets use 100 images from random viewpoints, and our dataset
use 200 images for Apollo and 256 images for Porsche and Roller. The quality metric for a scene
is the arithmetic average over all 200 test images.

NeRFactor synthetic dataset
PSNR↑ SSIM↑

Drums Ficus Hotdog Lego Drums Ficus Hotdog Lego

Our 26.6 30.8 33.9 29.1 0.940 0.975 0.967 0.930
NVDIFFREC 28.5 31.2 36.3 30.7 0.959 0.978 0.981 0.951
NERFACTOR 24.6 23.1 31.6 28.1 0.933 0.937 0.948 0.900

NeRF synthetic dataset
PSNR↑ SSIM↑

Chair Hotdog Lego Mats. Mic Chair Hotdog Lego Mats. Mic

Our 29.0 30.4 26.8 25.7 29.0 0.947 0.942 0.917 0.913 0.963
NVDIFFREC 31.6 33.0 29.1 26.7 30.8 0.969 0.973 0.949 0.923 0.977

Our synthetic dataset
PSNR↑ SSIM↑

Apollo Porsche Roller Apollo Porsche Roller

Our 23.4 28.4 25.0 0.908 0.953 0.941
NVDIFFREC 23.9 28.5 25.1 0.923 0.958 0.951
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Figure 12: Relighting examples from Hotdog scene of the NeRFactor synthetic dataset. We show a
single view relit by six of the eight different low frequency light probes from the test set.

7 Scene Credits

Mori Knob from Yasotoshi Mori (CC BY-3.0). Bob and Spot models (CC0) by Keenan Crane.
Rollercoaster and Porsche scenes from LDraw resources (CC BY-2.0) by Philippe Hurbain. Apollo
and Damicornis models courtesy of the Smithsonian 3D repository [15] (CC0). The Family scene
is part of the Tanks&Temples dataset [8] (CC BY-NC-SA 3.0), the Character scene is part of the
BlendedMVS dataset [18] (CC BY-4.0) and the Gold Cape scene is part of the NeRD dataset [3] (CC
BY-NC-SA 4.0). The NeRF [10] and NeRFactor [20] datasets (CC BY-3.0) contain renders from
modified blender models located on blendswap.com: chair by 1DInc (CC0), drums by bryanajones
(CC-BY), ficus by Herberhold (CC0), hotdog by erickfree (CC0), lego by Heinzelnisse (CC-BY-NC),
materials by elbrujodelatribu (CC0), mic by up3d.de (CC0), ship by gregzaal (CC-BY-SA). Light
probes from Poly Haven [19]: Aerodynamics workshop and Boiler room by Oliksiy Yakovlyev,
Dreifaltkeitsberg by Andreas Mischok, and Music hall by Sergej Majboroda (all CC0). The probes
provided in the NeRFactor dataset are modified from the probes (CC0) shipped with Blender.
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Figure 13: Relighting examples from Ficus scene of the NeRFactor synthetic dataset. We show a
single view relit by six of the eight different low frequency light probes of the test set.
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Figure 14: Relighting examples from Lego scene of the NeRFactor synthetic dataset. We show a
single view relit by six of the eight different low frequency light probes of the test set.
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Figure 15: Relighting examples from Hotdog scene of the NeRF synthetic dataset. We show a single
view relit by the four different high frequency light probes from Poly Haven (CC0).

R
ef

O
ur

N
V

D
IF

F
R

E
C

Aerodynamics Workshop Boiler room Dreifaltigkeitsberg Music hall

Figure 16: Relighting examples from Materials scene of the NeRF synthetic dataset. We show a
single view relit by the four different high frequency light probes.
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Figure 17: Relighting examples from Microphone scene of the NeRF synthetic dataset. We show a
single view relit by the four different high frequency light probes.
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Figure 18: Breakdown of shading terms with and without our light regularizer. Note that, for complex
meshes (Hotdog and Lego), shadows are more accurately baked into lighting terms, effectively
delighting the kd textures. For scenes with simple visibility (Chair, Materials, Microphone), the
regularizer arguably contrast enhance the light probes too much, but we still note smoother kd.
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