A Details in A^2

A.1 Unify Magnitude of Perturbations

Perturbations generated by different operations in O_p have different magnitudes and thus require different magnitudes of step size for different o_p. For example, $FGSM$ generates perturbations with elements belonging to $\{\{, 0, 1\}$, while the perturbation generated by FGM is usually in the magnitude of 10^{-3}. Obviously, they cannot use the same step size. To have a uniform effect of the step size block, we normalize the magnitude of other generated perturbations to be the same as $FGSM$ (i.e., $\delta_{o_p} = \delta_{o_p} \cdot \|\delta_{o_p}\|_2$). In this way, we find that other attack methods such as FGM can achieve good results with the same step size as $FGSM$.

A.2 Temperature Parameter in $Softmax$

Since there is an order of magnitude difference in step size operations, the larger step size with the same score will dominate the output. For example, $0.7 \cdot 10^{-2} + 0.3 \cdot 0 = 0.3 \cdot 10^2$. The output of the step size block is dominated by the operation $\|O\|_2$, despite the greater weight of $10^{-2} \cdot 0$. To alleviate the problem, we use the temperature parameter τ in softmax to sharpen the distribution:

$$\gamma_{o_o}^{(k)} = \exp \left(\frac{e_{o_o}^{(k)}}{\tau} \right) \sum_{o_o' \in O_o} \exp \left(\frac{e_{o_o'} / \tau}{} \right)$$

where o_o is an operation in O_o, and e_{o_o} is its attention score. Through experiments, we set $\tau = 0.1$ to distinguish the preference for the step size in most cases.

A.3 Overhead of A^2

Let the number of steps be K, the number of operations be $|O|$, the image size be $W \times H$ and the embedding size be E. The number of the attacker’s parameter is $O \cdot (K \cdot E \cdot (W \times H + |O|))$. Specifically, the number of parameters for the attacker is 7873280, which is 17% of the model’s parameters (i.e., 46160474). In each batch, there is only 1 forward calculation of all cells with 1 backpropagation. In comparison, the model requires K forward calculations with backpropagation. Therefore, the additional computational overhead from the attacker is not significant in terms of the number of parameters and computations.

Moreover, PGD and A^2 are close in terms of clock time. For WRN-34, PGD takes 19.75/147.09/287.76 seconds to generate 1/10/20 step attacks respectively. It demonstrates that more inner steps lead to a linear increase in time. Meanwhile, A^2 takes 157.61/302.51 seconds to generate the 10/20 step attack respectively. The main overhead remains in the forward computation and backward propagation of the defense model. For WRN-34, the training time of AWP-A^2 is 970 s/epoch while the training time of AWP is 920 s/epoch.

In summary, the additional overhead of A^2 is not significant.

A.4 Why No Mixture in O_p

Like most NAS methods in AutoML, the discrete selection in the perturbation block is more interpretable and robust (e.g., L1-Norm for feature selection and single path in NAS) than the mixture over possible solutions. Moreover, the mixture will incur more computational overhead and 7 times memory overhead due to 7 operations in O_p. Figure 3 shows an example of the generated attack on CIFAR-10, which can be migratable.

B Addition Experiments

B.1 Why use FGSM-based PGD in RQ1.

There are multiple single-step attack methods in O_p for stacking as PGD, e.g., FGM-based PGD and FGSM-based PGD. The experimental results of the attack effect of PGD based on these attack methods demonstrate that FGSM-based PGD outperforms the stacking of other operations. Thus, we
choose FGSM-based PGD with a random start $\delta^{(0)} \sim \text{Uniform}(-\epsilon, \epsilon)$ as a baseline for comparison with the automated attacker.

B.2 Number of samples M in MC Approximation.

M is an important hyperparameter that dictates the quality of MC approximation and the training overhead. We test the cases with $M \in \{1, 2, 5\}$ and achieve similar performance. Thus, we set M to 1 and achieve good results with a significantly lower overhead.

B.3 Generality of A^2 in White-Box Attacks

Table 5: Comparison of attack effects on CIFAR-10 (%; the lower the better) of PGD-based and CW-based attacks. The architecture of all defense models is WideResNet, except for MART whose architecture is ResNet-18.

<table>
<thead>
<tr>
<th>Method</th>
<th>MART</th>
<th>TRADES-AWP</th>
<th>MART-AWP</th>
<th>RST-AWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>83.07</td>
<td>85.36</td>
<td>85.60</td>
<td>88.25</td>
</tr>
<tr>
<td>PGD20</td>
<td>53.76</td>
<td>59.64</td>
<td>59.52</td>
<td>64.14</td>
</tr>
<tr>
<td>PGD20-A2</td>
<td>53.24</td>
<td>59.34</td>
<td>59.25</td>
<td>63.97</td>
</tr>
<tr>
<td>CW$^{\infty}$-A2</td>
<td>49.97</td>
<td>57.07</td>
<td>56.44</td>
<td>61.82</td>
</tr>
<tr>
<td>CW$^{\infty}$-A2</td>
<td>49.82</td>
<td>56.98</td>
<td>55.81</td>
<td>61.30</td>
</tr>
</tbody>
</table>

In this part, we investigate whether A^2 is general to white-box attacks. As a more powerful attack method, CW$^{\infty}$-based attacks [Carlini and Wagner [2017] stably outperform PGD-based attacks. For comparison with CW$^{\infty}$, we propose a variant of A^2 that uses CW$^{\infty}$ loss to generate perturbations and denote it as CW$^{\infty}$-A2. The results in Table 5 show that A^2 is general and can improve the attack effect of PGD and CW$^{\infty}$ by combining attack methods and tuning the step size. Moreover, the additional overhead of A^2 is 5% to 10%, which is a rather acceptable trade-off.

B.4 Robustness Against Transferable Black-Box Attacks

We investigate the robustness of A^2 against transferable black-box attacks. Table 6 provides test robustness on CIFAR-10 using ResNet-18. We adopt three transferable black-box attack methods: MI (momentum = 1) [Dong et al. [2018]], DI [Xie et al. [2019]], and TI [Dong et al. [2019]]. The transferable attacks are generated by an ensemble of the above methods on three surrogate pre-trained models: IncV3 (InceptionV3), VGG19, and DN201 (DenseNet201). Table 6 shows that AT boosts the robustness against transferable black-box attacks, and A^2 can further improve the adversarial robustness.
Table 6: Test robustness (\%, the higher the better) on CIFAR-10 using ResNet-18 against transferable black-box attacks.

<table>
<thead>
<tr>
<th>MI+DI+TI</th>
<th>IncV3</th>
<th>VGG19</th>
<th>DN201</th>
<th>PGD^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-18</td>
<td>16.12</td>
<td>7.37</td>
<td>5.35</td>
<td>0.02</td>
</tr>
<tr>
<td>ResNet-18-AT</td>
<td>61.98</td>
<td>60.81</td>
<td>59.63</td>
<td>52.79</td>
</tr>
<tr>
<td>ResNet-18-AT-A^2</td>
<td>62.79</td>
<td>61.85</td>
<td>60.28</td>
<td>52.96</td>
</tr>
</tbody>
</table>

![echarts](https://github.com/huyvnphan/PyTorch_CIFAR10)

Figure 4: Distribution of attacks selected by perturbation blocks of A^2.

B.5 A Closer Look at Selected Attacks

We analyze the selected attacks from the perspective of perturbation blocks with different steps and datasets.

The first and final perturbation blocks of 10-step A^2 in CIFAR-10 are chosen for analysis. Figure 4 shows the distribution of selected attacks of different perturbation blocks.

- **Perturbation Block 1**: A^2 tends to choose FGM, FGSM, and partially random methods as initialization in the first step. The momentum-based attack methods are quickly discarded as the gradient of the previous step is absent. FGSM is chosen more frequently due to its stronger attack on both foreground and background.

- **Perturbation Block 10**: The optimization of the victim model leads to changes in the distribution of selected attacks in the last block. In the early stage of training, the victim model is vulnerable. A^2 retains the diversity and plays the role of friendly attackers like FAT [Zhang et al., 2020]. At the end of training, A^2 prefers the momentum-based attacks (i.e., FGSMM and FGMM).

From the perspective of datasets, SVHN and CIFAR-10 prefer different attack methods. As shown in Figure 4(c), SVHN discards FGSMM, which is most frequently used in CIFAR-10, and pays more attention to FGMM. Moreover, SVHN rarely uses Identity compared with CIFAR-10 as its higher robustness accuracy requires more powerful perturbations.

In summary, A^2’s preference for selecting attacks in blocks varies according to the block step, dataset, and victim model.

https://github.com/huyvnphan/PyTorch_CIFAR10