
Supplementary Materials

A Well-Conditioned Case: Learning GMMs

We now deal with learning well-conditioned GMMs. We begin by formally specifying the properties
that we want the components of the mixture to have. Roughly, we want the components to have
comparable variances and the separation between their means cannot be too large compared to the
variances. This means that after applying a suitable linear transformation, the components are all not
too far from the standard Gaussian N(0, 1).
Definition A.1. We say a Gaussian where G = N(µ, σ2) is δ-well-conditioned if

• |µ| ≤ δ

• |σ2 − 1| ≤ δ

We say a mixture of GaussiansM = w1G1+· · ·+wkGk is δ-well-conditioned if all of the components
G1, . . . , Gk are δ-well-conditioned.

We now state our learning result for well-conditioned mixtures.
Lemma A.2. Let ϵ > 0 be a parameter. Assume we are given access to a distribution f such that
dTV(f,M) ≤ ϵ whereM = w1G1 + · · ·+ wkGk is a 0.5-well-conditioned mixture of Gaussians.
Then we can compute, in poly(1/ϵ) time, a mixture M̃ of at most O(log 1/ϵ) Gaussians such that
dTV(M,M̃) ≤ Õ(ϵ).
Remark. Note that in the well-conditioned case, the number of components in the mixture that we
compute does not depend on k.

Our algorithm for proving Lemma A.2 can be broken down into two parts. In the first part, we find a
mixture of poly(1/ϵ) Gaussians that approximates f . We then show how to reduce this mixture of
poly(1/ϵ) Gaussians to O(log 1/ϵ) Gaussians by using the Taylor series approximation to a Gaussian.
Lemma A.3. Let ϵ > 0 be a parameter. Assume we are given access to a distribution f such that
dTV(f,M) ≤ ϵ whereM = w1G1 + · · ·+ wkGk is a 0.5-well-conditioned mixture of Gaussians.
Then we can compute, in poly(1/ϵ) time, a mixture of at most O(1/ϵ2) Gaussians that is Õ(ϵ)-close
toM in TV distance.

Proof. First, let T be the set of all 0.5-well-conditioned Gaussians such that µ and σ2 are integer
multiples of 0.1ϵ. Note |T | = O(1/ϵ2).

By rounding all of the Gaussians G1, . . . , Gk to the nearest element of T (this increases
our L1 error by at most ϵ), we may assume that all of the components G1, . . . , Gk are actually in T .
Now note that since ∥f − w1G1 − · · · − wkGk∥1 ≤ 2ϵ, we have for all x,

|f̂(x)− w1Ĝ1(x)− · · · − wkĜk(x)| ≤ 2ϵ (1)

where Ĝj denotes taking the Fourier transform of the pdf of the Gaussian Gj . Let l = ⌈log 1/ϵ⌉. We
now have, ∫ l

−l

|f̂(x)− w1Ĝ1(x)− · · · − wkĜk(x)|2dx ≤ O(lϵ2) .

Now let all of the Gaussians in T be G1, . . . , Gm where m = |T |. By Lemma F.10 (and splitting
into real and imaginary parts), we can compute in poly(1/ϵ) time, nonnegative weights w̃1, . . . , w̃m

with w̃1 + · · ·+ w̃m ≤ 1 such that∫ l

−l

|f̂(x)− w̃1Ĝ1(x)− · · · − w̃mĜm(x)|2dx ≤ O(lϵ2)

which by Cauchy Schwarz implies that∫ l

−l

|f̂(x)− w̃1Ĝ1(x)− · · · − w̃mĜm(x)|dx ≤ O(lϵ) .
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Now note that since all of the Gaussians G1, . . . , Gm are 0.5-well-conditioned, their Fourier trans-
forms Ĝj also decay rapidly away from [−l, l] so combining the above with (1), we deduce that∫ ∞

−∞
|(w̃1Ĝ1(x)− · · · − w̃mĜm(x))− w1Ĝ1(x)− · · · − wkĜk(x)| ≤ O(lϵ) .

From the Fourier transform of the above we then get for all x
|w̃1G1(x) + · · ·+ w̃mGm(x)− w1G1(x)− · · · − wmGm(x)| ≤ O(lϵ)

and since all of the Gaussians involved are 0.5-well-conditioned, they all decay rapidly outside the
interval [−l, l] and we conclude∫ ∞

−∞
|w̃1G1(x) + · · ·+ w̃mGm(x)− w1G1(x)− · · · − wmGm(x)|dx ≤ O(l2ϵ) .

Finally, note that by the above, we must have 1−O(l2ϵ) ≤ w̃1+ · · ·+ w̃m ≤ 1+O(l2ϵ) so rescaling
to an actual mixture i.e. so that the weights w̃1 + · · · + w̃m = 1, will affect the above error by at
most O(l2ϵ). Thus, we can output this mixture and we are done. ■

Next, as an immediate consequence of Lemma F.8, a 0.5-well-conditioned Gaussian can be well
approximated by its Taylor expansion.
Corollary A.4. Let G = N(µ, σ2) be a 0.5-well-conditioned Gaussian. Let ϵ > 0 be some parameter
and let l = ⌈log 1/ϵ⌉. Then we can compute a polynomial PG(x) of degree (10l)2 such that for all
x ∈ [−l, l],

|G(x)− PG(x)| ≤ O(ϵ) .

Proof. This follows immediately from using Lemma F.8 and applying the appropriate linear transfor-
mation to the polynomial. ■

We can now complete the proof of Lemma A.2 by using Lemma A.3 and then using Corollary A.4
and Caratheodory to reduce the number of components.

Proof of Lemma A.2. By Lemma A.3, we can compute a mixture

M̃ = w̃1G̃1 + · · ·+ w̃mG̃m

such that m = O(1/ϵ2) and
∥M̃ −M∥1 ≤ Õ(ϵ) .

For each Gaussian G̃j , let P
G̃j

(x) be the polynomial computed in Lemma F.8. Write

P
G̃j

(x) = aj,0 + aj,1x+ · · ·+ aj,(10l)2x
(10l)2 .

Define the vector
vj = (aj,0, aj,1, . . . , aj,(10l)2) .

Now the point w̃1v1 + · · ·+ w̃mvm is in the convex hull of v1, . . . , vm. By Caratheodory (since the
space is (10l)2 + 1-dimensional), it must be in the convex hull of some (10l)2 + 1 of the vertices.
Thus, we can compute indices i0, . . . , i(10l)2 and nonnegative weights w′

0, . . . , w
′
(10l)2 summing to 1

such that
w̃1v1 + · · ·+ w̃mvm = w′

0vi0 + · · ·+ w′
(10l)2vi(10l)2 .

The above implies that for all x,
w̃1PG̃1

(x) + · · ·+ w̃mP
G̃m

(x) = w′
0PG̃i0

(x) + · · ·+ w′
(10l)2PG̃i

(10l)2

(x) .

Now by Corollary A.4 and the fact that all of the Gaussians are 0.5-well-conditioned, meaning that
they decay rapidly outside of [−l, l], we conclude that if we set

M′ = w′
0G̃i0 + · · ·+ w′

(10l)2G̃i(10l)2

then
∥M̃ −M′∥1 ≤ Õ(ϵ)

and then we have
∥M−M′∥1 ≤ ∥M̃ −M∥1 + ∥M̃ −M′∥1 ≤ Õ(ϵ)

as desired. ■
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We can slightly improve Lemma A.2 to work even when we do not have a precise estimate of
dTV(f,M) since we can just repeatedly decrease our target accuracy until we cannot improve our
accuracy further. Recall that we can use Claim 2.11 to test the L1 distance between two distributions.
We now have the following (slight) improvement of Lemma A.2.

Corollary A.5. Let ϵ > 0 be a parameter. Let M = w1G1 + · · · + wkGk be an unknown 0.5-
well-conditioned mixture of Gaussians. Assume we are given access to a distribution f . Then we
can compute, in poly(1/ϵ) time, a mixture M̃ of at most O(log 1/ϵ) Gaussians such that with high
probability,

dTV(f,M̃) ≤ ϵ2 + poly(log 1/ϵ)dTV(f,M) .

Proof. We can simply start from ϵ′ = 1 and run the algorithm in Lemma A.2 with parameter ϵ′ and
then estimate dTV(f,M̃) using Claim 2.11. If dTV(f,M̃) ≤ ϵ′poly(log 1/ϵ) then we can decrease
ϵ′ by a factor of 0.9 and repeat. Repeating this process and taking the smallest accuracy ϵ′ ≥ ϵ3 for
which the above check succeeds, we get (from the guarantee of Lemma A.2) that

dTV(f,M̃) ≤ ϵ2 + poly(log 1/ϵ)dTV(f,M)

and we are done. ■

B Function Approximations Using Gaussians

In this section, we present several results about approximating functions as a sum of Gaussians. These
results will be key building blocks in the localization steps of both of our algorithms. The main result
of this section, Theorem B.3, allows us to ϵ-approximate the indicator function of an interval as a
sum of poly(log 1/ϵ)-Gaussians.

First, it will be convenient to renormalize Gaussians so that their maximum value is 1. After
renormalization, we call them Gaussian multipliers.

Definition B.1 (Gaussian Multiplier). For parameters µ, σ, we define

Mµ,σ2(x) = e−
(x−µ)2

2σ2

i.e. it is a Gaussian scaled so that its maximum value is 1.

We also introduce the some additional terminology.

Definition B.2 (Significant Interval). For a Gaussian multiplier Mµ,σ2 , we say the C-significant
interval of M is [µ− Cσ, µ+ Cσ]. We will use the same terminology for a Gaussian N(µ, σ2).

It will be used repeatedly that for a Gaussian (or Gaussian multiplier), 1− ϵ-fraction of its mass is
contained in its O(

√
log 1/ϵ)-significant interval. We now state the main result of this section about

approximating the indicator function of an interval as a weighted sum of Gaussian multipliers.

Theorem B.3. Let l be a positive real number and 0 < ϵ < 0.1 be a parameter. There is a function f
with the following properties

1. f can be written a linear combination of Gaussian multipliers

f(x) = w1Mµ1,σ2
1
(x) + · · ·+ wnMµn,σ2

n
(x)

where n = O((log 1/ϵ)2) and 0 ≤ w1, . . . , wn ≤ 1

2. The 10
√

log 1/ϵ-significant intervals of all of the Mµi,σ2
i

are contained in the interval
[−(1 + ϵ)l, (1 + ϵ)l]

3. 0 ≤ f(x) ≤ 1 + ϵ for all x

4. 1− ϵ ≤ f(x) ≤ 1 + ϵ for all x in the interval [−l, l]

5. 0 ≤ f(x) ≤ ϵ for x ≥ (1 + ϵ)l and x ≤ −(1 + ϵ)l
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B.1 Approximating a Constant Function

Recall Lemma 2.5 (restated below) that allows us to approximate a constant function using an infinite
sum of evenly spaced Gaussian multipliers.
Lemma B.4 (Restated from Lemma 2.5). Let 0 < ϵ < 0.1 be a parameter. Let c be a real number
such that 0 < c ≤ (log 1/ϵ)−1/2. Define

f(x) =

∞∑
j=−∞

c√
2π

Mcjσ,σ2(x) .

Then 1− ϵ ≤ f(x) ≤ 1 + ϵ for all x.

B.2 Approximating an Interval

The next step in the proof of Theorem B.3 is to show how to approximate an interval using a finite
number of Gaussian multipliers i.e. we need to show how to create the sharp transitions at the ends
of the interval. In light of Lemma B.4, we can create a function satisfying the last four properties
by taking Õ((1/ϵ)2) evenly spaced Gaussians multipliers with standard deviation ϵ2l. However,
this is too many components and we must reduce the number of components to O(log2 1/ϵ). The
way we do this is by merging most of these components (all but the ones on the ends) into fewer
components with larger standard deviation. We keep iterating this merging process and prove that we
can eventually reduce the number of components to O(log2 1/ϵ).

First, the following result is an immediate consequence of Lemma B.4. It allows us to ap-
proximate a Gaussian with standard deviation 2σ as a weighted sum of Gaussians with standard
deviation σ.
Corollary B.5. Let ϵ be a parameter. Let c be a real number such that 0 < c ≤ 0.5(log 1/ϵ)−1/2.
Let

g(x) =

∞∑
j=−∞

√
2c√
3π

e−
c2j2

6 Mcjσ,σ2(x) .

Then for all x,
(1− ϵ)M0,4σ2(x) ≤ g(x) ≤ (1 + ϵ)M0,4σ2(x) .

Proof. Lemma B.4 (with c← 2√
3
c, σ ← 2√

3
σ) implies that the function

f(x) =

∞∑
j=−∞

√
2c√
3π

M 4
3 cjσ,

4
3σ

2(x)

is between 1− ϵ and 1 + ϵ everywhere. Now consider

f(x) ·M0,4σ2(x) =

∞∑
j=−∞

√
2c√
3π

M 4
3 cjσ,

4
3σ

2(x)M0,4σ2(x) =

∞∑
j=−∞

√
2c√
3π

e−
x2+3(x− 4

3
cjσ)2

8σ2

=

∞∑
j=−∞

√
2c√
3π

e−
c2j2

6 e−
(x−cjσ)2

2σ2 =

∞∑
j=−∞

√
2c√
3π

e−
c2j2

6 Mcjσ,σ2(x) .

■

In the next lemma, we show when given a sum of evenly spaced Gaussians with standard deviation σ,
we can replace almost all of them (except for ones on the ends) with a sum of fewer evenly spaced
Gaussians with standard deviation 2σ.
Lemma B.6. Let ϵ be a parameter. Let c be a real number such that 0 < c ≤ 0.01(log 1/ϵ)−1/2. Let
b be a positive integer. Consider the function

f(x) =

b∑
j=0

c√
2π

Mcjσ,σ2(x) .
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Let C = ⌈102c−1 log(1/ϵ)1/2⌉. There is a function g of the form

g(x) =

2C∑
j=0

wjc√
2π

Mcjσ,σ2(x) +

b∑
j=b−2C

wjc√
2π

Mcjσ,σ2(x) +

⌈(b−C)/2⌉∑
j=⌊C/2⌋

c√
2π

M2cjσ,4σ2(x)

where the 0 ≤ w0, . . . , w2C , wb−2C , . . . , wk ≤ 1 are weights and

∥f − g∥∞ ≤ ϵ10 .

Proof. Let ϵ′ = ϵ100. By Corollary B.5, for any real numbers j, x,∣∣∣∣∣Mcjσ,4σ2(x)−
∞∑

k=−∞

√
2c√
3π

e−
c2k2

6 Mc(k+j)σ,σ2(x)

∣∣∣∣∣ ≤ ϵ′Mcjσ,4σ2(x) .

Now we use the above inequality on each term of the last sum in the expression for g(x).∣∣∣∣∣∣
⌈(b−C)/2⌉∑
j=⌊C/2⌋

cM2cjσ,4σ2(x)√
2π

−
⌈(b−C)/2⌉∑
j=⌊C/2⌋

∞∑
k=−∞

c2

π
√
3
e−

c2k2

6 Mc(k+2j)σ,σ2(x)

∣∣∣∣∣∣
≤ ϵ′

⌈(b−C)/2⌉∑
j=⌊C/2⌋

cM2cjσ,4σ2(x)√
2π

≤ 2ϵ′

where the last step follows from Lemma B.4. Now we rewrite the second sum in the LHS above. Let

S(x) =

⌈(b−C)/2⌉∑
j=⌊C/2⌋

∞∑
k=−∞

c2

π
√
3
e−

c2k2

6 Mc(k+2j)σ,σ2(x)

=

∞∑
l=−∞

c2

π
√
3
Mclσ,σ2(x)

⌈(b−C)/2⌉∑
j=⌊C/2⌋

e−
c2(l−2j)2

6 .

Define

al =

⌈(b−C)/2⌉∑
j=⌊C/2⌋

e−
c2(l−2j)2

6 .

First, by applying Lemma B.4 with parameters c ← 2√
3
c, σ ←

√
3c−1, we have that for all real

numbers l, ∣∣∣∣∣
√
3π√
2c
−

∞∑
−∞

e−
c2(l−2j)2

6

∣∣∣∣∣ ≤ ϵ′
√
3π√
2c

.

By the way we chose C, we deduce that for all integers l with 2C ≤ l ≤ b− 2C,∣∣∣∣∣
√
3π√
2c
− al

∣∣∣∣∣ ≤ (2ϵ′)

√
3π√
2c

(2)

for all integers 0 ≤ l ≤ 2C, or b− 2C ≤ l ≤ b,

al ≤
√
3π√
2c

(1 + 2ϵ′) (3)

and finally for all integers l < 0 or l > b,

al ≤
√
3π√
2c

(2ϵ′) . (4)

To obtain these inequalities, we simply use the fact that the terms in the sum
∞∑
−∞

e−
c2(l−2j)2

6
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decay exponentially when j is far from l/2 so their total contribution is small.

Now we can set w0, . . . , w2C , wb−2C , . . . , wk in the expresion for g(x) as follows:

wj = max

(
0, 1−

√
2c√
3π

aj

)
.

It is clear that all of these weights are between 0 and 1. We now have that

∥f − g∥∞ ≤ 2ϵ′ + ∥f(x)−

S(x) +

2C∑
j=0

wjc√
2π

Mcjσ,σ2(x) +

b∑
j=b−2C

wjc√
2π

Mcjσ,σ2(x)

∥∞
The expression inside the norm on the RHS can be rewritten as

b−2C−1∑
l=2C+1

(
c√
2π
− c2

π
√
3
al

)
Mclσ,σ2(x) +

2C∑
l=0

(
c√
2π

(1− wl)−
c2

π
√
3
al

)
Mclσ,σ2(x)

+

b∑
l=b−2C

(
c√
2π

(1− wl)−
c2

π
√
3
al

)
Mclσ,σ2(x) +

−1∑
l=−∞

− c2

π
√
3
alMclσ,σ2(x)

+

∞∑
l=b+1

− c2

π
√
3
alMclσ,σ2(x)

and combining (2,3, 4), we deduce that the above has L∞ norm at most

∥(10ϵ′)
∞∑

l=−∞

c√
2π

Mclσ,σ2(x)∥∞ ≤ 20ϵ′ .

where we used Lemma B.4. Thus, ∥f − g∥∞ ≤ 22ϵ′ and we are done. ■

We can now prove Theorem B.3 by repeatedly applying Lemma B.6.

Proof of Theorem B.3. Let c = 0.01(log 1/ϵ)−1/2. Let K = ⌈ 1+0.5ϵ
cϵ2 ⌉

f0(x) =

K∑
j=−K

c√
2π

Mcjϵ2l,ϵ4l2(x) .

Let ϵ′ = ϵ10. Using Lemma B.4, (and basic tail decay properties of a Gaussian) we get that

• 0 ≤ f0(x) ≤ 1 + ϵ′ for all x

• 1− ϵ′ ≤ f0(x) ≤ 1 + ϵ′ for all x in the interval [−l, l]

• 0 ≤ f0(x) ≤ ϵ′ for x ≥ (1 + ϵ)l and x ≤ −(1 + ϵ)l

Now we can apply Lemma B.6 to f0(x) to obtain

f1(x) =

−K+2C∑
j=−K

wjc√
2π

Mcjϵ2l,ϵ4l2(x) +

K∑
j=K−2C

wjc√
2π

Mcjϵ2l,ϵ4l2(x)

+

⌈(K−C)/2⌉∑
j=−⌈(K−C)/2⌉

c√
2π

M2cjϵ2l,4ϵ4l2(x)

where C = ⌈102c−1 log(1/ϵ)1/2⌉, the wj are weights between 0 and 1, and

∥f1 − f0∥ ≤ ϵ′ .

Now we can apply Lemma B.6 again on the last sum in the expression for f1. We have to do this
at most 10 log 1/ϵ times before there are at most O((log 1/ϵ)2) components remaining. It is clear
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that in this procedure, the 10
√
log 1/ϵ-significant intervals of all of the Gaussian multipliers always

remains in [−(1 + ϵ)l, (1 + ϵ)l]. Also, the total L∞ error incurred over all of the applications of
Lemma B.6 is at most 10ϵ′ log 1/ϵ ≤ ϵ9. It is clear that all of the weights are always nonnegative and
in the interval [0, 1]. Thus, the final function f satisfies

• 0 ≤ f(x) ≤ 1 + ϵ for all x

• 1− ϵ ≤ f(x) ≤ 1 + ϵ for all x in the interval [−l, l]

• 0 ≤ f(x) ≤ ϵ for x ≥ (1 + ϵ)l and x ≤ −(1 + ϵ)l

and we are done. ■

In light of Theorem B.3, we may make the following definition.

Definition B.7. For parameters ϵ, l, let Iϵ,l denote the function computed in Theorem B.3 for
parameters ϵ, l/(1 + ϵ) . We will also use I(a)ϵ,l to denote the function Iϵ,l(x− a).

Remark. We define Iϵ,l as above because it will be convenient later to be able to say that the
significant part of Iϵ,l is contained in the interval [−l, l].

C Nearly-Properly Learning GMMs: Full Version

In this section, we complete the proof of our main result for learning GMMs, Theorem 1.1. We
localize the distribution by multiplying by a Gaussian multiplier Mµ,σ2 . Note that the product of two
Gaussians is still a Gaussian so multiplying a GMM by a Gaussian multiplier results in a re-weighted
mixture of Gaussians. Roughly, we argue that the new weights on components of the mixture that
are far away from the multiplier Mµ,σ2 are negligible so the resulting mixture is well-conditioned
and we can then use Corollary A.5 to reconstruct the localized distribution. To reconstruct the entire
distribution, we show that it suffices to sum together Õ(k) different localized reconstructions.

C.1 Localizing with Gaussian Multipliers

Recall Claim 2.4 (restated below) which gives an explicit formula for what happens when we have a
Gaussian G1 = N(µ1, σ

2
1) and we multiply it by a Gaussian multiplier Mµ,σ2(x).

Claim C.1 (Restated from Claim 2.4). We have the identity

Mµ,σ2(x)N(µ1, σ
2
1) =

1√
1 +

σ2
1

σ2

e
− (µ1−µ)2

2(σ2
1+σ2)N

(
µσ2

1 + µ1σ
2

σ2
1 + σ2

,
σ2
1σ

2

σ2
1 + σ2

)
.

C.2 Building Blocks

We first consider reconstructing a GMMM = w1G1 + . . . wkGk after multiplying by a Gaussian
multiplier Mµ,σ2 . As a corollary of Claim C.1, we know that when the C-significant intervals (recall
Definition B.2) of a Gaussian Gj and the multiplier Mµ,σ2(x) are disjoint for large C, then the L1

norm of their product is e−Ω(C2). In particular this means that after multiplying by Mµ,σ2 , the only
components that remain relevant are those that have nontrivial overlap with the multiplier Mµ,σ2 .
The only way these components will not form a well-conditioned mixture is if there is some Gj that
is very thin (i.e. σj << σ) and overlaps with Mµ,σ2 . As long as this doesn’t happen, we can apply
Corollary A.5. We formalize this below.

Corollary C.2. Let M = w1G1 + · · · + wkGk be an arbitrary mixture of Gaussians where
Gi = N(µi, σ

2
i ). Let ϵ > 0 be some parameter and let l = ⌈

√
log(1/ϵ)⌉. Assume we are given

access to a distribution f . Let Mµ,σ2 be a Gaussian multiplier. Assume that for all i ∈ [k], either
σi ≥ 4lσ or the 10l-significant intervals of Gi and Mµ,σ2 do not intersect. Then in poly(1/ϵ) time
and with high probability, we can compute a weighted sum M̃ of at most O(log(1/ϵ)) Gaussians
such that

∥M̃ −Mµ,σ2f∥1 ≤ ϵ+ poly(log(1/ϵ))∥Mµ,σ2(M− f)∥1 .
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Proof. We compute Mµ,σ2f and let C = ∥Mµ,σ2f∥1. If C ≤ ϵ then we may simple output 0.
Otherwise, we will apply Corollary A.5 on Mµ,σ2f/C and multiply the result by C. We must first
verify the conditions of Corollary A.5. Let S ⊂ [k] be the indices such that the 10l-significant
intervals of Gi and Mµ,σ2 intersect. First for i /∈ S, by Claim C.1,

∥GiMµ,σ2∥1 ≤ e
− (µi−µ)2

2(σ2
i
+σ2) ≤ e−10l2 ≤ ϵ10 .

Let
M′ =

∑
i∈S

wiGi .

Then we know

∥
Mµ,σ2f

C
−

Mµ,σ2M′

C
∥1 ≤ ϵ9 +

∥Mµ,σ2(f −M)∥1
C

Next, for i ∈ S,

GiMµ,σ2 = w′
iN

(
µσ2

i + µiσ
2

σ2
i + σ2

,
σ2
i σ

2

σ2
i + σ2

)
for some weight w′

i and since we must have σi ≥ 4lσ, then

σ2

2
≤ σ2

i σ
2

σ2
i + σ2

≤ σ2∣∣∣∣µσ2
i + µiσ

2

σ2
i + σ2

− µ

∣∣∣∣ = ∣∣∣∣ (µi − µ)σ2

σ2
i + σ2

∣∣∣∣ ≤ l(σ + σi)σ
2

σ2
i + σ2

≤ σ

2

Let

M′′ =
∑
i∈S

w′
i∑

i∈S w′
i

N

(
µσ2

i + µiσ
2

σ2
i + σ2

,
σ2
i σ

2

σ2
i + σ2

)
.

Then we deduce, since ∥Mµ,σ2f/C∥1 = 1, that

∥
Mµ,σ2f

C
−M′′∥1 ≤ ∥M′′ −

Mµ,σ2M′

C
∥1 + ∥

Mµ,σ2f

C
−

Mµ,σ2M′

C
∥1

≤ 2∥
Mµ,σ2f

C
−

Mµ,σ2M′

C
∥1

≤ ϵ8 + 2
∥Mµ,σ2(f −M)∥1

C

and further, after applying a suitable linear transformation (taking (µ, σ2)→ (0, 1)) that the mixture
M′′ is 0.5-well-conditioned. Thus, we can apply Corollary A.5 and compute a weighted sum of
O(log(1/ϵ)) Gaussians, M̃ such that

∥
Mµ,σ2f

C
− M̃∥1 ≤ poly(log(1/ϵ))

(
ϵ8 +

∥Mµ,σ2(f −M)∥1
C

)
.

Now we can simply output CM̃ (which is still a weighted sum of O(log(1/ϵ)) Gaussians) and we
are done. ■

Recall that Theorem B.3 shows how to express an interval as a sum of Gaussian multipliers. Combin-
ing Theorem B.3 with Corollary C.2, we show that we can approximate a GMM over an interval as
long as the interval does not overlap with a component that is much thinner than it.
Lemma C.3. LetM = w1G1 + · · · + wkGk be an arbitrary mixture of Gaussians where Gi =
N(µi, σ

2
i ). Let ϵ > 0 be some parameter and let l = ⌈

√
log(1/ϵ)⌉. Assume we are given access to a

distribution f . Let I = [a, b] be an interval. Assume that for all i ∈ [k], either σi ≥ (b− a) or the
10l-significant interval of Gi does not intersect I . Then in poly(1/ϵ) time and with high probability,
we can compute a weighted sum M̃ of at most poly(log(1/ϵ)) Gaussians such that

∥M̃ − f · 1I∥1 ≤ poly(log(1/ϵ)) (ϵ+ ∥1I(M− f)∥1)

where 1I denotes the indicator function of I .

22



Proof. Consider the function I = I(a+b)/2
ϵ,(b−a)/2 (recall Definition B.7). Now note that by Theorem B.3,

I can be written in the form
I = w̃1Mµ̃1,σ̃1

2 + · · ·+ w̃nMµ̃n,σ̃n
2

where n = O(log2 1/ϵ). Furthermore, for all i ∈ [n], we have 0 ≤ w̃i ≤ 1 and σ̃i ≤ (b − a)/(4l)
and the 10l-significant intervals of Mµ̃i,σ̃i

2 are all contained in the interval [a, b]. Thus we can
apply Corollary C.2 on Mµ̃i,σ̃i

2f for all i ∈ [n]. Adding the results with the corresponding weights
w̃1, . . . , w̃n, we obtain a function M̃ that is a weighted sum of at most poly(log(1/ϵ)) Gaussians
such that

∥M̃ − fI∥1 ≤ poly(log(1/ϵ))

(
ϵ+

n∑
i=1

w̃i∥Mµ̃i,σ̃i
2(M− f)∥1

)
= poly(log(1/ϵ)) (ϵ+ ∥I(M− f)∥1) .

Thus,
∥M̃ −MI∥1 ≤ poly(log(1/ϵ)) (ϵ+ ∥I(M− f)∥1) . (5)

Next, by the properties in Theorem B.3,

∥M(I − 1I)∥1 ≤ ϵ

∫ ∞

−∞
M+

∫ a+ϵ(b−a)

a

M+

∫ b

b−ϵ(b−a)

M

≤ ϵ+

 k∑
j=1

wj

∫ a+ϵ(b−a)

a

Gj + wj

∫ b

b−ϵ(b−a)

Gj

 .

Consider one of the component Gaussians Gj where j ∈ [k]. If the 10l-significant interval of Gj

does not intersect [a, b] then it is clear that the total mass of Gj on the interval [a, b] is at most ϵ.
Otherwise, we know that the standard deviation of Gj is at least b− a which means that its mass on
the set [a, a+ ϵ(b− a)] ∪ [b− ϵ(b− a), b] is at most O(ϵ). Thus we conclude that

∥M(I − 1I)∥1 ≤ O(ϵ) . (6)
Also note that by the properties in Theorem B.3

∥I(M− f)∥1 ≤ ϵ

∫ ∞

−∞
|M− f |+ 2

∫ b

a

|M− f | ≤ 2(ϵ+ ∥1I(M− f)∥1) . (7)

Putting together (5, 6, 7) , we conclude

∥M̃ − f · 1I∥1 ≤ ∥1I(M− f)∥1 + ∥M̃ −M1I∥1 ≤ poly(log(1/ϵ)) (ϵ+ ∥1I(M− f)∥1)
and we are done. ■

C.3 Structural Properties

Lemma C.3 allows us to reconstruct the unknown GMMM over certain intervals. However, it cannot
be applied to an arbitrary interval (because an interval may overlap with a component that is too thin).
We will now prove several structural results that will imply that there exist Õ(k) intervals for which
the conditions of Lemma C.3 are satisfied (i.e. these intervals do not overlap with components that
are much thinner than themselves) and such that the union of these intervals contains most of the
mass ofM. Then, to complete the proof of Theorem 1.1, we show how to find such a set of Õ(k)
intervals using a dynamic program.

First, we define a modified density function for a GMMM = w1G1+ · · ·+wkGk where we modify
each component Gaussian by restricting it to its 10l-significant interval (and making it 0 outside). It
is clear that this modified function is close toM in L1-distance but it will be convenient to use in the
analysis later on.
Definition C.4. For a mixture of GaussiansM = w1G1 + · · ·+wkGk where Gj = N(µj , σ

2
j ) and

a parameter l, define the functionMsig,l(x) to be, at each point x ∈ R, equal to the weighted sum of
the components Gj ofM such that x is in the 10l-significant interval of Gj . Formally,

Msig,l(x) =
∑

j such that
|x−µj |≤10lσj

wjGj(x) .
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The following claim is immediate from the definition.

Claim C.5. Let ϵ > 0 be some parameter and let l = ⌈
√
log 1/ϵ⌉. Then

∥M−Msig,l∥1 ≤ ϵ

Proof. The inequality holds because the total mass of a Gaussian outside of its 10l-significant interval
is at most ϵ. ■

We now present our first structural result.

Claim C.6. Let M = w1G1 + · · · + wkGk be an arbitrary mixture of Gaussians where Gi =
N(µi, σ

2
i ). Let ϵ > 0 be some parameter and let l = ⌈

√
log(1/ϵ)⌉. There exist disjoint intervals

I1, . . . , In with lengths, say t1, . . . , tn, where n ≤ 50kl with the following property:

• For each interval Ii, for all j ∈ [k] either the the 10l-significant interval of Gj is disjoint
from Ii or σj ≥ ti

• We have
∥M− (1I1 + · · ·+ 1In)M∥1 ≤ ϵ

Proof. Sort the Gaussians by their standard deviations, WLOG σ1 ≤ · · · ≤ σk. Now we will create
several intervals A1, A2, . . . and we will also associate each interval with one of the Gaussians
G1, . . . , Gk which we will call its parent.

First, set A1 to be the 10l-significant interval of G1. Next, we will process the Gaussians G2, . . . , Gk

in order. For Gj , assume that the intervals we have created so far are A1, . . . , Am (which will be
disjoint by construction). Now consider the 10l-significant interval of Gj , say Lj . Note that removing
the union of the intervals A1, . . . , Am from Lj divides Lj into several (at most m + 1) disjoint
intervals. We label these intervals Am+1, Am+2, . . . and set all of their parents to be Gj . We then
move onto Gj+1 and repeat the above process. The following properties are immediate from the
construction:

1. If the parent of Ai is Gj then the length of Ai is at most 20lσj

2. The union of all of the Ai whose parent is among G1, . . . , Gj contains the 10l-significant
intervals of all of G1, . . . , Gj

3. If the parent of Ai is Gj , then Ai is disjoint from the 10l-significant intervals of
G1, . . . , Gj−1

Now we claim that at the end of the algorithm, the total number of intervals is at most 2k. To see
this, say that after processing Gj−1, the intervals we have created are A1, . . . Am. Now consider the
potential that is the number of intervals m plus the number of connected components in A1∪· · ·∪Am.
This potential can increase by at most 2 when processing Gj so thus the total number of intervals
at the end of the execution is at most 2k. We will now assume that the intervals at the end of the
execution are A1, . . . , A2k (if there are less than 2k intervals then add a bunch of dummy intervals of
length 0).

We now describe a post-processing step. For each of A1, . . . , A2k, if its parent is Gj then divide it
into intervals of length at most σj and assign Gj as the parent of all of these intervals. By property
1, we can ensure that this creates a total of at most 50kl intervals, say I1, . . . , In where n ≤ 50kl.
We use t1, . . . , tn to denote their lengths. We now prove that this set of intervals satisfies the desired
properties. First, note that the following properties are immediate from the construction:

1. If the parent of Ii is Gj then Ii is contained in the 10l-significant interval of Gj and ti ≤ σj

2. The union of all of I1, . . . , In contains the 10l-significant intervals of all of G1, . . . , Gk

3. If the parent of Ii is Gj , then Ii is disjoint from the 10l-significant intervals of G1, . . . , Gj−1

24



The first of the desired properties is clear since by construction if the parent of Ii is Gj , then
ti ≤ σj and it must be disjoint from the 10l-significant intervals of all of G1, . . . , Gj−1 (where recall
G1, . . . , Gk are sorted in increasing order of their standard deviation). Now it remains to verify the
second property. Consider the functionMsig,l(x). Recall by Claim C.5,

∥M−Msig,l∥1 ≤ ϵ (8)

Next observe that
Msig,l = (1I1 + · · ·+ 1In)Msig,l .

Combining the above, we have

∥M− (1I1 + · · ·+ 1In)Msig,l∥1 ≤ ϵ .

However, note that we have

(1I1 + · · ·+ 1In)Msig,l ≤ (1I1 + · · ·+ 1In)M≤M

everywhere along the real line. Thus, we immediately get the desired inequality. ■

The next structural result shows that the intervals I1, . . . , In obtained in Claim C.6 are “findable"
in the sense that if we draw many samples fromM (or from a distribution f that is close toM),
then with high probability, there will be samples close to the endpoints of each of I1, . . . , In. This
will mean that algorithmically, it suffices to draw sufficiently many samples and then only consider
intervals whose endpoints are given by a pair of samples.
Claim C.7. Let M = w1G1 + · · · + wkGk be an arbitrary mixture of Gaussians where Gi =
N(µi, σ

2
i ). Let ϵ > 0 be some parameter and let l = ⌈

√
log(1/ϵ)⌉. Let f be a distribution. Assume

we are given samples from f , say x1, . . . , xQ for some sufficiently large Q = poly(k/ϵ). Then with
high probability, there exists pairs {xa1

, xb1}, . . . , {xan
, xbn} such that

• The intervals J1 = [xa1
, xb1 ], . . . , Jn = [xan

, xbn ] are disjoint

• n ≤ 50kl

• For each interval Ji, for all j ∈ [k] either the the 10l-significant interval of Gj is disjoint
from Ji or σj ≥ |xbi − xai

|

•
∥M− (1J1

+ · · ·+ 1Jn
)M∥1 ≤ 4(ϵ+ ∥M− f∥1) .

Proof. Let I1, . . . , In be the intervals computed in Claim C.6 applied to the mixtureM and assume
that their lengths are t1, . . . , tn. Let C = ⌈(k/ϵ)2⌉. For each interval Ii, divide it into C subintervals
I1i , . . . , I

C
i of length ti/C and assume that these subintervals are sorted in order. We say one of these

subintervals is good if ∫
Ij
i

f ≥ (ϵ/k)10 .

For an index i, let ci, di be the smallest and largest index such that Icii , Idi
i are good respectively.

Then with high probability for all i, there will be samples, say xai
, xbi in Icii and Idi

i . Now we will
form the intervals Ji = [xai , xbi ]. The first two of the desired properties are clear. The third follows
from the statement of Claim C.6. It remains to verify the last. Similar to the proof of Claim C.6, we
consider the functionMsig,l. Note that∫

Ii\Ji

Msig,l ≤
∫
I1
i

Msig,l + · · ·+
∫
I
ci
i

Msig,l +

∫
I
di
i

Msig,l + · · ·+
∫
IC
i

Msig,l

≤ ∥1Ii(Msig,l − f)∥1 +
∫
I1
i

f + · · ·+
∫
I
ci−1

i

f +

∫
I
di+1

i

f + · · ·+
∫
IC
i

f

+

∫
I
ci
i

Msig,l +

∫
I
di
i

Msig,l

≤ ∥1Ii(Msig,l − f)∥1 + (ϵ/k)2 +

∫
I
ci
i

Msig,l +

∫
I
di
i

Msig,l
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where the last step follows by the minimality and maximality of ci, di. Now by construction, the
only Gaussians among G1, . . . , Gk whose 10l-significant intervals intersect Ii must have standard
deviation at least ti. Since Icii , Idi

i each have length (ϵ/k)2ti, we conclude∫
Ii\Ji

Msig,l ≤ 3(ϵ/k)2 + ∥1Ii(Msig,l − f)∥1 .

Thus, we have
∥(1I1 + · · ·+ 1In)Msig,l − (1J1 + · · ·+ 1Jn)Msig,l∥1 ≤ ϵ+∥(Msig,l − f)∥1 ≤ 2ϵ+∥(M− f)∥1 .
where we used Claim C.5 in the last step. Now, using the statement of Claim C.6, we deduce

∥M− (1J1
+ · · ·+ 1Jn

)Msig,l∥1 ≤ 4ϵ+ ∥(M− f)∥1 .
Since

(1J1
+ · · ·+ 1Jn

)Msig,l ≤ (1J1
+ · · ·+ 1Jn

)M≤M
everywhere along the real line, we immediately get the desired inequality. ■

C.4 Finishing the Proof

We can now prove the key lemma and then Theorem 1.1 will follow as an immediate consequence
since we can use the improper learner in Corollary 2.10. The lemma states that given explicit access
to a distribution f that is ϵ-close to a GMM,M, with k components, we can output a GMM, M̃,
with Õ(k) components that is Õ(ϵ)-close to f . At a high-level, the proof involves attempting to
reconstruct f over various intervals using Lemma C.3 and then using a dynamic program to find a
union of Õ(k) such intervals that approximates the entire function. We use Claim C.7 to argue that
such a solution exists so our dynamic program must find it.
Lemma C.8. LetM = w1G1 + · · · + wkGk be an arbitrary mixture of Gaussians where Gi =
N(µi, σ

2
i ). Let ϵ > 0 be some parameter. Assume we are given access to a distribution f . Then in

poly(k/ϵ) time and with high probability, we can compute a mixture M̃ of at most kpoly(log(k/ϵ))
Gaussians such that

∥M̃ − f∥1 ≤ poly(log(k/ϵ)) (ϵ+ ∥M− f∥1) .

Proof. Note that it suffices to compute a weighted sum of Gaussians that satisfies the desired
inequality since rescaling such a weighted sum to a mixture will at most increase the L1 error by a
factor of 2. Thus, from now on, we will not worry about ensuring the mixing weights sum to 1.

Let γ = ϵ/k and l = ⌈
√
log 1/γ⌉. First draw Q = poly(k/ϵ) samples x1, . . . , xQ from f for

sufficiently large Q that we can apply Claim C.7 with ϵ ← γ. While we do not know what the
intervals J1, . . . , Jn are, we will set up a dynamic program to find a set of at most 50kl intervals that
we can reconstruct f over each one using Lemma C.3 and such that these intervals contain essentially
all of the mass of f .

For each pair xa, xb with a, b ∈ {1, 2, . . . , Q}, apply Lemma C.3 with parameter ϵ ← γ to
attempt to approximate f on the interval [xa, xb]. Let the output obtained be M̃xa,xb

. Note that
sometimes the algorithm will fail to output a good approximation to f (because the assumptions
of Lemma C.3 fail) but we can ensure that the output is a weighted sum of at most poly(log 1/γ)
Gaussians. In the proof we will only use the fact that when the assumptions of Lemma C.3 hold, then
our approximation to f restricted to the interval will be accurate.

Now we show how to set up the dynamic program. WLOG the points x1, . . . , xQ are sorted in
nondecreasing order. We also use the convention that x0 = −∞, xQ+1 =∞. Now, we maintain the
following state for each index 0 ≤ j ≤ Q + 1, and integer c ≤ 50kl: the best approximation to f

from (−∞, xj ] using a sum of M̃xa,xb
over at most c intervals. Formally,

Dynamic Program: Let DPj,c be the minimum over all sets S of c pairs
(a(1), b(1)), . . . , (a(c), b(c)) ∈ [j]× [j] such that a(1) < b(1) ≤ a(2) < · · · < b(c) of

∥f · 1(−∞,xj ] −
(
1[x

a(1) ,xb(1)
]M̃x

a(1) ,xb(1)
+ · · ·+ 1[x

a(c) ,xb(c)
]M̃x

a(c) ,xb(c)

)
∥1

+ ∥M̃x
a(1) ,xb(1)

− 1[x
a(1) ,xb(1)

]M̃x
a(1) ,xb(1)

∥1 + · · ·+ ∥M̃x
a(c) ,xb(c)

− 1[x
a(c) ,xb(c)

]M̃x
a(c) ,xb(c)

∥1 .
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Note that the first term represents the approximation error compared to f . We must truncate each
function M̃x

a(1) ,xb(1)
to its corresponding interval [xa(1) , xb(1) ] in order for the problem to be

solvable via dynamic programming because otherwise previous choices would affect later ones.
Thus, we also need to add the additonal terms that represent the error from truncation. Note that the
L1 distance can be estimated using Claim 2.11. We can solve the dynamic program in polynomial
time because from each state DPj,c, we simply consider adding all possible intervals among
xj , xj+1, . . . , xQ as the next one.

Now we prove that there is a good solution to the dynamic program for which the objec-
tive (for j = Q+ 1) is small. Let a1, b1, . . . , an, bn be the indices obtained in Claim C.7. We claim
that setting

(a(1), b(1)) = (a1, b1), . . . , (a
(n), b(n)) = (an, bn)

results in the objective function being small. Let Ji = [ai, bi] for all i. Let

M̃good = 1[xa1 ,xb1
]M̃xa1

,xb1
+ · · ·+ 1[xan ,xbn ]M̃xan ,xbn

.

The guarantee from Lemma C.3 implies that for all i,

∥M̃xai
,xbi
− 1[xai

,xbi
]M̃xai

,xbi
∥1 ≤ poly(log 1/γ)(γ + ∥1Ji(M− f)∥1) (9)

and thus, using the guarantee from Lemma C.3 again, we have

∥M̃good − (1J1
+ · · ·+ 1Jn

)f∥ ≤ ∥M̃xa1 ,xb1
− 1J1

· f∥1 + · · ·+ ∥M̃xan ,xbn
− 1Jn

· f∥1
+∥M̃xa1

,xb1
− 1[xa1

,xb1
]M̃xa1

,xb1
∥1 + · · ·+ ∥M̃xan ,xbn

− 1[xan ,xbn ]M̃xan ,xbn
∥1

≤ nγpoly(log 1/γ) + poly(log 1/γ) (∥1J1
(M− f)∥1 + · · ·+ ∥1Jn

(M− f)∥1)
≤ poly(log 1/γ) (ϵ+ ∥M− f∥1) .

However also recall that by Claim C.7,

∥M− (1J1 + · · ·+ 1Jn)M∥1 ≤ 4(γ + ∥M− f∥1) .

Combining the above two inequalities, we get

∥M̃good − f∥1 ≤ poly(log 1/γ) (ϵ+ ∥M− f∥1) .

Finally, combining the above with (9) implies that the objective value of the dynamic program is at
most poly(log 1/γ) (ϵ+ ∥M− f∥1). Finally it remains to note that the objective of the dynamic
program (for j = Q+ 1) is an upper bound on

∥f −
(
M̃x

a(1) ,xb(1)
+ · · ·+ M̃x

a(c) ,xb(c)

)
∥1

so thus, we can simply output the solution M̃ = M̃x
a(1) ,xb(1)

+ · · · + M̃x
a(c) ,xb(c)

and we are
guaranteed to have

∥f − M̃∥1 ≤ poly(log 1/γ) (ϵ+ ∥M− f∥1) .

It is clear that M̃ is a weighted sum of at most kpoly(log 1/γ) Gaussians (since for each interval
there are poly(log 1/γ) Gaussians and there are at most 50kl total intervals). It is clear that all of the
steps run in poly(k/ϵ) time and we are done. ■

Now we can complete the proof of our main theorem, Theorem 1.1.

Proof of Theorem 1.1. We can apply Corollary 2.10 to learn a distribution f such that dTV(M, f) ≤
O(ϵ). We can then apply Lemma C.8 using f . Note that since f is a piecewise polynomial, we can
perform all of the explicit computations with the density function that are used in the proof of Lemma
C.8. It is immediate that the output of Lemma C.8 must satisfy

dTV(M̃,M) ≤ Õ(ϵ)

so we are done. ■
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D Well-Conditioned Case: Sparse Fourier Reconstruction

We now move onto our results on sparse Fourier reconstruction. As with GMMs, we will first consider
the well-conditioned case. Here, this means a function that has its Fourier support contained in one
interval that is not too long i.e., all of its Fourier mass is not too spread out. Note that WLOG, we may
assume that this interval is centered at 0 since otherwise we can multiply by a suitable exponential to
shift the Fourier support to be around 0. We prove the following statement:

Lemma D.1. Let 0 < ϵ < 0.1 be a parameter and let l ≥ ⌈log 1/ϵ⌉ be some parameter. LetM be a
function such that M̂ is supported on [−l, l] and such that ∥M̂∥1 ≤ 1. Also assume that we have
access to a function f such that ∫ 1

−1

|f(x)−M(x)|2dx ≤ ϵ2 .

There is an algorithm that runs in poly(l) time and outputs a function M̃ such that M̃ is (O(l), O(l))-
simple, has Fourier support contained in [−l, l], and∫ 1

−1

|M̃(x)− f(x)|2dx ≤ 16ϵ2 .

Remark. Note that in this case, we do not need any constraint on the Fourier sparsity ofM to
guarantee that the output of our algorithm is O(log 1/ϵ)-Fourier sparse. Also, unlike our full result,
Theorem 1.3, our output in this case is guaranteed to be a good approximation over the entire interval
(instead of a subinterval).

Our proof will be separated into two parts. The first step will be proving the existence of a function
M̃ of the desired form. The second step will be developing an algorithm to actually compute it.

D.0.1 Existence of a Sparse Approximation

First, we will prove that under the assumptions of Lemma D.1, an approximation M̃ satisfying the
desired properties exists. We will also prove that independent of the problem instance, it suffices to
only consider a fixed set of O(l) distinct frequencies given by the Chebyshev points (with suitable
rescaling).

The proof relies on first taking the Taylor series of an exponential e2πiζx and arguing that we only
need to keep the first O(log 1/ϵ) terms. This essentially lets us represent such an exponential with the
coefficients of its Taylor series, which are (up to rescaling) (1, ζ, ζ2, . . . ). We then use Corollary F.7
to argue that an arbitary linear combination of such vectors can be replaced with a sparse combination
with similarly sized coefficients.

Lemma D.2. Let 0 < ϵ < 0.1 be a parameter and let l ≥ ⌈log 1/ϵ⌉ be some parameter. Let
t0, . . . , t102l be the degree-102l Chebyshev points. LetM be a function such that M̂ is supported on
[−l, l] and such that ∥M̂∥1 ≤ 1. Then there is a function

h(x) =

102l∑
j=0

cje
2πi(ltj)x

where c0, . . . , c102l are complex numbers such that
∑102l

j=0 |cj | ≤ 200l and∫ 1

−1

(h(x)−M(x))2dx ≤ ϵ2 .

Proof. Note that M can be written as M(x) =
∫ l

−l
M̂(ζ)e2πixζdζ. Now consider the Taylor

expansion of

e2πixζ =

∞∑
j=0

(2πixζ)j

j!
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Note that since −l ≤ ζ ≤ l, we have
∞∑

j=102l+1

∣∣∣∣ (2πiζ)jj!

∣∣∣∣ ≤ (ϵ/l)3 .

In particular, if we define

gζ(x) =

102l∑
j=0

(2πixζ)j

j!

then over the interval x ∈ [−1, 1]

|e2πixζ − gζ(x)| ≤ (ϵ/l)3 . (10)

Next, for each ζ ∈ [−l, l], by Corollary F.7, we can write the vector

V102l(ζ) = w0(ζ)V102l(t0l) + · · ·+ w102l(ζ)V102l(t102ll)

for some real numbers (depending on ζ) w0(ζ), . . . , w10l(ζ) with
∑
|wj(ζ)| ≤ 200l. Thus,

gζ(x) = w0(ζ)gt0l(x) + · · ·+ w102l(ζ)gt102ll
(x)

for the same weights. Now note that by (10), for all x ∈ [−1, 1],∣∣∣∣∣∣M(x)−
102l∑
j=0

gtj l(x)

(∫ l

−l

M̂(ζ)wj(ζ)dζ

)∣∣∣∣∣∣ =
∣∣∣∣∣M(x)−

∫ l

−l

M̂(ζ)gζ(x)dζ

∣∣∣∣∣ ≤ 2l · (ϵ/l)3 .

Note that
102l∑
j=0

∣∣∣∣∣
∫ l

−l

M̂(ζ)wj(ζ)dζ

∣∣∣∣∣ ≤ 200l

so by (10), for all x ∈ [−1, 1],∣∣∣∣∣∣
102l∑
j=0

(
gtj l(x)− e2πix(tj l)

)(∫ l

−l

M̂(ζ)wj(ζ)dζ

)∣∣∣∣∣∣ ≤ 200l(ϵ/l)3

so therefore for all x ∈ [−1, 1], we have∣∣∣∣∣∣M(x)−
102l∑
j=0

e2πix(tj l)

(∫ l

−l

M̂(ζ)wj(ζ)dζ

)∣∣∣∣∣∣ ≤ 202l · (ϵ/l)3

and setting

h(x) =

102l∑
j=0

e2πix(tj l)

(∫ l

−l

M̂(ζ)wj(ζ)dζ

)
immediately leads to the desired conclusion. ■

D.0.2 Completing the Proof of Lemma D.1

By combining Lemma D.2 and Lemma F.10, we can complete the proof of Lemma D.1.

Proof of Lemma D.1. We can separate f into its real and imaginary parts, say fre, fim and we can
separateM into its real and imaginary partsMre,Mim. Now consider the Chebyshev points of
degree 102l, say t0, . . . , t102l. We will now apply Lemma F.10 where we consider the set of functions

{f1, . . . , fn} = {± cos(2πt0x),± sin(2πt0x), . . . ,± cos(2πt102lx),± sin(2πt102lx)} .
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The distribution D is the uniform distribution on [−1, 1] and by Lemma D.2, there are coefficients
a1, . . . , an ≥ 0 with a1 + · · ·+ an ≤ O(l) (note we can split the complex coefficients cj into their
real and imaginary parts and then split into positive and negative parts) such that∫ 1

−1

(fre(x)− (a1f1(x) + · · ·+ anfn(x)))
2dx ≤ 2

∫ 1

−1

(Mre(x)− (a1f1(x) + · · ·+ anfn(x)))
2dx

+2

∫ 1

−1

(fre(x)−Mre(x))
2dx ≤ 4ϵ2

and similar for the imaginary part of f . Applying Lemma F.10 to both the real and imaginary part
(after rescaling by 1/(O(l))), adding the results, and rewriting the trigonometric functions using
complex exponentials (note the set {t0, . . . , t102l} is symmetric around 0 so we can do this) completes
the proof. ■

We can slightly extend Lemma D.1 to work even if we do not know the desired accuracy ϵ but only a
lower bound on it. It suffices to run the algorithm for Lemma D.1 and repeatedly decrease the target
accuracy until our algorithm fails to find the optimal accuracy within a constant factor.
Corollary D.3. Let l, ϵ be parameters given to us such that l ≥ ⌈log 1/ϵ⌉. LetM be a function such
that M̂ is supported on [−l, l] and ∥M̂∥1 ≤ 1. Assume that we have access to a function g defined
on [−1, 1]. There is an algorithm that runs in poly(l) time and outputs a function M̃ such that M̃ is
(O(l), O(l))-simple, has Fourier support contained in [−l, l], and∫ 1

−1

|M̃(x)− f(x)|2dx ≤ 20

(
ϵ2 +

∫ 1

−1

|f(x)−M(x)|2dx
)

.

Proof. For a target accuracy γ > ϵ we run the algorithm in Lemma D.1 to get a function M̃γ(x).
We then check whether ∫ 1

−1

|M̃γ(x)− f(x)|2dx ≤ 16γ2 .

Note that the above can be explicitly computed. If the above check passes, we then take γ ← 0.99γ.
Taking the smallest γ for which the above succeeds, the guarantee from Lemma D.1 ensures that we
have a function M̃ such that∫ 1

−1

|M̃(x)− f(x)|2dx ≤ 20

(
ϵ2 +

∫ 1

−1

|f(x)−M(x)|2dx
)

.

It is clear that we run the routine from Lemma D.1 at most O(l) times so we are done. ■

E Sparse Fourier Reconstruction: Full Version

In this section, we complete the proof of our main result on sparse Fourier reconstruction, Theorem
1.3. The high-level outline of the proof is similar to the proof of Theorem 1.1. The key lemma that
goes into the proof is stated below. At a high level, the lemma states that if we know roughly where
the Fourier support of the unknown Fourier-sparse signalM is located, then we can successfully
reconstruct it.
Lemma E.1. Assume we are given N, k, ϵ, c with 0 < ϵ < 0.1. Let l = ⌈log kN/(ϵc)⌉ be some
parameter. LetM be a function that is (k, 1)-simple. Also, assume that we are given a set T ⊂ R of
size N such that all of the support of M̂ is within distance 1 of N . Further, assume we are given
access to a function f such that ∫ 1

−1

|f(x)−M(x)|2dx ≤ ϵ2 .

There is an algorithm that runs in poly(N, k, l, 1/c) time and outputs a function M̃ that is
(kpoly(l/c), kpoly(l/c))-simple and∫ 1−c

−1+c

|M̃(x)− f(x)|2dx ≤ ϵ2poly(l) .
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The proof of Lemma E.1 will involve localizing the frequencies and then using Corollary D.3 to
reconstruct after localizing. We will do this for poly(N, k, log 1/ϵ) different localizations (based
on the set T that we are given). We will then select at most Õ(k) of these localized reconstructions
to add together and output. The intuition behind why we can find such a set of Õ(k) localized
reconstructions and ignore the rest is thatM is k-Fourier sparse so localizations that are far away
from the frequencies ofM can essentially be ignored.

The localization procedure will involve convolving f by a Gaussian times an exponential (technically
we will convolve by a function that approximates a Gaussian times an exponential). Note that this
is equivalent to multiplying the Fourier transform by a Gaussian multiplier. This will ensure that
frequencies too far away from a certain target frequency will only contribute negligibly and we only
need to worry about reconstructing the frequencies that are close to the target frequency.

E.1 Properties of Localization

In this section, we formalize the localization step and prove several inequalities that will be used
in the proof of Lemma E.1. The way we would like to localize the frequencies is by multiplying
by a Gaussian multiplier in Fourier space since afterwards, we would be able to essentially neglect
any frequencies that are far away from the center of the Gaussian multiplier. This is equivalent to
convolving by a Gaussian times an exponential, i.e. a function of the form G(x)e2πiθx, in real space.
For technical reasons, we will actually define two types of functions, which we call kernels, that
approximate functions of the form G(x)e2πiθx. The reason that we will need to work with both is
that the first type can be computed efficiently while the second is easier to use in the analysis of our
algorithm.

We begin with a few definitions.

Definition E.2. For a function f : R→ C and any l > 0, define f trunc(l) to be the function that is
equal to f on [−l, l] and 0 otherwise.
Definition E.3. For parameters µ, l, c. we define the function

Kµ,l,c = (1/c)P trunc(l)
l (x/c) · e2πiµx

where Pl is as defined in Definition F.9.
Remark. We call functions of the above form truncated polynomial kernels. The fact that such
functions are truncated polynomials will make it easy to explicitly compute convolutions.
Definition E.4. For parameters µ, l, a, we define the function Tµ,l,a as follows. First define

Sl,a = M
trunc(l)
0,1 (x/a)

(recall Definition B.1) and then define

Tµ,l,a(x) = Ŝl,a(x)e2πiµx .

Remark. We call functions of the above form truncated Gaussian kernels. Note that truncated
Gaussian kernels are compactly supported in Fourier space, which will be a convenient property in
the analysis of our algorithm later on.

Note that both K0,l,c and T0,l,2π/c are meant to approximate the Gaussian N(0, c2). The fact that
K0,l,c approximates N(0, c2) is clear from the definition (and Lemma F.8). To see why T0,l,2π/c
approximates the Gaussian, note that if in the definition of T , we did not truncate before taking the
Fourier transform, then we would get exactly N(0, c2).

We will now prove several inequalities relating to how convolving with the kernels K and
T affect a function. The first set of bounds are an immediate consequence of Lemma F.8.
Claim E.5. Let l, ϵ > 0 be parameters such that l ≥ ⌈log 1/ϵ⌉. Let 0 < c < 1 be some constant.
Then

∥K0,l,c(x)−N(0, c2)(x)∥1 ≤ O(ϵl)

∥K0,l,c(x)−N(0, c2)(x)∥22 ≤ O(lϵ2/c) .
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Proof. We know by Lemma F.8 that

|(1/c)Pl(x/c)−N(0, c2)(x)| ≤ ϵ/c

for all x ∈ [−lc, lc]. Thus, since G decays rapidly outside the interval [−lc, lc] we have

∥K0,l,c(x)−N(0, c2)(x)∥1 ≤ O(ϵl) .

The second inequality follows by a similar argument. ■

The next claim formalizes the intuition that Kµ,l,c and Tµ,l,2π/c must be close because they both
approximate the same function (the function N(0, c2)e2πiµx).
Claim E.6. Let l be some parameter and let ϵ > 0 be such that l ≥ ⌈log 1/ϵ⌉. Let g be a function
such that ∥ĝ∥1 ≤ 1. Then for any µ, c,

∥Kµ,l,c ∗ g − Tµ,l,2π/c ∗ g∥∞ ≤ O(ϵl) ,

where ∗ denotes convolution.

Proof. First, note that it suffices to prove the above for µ = 0. Now let G = N(0, c2). By Claim E.5,
we have

∥K0,l,c(x)−G(x)∥1 ≤ O(ϵl) .

Since ∥ĝ∥1 ≤ 1, we know that ∥g∥∞ ≤ 1 and thus for all x,

|K0,l,c ∗ g(x)−G ∗ g(x)| ≤ O(ϵl) . (11)

Finally, observe that the Fourier transform of G ∗ g is equal to Ĝĝ. Note that

Ĝ(x) = M0,(2π/c)2(x) = M0,1(cx/(2π)) .

By construction,
̂T0,l,2π/c ∗ g = M

trunc(l)
0,1 (cx/(2π))ĝ

which is equal to Ĝĝ restricted to the interval [−2πl/c, 2πl/c]. Using the fact that Ĝ = M0,(2π/c)2

decays rapidly outside [−2πl/c, 2πl/c], we have that

∥ ̂T0,l,2π/c ∗ g − Ĝĝ∥1 ≤ ϵ .

Thus, |T0,l,2π/c ∗ g(x)−G ∗ g(x)| ≤ ϵ for all x and combining with (11), we are done. ■

E.2 Decoupling

In our full algorithm, we will reconstruct frequency-localized versions of a function independently for
different frequencies θ that we localize around. We will then combine our localized reconstructions
by adding them. In this section, we prove several inequalities that will allow us to analyze what
happens to our estimation error when we add different localized reconstructions together. Recall
that convolving by a truncated polynomial kernel Kµ,l,c or truncated Gaussian kernel Tµ,l,a is
approximately equivalent to multiplying the Fourier transform by a Gaussian multiplier centered
around µ. Lemma B.4 implies that adding up evenly spaced Gaussian multipliers approximates
the constant function. Thus, we expect that convolving by an expression of the form

∑
µKµ,l,c or∑

µ Tµ,l,a where the sum is over evenly spaced µ should roughly recover the original function. The
first two claims here formalize this intuition.

In the first claim, we analyze what happens when we add several localizations obtained by convolving
with various truncated polynomial kernels.
Claim E.7. Let l be some parameter and let 0 < ϵ < 0.1 be such that l ≥ ⌈log 1/ϵ⌉. Let g be a
function. Let c be some constant. Let S be a set of integer multiples of 2π/(cl). Then

∫ 1

−1

∣∣∣∣∣∣ 1

l
√
2π

∑
µ∈S

Kµ,l,c ∗ g

∣∣∣∣∣∣
2

≤ (1 +O(ϵ|S|))2
∫ 1+lc

−(1+lc)

|g|2 ,
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Proof. Note that Kµ,l,c is supported on the interval [−lc, lc] so we can restrict g to be supported on
[−(1 + lc), 1 + lc] and 0 outside the interval. Define the function

V (x) =
1

l
√
2π

∑
µ∈S

Kµ,l,c .

Then
V̂ (x) =

1

l
√
2π

∑
µ∈S

K̂0,l,c(x− µ) .

Next, let G denote the Gaussian G = N(0, c2). Recall by Claim E.5, ∥K0,l,c(x)−G(x)∥1 ≤ O(ϵl)

so ∥K̂0,l,c − Ĝ∥∞ ≤ O(ϵl). Let

U(x) =
1

l
√
2π

∑
µ∈S

Ĝ(x− µ) .

Note that since Ĝ = M0,(2π/c)2 , for any x,

|U(x)| = 1

l
√
2π

∑
µ∈S

M0,(2π/c)2(x− µ) ≤ 1

l
√
2π

∑
µ∈(2π)/(cl)Z

M0,(2π/c)2(x− µ) ≤ 1 + ϵ

where the last inequality follows from Lemma B.4. Also ∥K̂0,l,c − Ĝ∥∞ ≤ O(ϵl) so for all x,

|V̂ (x)| ≤ 1 +O(ϵ|S|) .

We conclude∫ 1

−1

|V ∗ g(x)|2dx ≤ ∥V ∗ g∥22 = ∥V̂ ĝ∥22 ≤ (1 +O(ϵ|S|))2∥ĝ∥22 = (1 +O(ϵ|S|))2∥g∥22

To complete the proof recall that we restricted g to be supported on [−(1 + lc), 1 + lc] and we are
done. ■

The next claim is similar to the previous one except we analyze what happens when we add several
localizations obtained by convolving with various truncated Gaussian kernels.
Claim E.8. Let a.l, ϵ be parameters such that 0 < ϵ < 0.1 and l ≥ ⌈log 1/ϵ⌉. Let g be a function
whose Fourier support is contained in a set S0 ⊂ R and such that ∥ĝ∥1 ≤ 1. Let S be a set of integer
multiples of a/l that contains all multiples within a distance l · a of S0. Then

∥g − 1

l
√
2π

∑
µ∈S

Tµ,l,a ∗ g∥∞ ≤ 2ϵ .

Proof. Consider the function

A(x) =
∑
µ∈S

1

l
√
2π

Mµ,a2(x) .

For all x ∈ S0, we claim that
|A(x)− 1| ≤ ϵ .

To see this, note that by Lemma B.4,∣∣∣∣∣∣
∑

µ∈(a/l)Z

1

l
√
2π

Mµ,a2(x)− 1

∣∣∣∣∣∣ ≤ 0.1ϵ

for all x. By assumption, the set S contains all integers that are within la of the set S0 so for any
x ∈ S0, ∑

µ∈(a/l)Z\S

1

l
√
2π

Mµ,a2(x) ≤ 0.1ϵ ,
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and we conclude that we must have |A(x)− 1| ≤ ϵ. Next, we claim that if we define

B(x) =
∑
µ∈S

1

l
√
2π

M
trunc(l)
0,1 ((x− µ)/a) ,

then we have for all x,
|B(x)−A(x)| ≤ ϵ .

To see this, first note that M0,1((x− µ)/a) = Mµ,a2(x). Next, using Gaussian tail decay, we have
for all x,

|B(x)−A(x)| ≤
∑

µ∈(a/l)Z
|x−µ|≥la

1

l
√
2π

Mµ,a2(x) ≤ ϵ .

Thus, we have
|B(x)− 1| ≤ 2ϵ

for x ∈ S0. Note that by definition,

ĝ(x)− 1

l
√
2π

∑
µ∈S

̂Tµ,l,a ∗ g(x) = ĝ(x)− ĝ(x)
∑
µ∈S

1

l
√
2π

M
trunc(l)
0,1 ((x− µ)/a) = (1−B(x))ĝ(x)

so therefore

∥ĝ − 1

l
√
2π

∑
µ∈S

̂Tµ,l,a ∗ g∥1 ≤ 2ϵ

and we conclude

∥g − 1

l
√
2π

∑
µ∈S

Tµ,l,a ∗ g∥∞ ≤ 2ϵ

as desired. ■

The last result in this section will allow us to decouple errors from summing over different localiza-
tions. Note that naively, if we add together n estimates with L2 errors ϵ1, . . . , ϵn, then the resulting
L2 error of the sum could be as large as ϵ1 + · · ·+ ϵn. If the estimates were “independent" on the
other hand, we would expect the L2 error of the sum to only be

√
ϵ21 + · · ·+ ϵ2n. We prove that when

adding together functions that are frequency-localized at different locations, the error essentially
matches the latter bound (up to logarithmic factors). This tighter bound will be necessary in the proof
of Lemma E.1.

Note that if we have functions g1, . . . , gn whose Fourier supports are disjoint, then it is immediate
that

∥g1 + · · ·+ gn∥22 = ∥g1∥22 + · · ·+ ∥gn∥22 .
However, in our setting, we need to restrict the functions to the interval [−1, 1] first, which causes the
Fourier supports to no longer be disjoint. Through a few additional arguments we are able to prove
an analogous statement for bounding

∫ 1

−1
|g1 + · · ·+ gn|2. We do pay some additional losses both in

the inequality itself and the bounds of the integral i.e. we need to integrate the individual functions
over a slightly larger interval.

Claim E.9. Let α, l, ϵ be parameters such that α > 1 and l ≥ ⌈logαn/ϵ⌉. Let I1, . . . , In be intervals
of length at least α and assume that for any x ∈ R, at most l of the intervals contain x. Let g1, . . . , gn
be functions such that for all j ∈ [n], ∥ĝj∥1 ≤ 1 and ĝj is supported on Ij . Then∫ 1

−1

|g1 + · · ·+ gn|2 ≤ poly(l)

(
ϵ5 +

∫ (1+α−1)

−(1+α−1)

|g1|2 + · · ·+
∫ (1+α−1)

−(1+α−1)

|gn|2
)

.

Proof. Consider the Gaussian multiplier M = Mµ,α−2l−100 for some µ ∈ [−1, 1]. Now first, we
bound ∫ ∞

−∞
M(x)2|g1(x) + · · ·+ gn(x)|2dx .
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Define the functions hj = M̂gj for all j. Then by Plancherel,∫ ∞

−∞
M(x)2|g1(x) + · · ·+ gn(x)|2dx =

∫ ∞

−∞
|h1 + · · ·+ hn|2dx (12)

On the other hand, note that hj = M̂ ∗ ĝj . Let Jj denote the interval containing all points within
distance at most 10αl60 of the interval Ij . Let h′

j be the function hj restricted to Jj (and equal to 0
outside). Recall that the support of ĝj is contained within Ij . Then we claim that∫ ∞

−∞
|hj − h′

j |2 ≤ (ϵ/(αn))100 .

This follows because |M̂ | = N(0, (2παl50)2) and ∥ĝj∥1 ≤ 1 so for a point x that is distance d away
from the interval Ij , we have

|hj(x)| ≤ max
y∈Ij
|M̂(x− y)| ≤ N(0, (2παl50)2)(d) .

Also note that∥ĝj∥1 ≤ 1, implies ∥gj∥∞ ≤ 1 so

∥hj∥22 = ∥Mgj∥22 ≤ ∥M∥22 ≤ 1 .

Combining the previous two inequalities over all j, we have

|∥h1 + · · ·+ hn∥2 − ∥h′
1 + · · ·+ h′

n∥2| ≤ (ϵ/(αn))49

∥h1 + · · ·+ hn∥2 + ∥h′
1 + · · ·+ h′

n∥2 ≤ 3n

which implies∫ ∞

−∞
|h1 + · · ·+ hn|2dx ≤ 0.1(ϵ/(αn))10 +

∫ ∞

−∞
|h′

1 + · · ·+ h′
n|2dx . (13)

Now note that since not too many of the intervals Ij may contain the same point x ∈ R, not too many
of the extended intervals Jj can contain the same point x ∈ R. In particular, at most O(l70) of the
extended intervals can contain the same point x ∈ R. In other words, each point x ∈ R is in the
support of at most O(l70) of the h′

1, . . . , h
′
n. Thus, by Cauchy Schwarz,∫ ∞

−∞
|h′

1 + · · ·+ h′
n|2 ≤ O(l70)

(∫ ∞

−∞
|h′

1|2 + · · ·+
∫ ∞

−∞
|h′

n|2
)

. (14)

Now we bound∫ ∞

−∞
|h′

j |2 ≤
∫ ∞

−∞
|hj |2 =

∫ ∞

−∞
M(x)2|gj(x)|2dx ≤ 0.1(ϵ/(αn))10+

∫ 1+α−1

−(1+α−1)

M(x)2|gj(x)|2dx

(15)
where the last step holds because ∥gj∥∞ ≤ 1 and the multiplier M(x) is always at most 1 and decays
rapidly outside the interval [−(1 + α−1), 1 + α−1] since µ ∈ [−1, 1]. Putting everything together
(12, 13, 14, 15), we get∫ ∞

−∞
M(x)2|g1(x)+· · ·+gn(x)|2dx ≤ poly(l)

(ϵ/(αn))5 +

n∑
j=1

∫ 1+α−1

−(1+α−1)

M(x)2|gj(x)|2dx

 .

Now summing the above over different multipliers M = Mµ,α−2l−100 i.e. with µ uniformly spaced
on [−1, 1] with spacing α−1l−50, we conclude∫ 1

−1

|g1(x) + · · ·+ gn(x)|2dx ≤ 10
∑
µ

∫ 1

−1

Mµ,α−2l−100(x)2|g1(x) + · · ·+ gn(x)|2dx

≤ poly(l)ϵ5 + poly(l)

(∑
µ

∫ (1+α−1)

−(1+α−1)

Mµ,α−2l−100(x)2(|g1|2 + · · ·+ |gn|2)

)

≤ poly(l)ϵ5 + poly(l)

(∫ (1+α−1)

−(1+α−1)

|g1|2 + · · ·+
∫ (1+α−1)

−(1+α−1)

|gn|2)

)
.

■

35



E.2.1 Completing the Proof of Lemma E.1

In this section, we will complete the proof of Lemma E.1. First, we need to introduce some notation.
We will carry over all of the notation from the statement of Lemma E.1. We also use the following
conventions:

• Let S0 = {θ1, . . . , θk} be the frequencies in the Fourier support ofM
• Let γ > 0 be parameter to be chosen later and let l′ = ⌈log 1/γ⌉ (we will ensure γ is

sufficiently small i.e. γ < (ϵc/(kN))K for some sufficiently large absolute constant K )
• Let the function r(x) be defined as r(x) = f(x) − M(x) on the interval [−1, 1] and
r(x) = 0 outside the interval.

Recall that the way we will reconstruct the function is by attempting to localize around each of the
points in the given set T and reconstructing the localized function using Corollary D.3. We then
find kpoly(l′/c) of these localized reconstructions that we can combine to approximate the entire
function.

In the first claim, we bound the error of our reconstruction using Corollary D.3 for a given localiza-
tion. Recall the two types of kernels, the truncated polynomial kernel and the truncated Gaussian
kernel, defined in Section E.1. Consider the kernels Kµ,l′,c/l′ and Tµ,l′,2πl′/c (which, recall, are
approximately the same). In the next lemma, we will bound the distance between Kµ,l′,c/l′ ∗ f and
Tµ,l′,2πl′/c ∗M in terms of r(x). The reason we care about these two functions is that the first is
something that we can compute since we are given explicit access to f . On the other hand, the second
is Fourier sparse and has bounded Fourier support so it can be plugged into Corollary D.3 (as the
unknown functionM).
Claim E.10. For any real number µ,∫ 1−c

−1+c

|Kµ,l′,c/l′ ∗ f − Tµ,l′,2πl′/c ∗M|2 ≤ poly(l′/c)γ2 + 4

∫ ∞

−∞
|M0,(2πl′/c)2(x− µ)r̂(x)|2dx .

Proof. Note that since Kµ,l′,c/l′ is supported on [−c, c],∫ 1−c

−1+c

∣∣(Kµ,l′,c/l′ ∗ f
)
(x)−

(
Kµ,l′,c/l′ ∗M

)
(x)
∣∣2 dx ≤ ∫ 1

−1

|
(
Kµ,l′,c/l′ ∗ r

)
(x)|2dx

Now the Fourier transform of Kµ,l′,c/l′ ∗ r is K̂0,l′,c/l′(x− µ)r̂(x) so∫ 1

−1

|
(
Kµ,l′,c/l′ ∗ r

)
(x)|2dx ≤

∫ ∞

−∞
|K̂0,l′,c/l′(x− µ)r̂(x)|2dx

We deduce that∫ 1−c

−1+c

|Kµ,l′,c/l′ ∗ f − Tµ,l′,2πl′/c ∗M|2 ≤ 2

∫ 1−c

−1+c

∣∣Kµ,l′,c/l′ ∗M− Tµ,l′,2πl′/c ∗M
∣∣2

+2

∫ ∞

−∞
|K̂0,l′,c/l′(x− µ)r̂(x)|2dx

≤ poly(l′/c)γ2 + 2

∫ ∞

−∞
|K̂0,l′,c/l′(x− µ)r̂(x)|2dx

where the last inequality follows from Claim E.6.

Note since r is supported on [−1, 1] and ∥r∥22 ≤ ϵ2 ≤ 0.1, we must have ∥r∥1 ≤ 1 which
then implies ∥r̂∥∞ ≤ 1. Together with Claim E.5, if we let G = N(0, (c/l′)2) then we have∫ ∞

−∞
|K̂0,l′,c/l′(x− µ)r̂(x)|2dx ≤ 2

∫ ∞

−∞
|Ĝ(x− µ)r̂(x)|2dx+ 2∥r̂∥2∞∥K0,l′,c/l′ −G∥22

≤ poly(l′/c)γ2 + 2

∫ ∞

−∞
|M0,(2πl′/c)2(x− µ)r̂(x)|2dx .

and combining with the previous inequality, we get the desired result. ■
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We are now ready to complete the proof of Lemma E.1.

Proof of Lemma E.1. First, let T ′ be the set of integer multiples of 2π/c that are within distance
(10l′)2/c of the set T . For all µ ∈ T ′, do the following. We compute the function f (µ) = Kµ,l′,c/l′ ∗f .
Next we apply Corollary D.3 (with appropriate rescaling) to compute a function h(µ) in poly(l′/c)
time that has Fourier support in [µ− 2πl′2/c, µ+ 2πl′2/c], is (poly(l′/c),poly(l′/c))-simple and
such that ∫ 1−c

−1+c

|f (µ) − h(µ)|2 ≤ 20

(
γ2 +

∫ 1−c

−1+c

|f (µ) − Tµ,l′,2πl′/c ∗M|2
)

. (16)

To see why we can do this, note that

̂Tµ,l′,2πl′/c ∗M = M
trunc(l′)
0,1 (c(x− µ)/(2πl′))M̂

is supported on [µ− 2πl′2/c, µ+ 2πl′2/c]. Also it is clear that ∥ ̂Tµ,l′,2πl′/c ∗M∥1 ≤ ∥M̂∥1 ≤ 1.

Now we choose a set U ⊂ T ′ with |U | ≤ k(10l′)2 such that the following quantity is
minimized:

EU =
∑
µ∈U

∫ 1−c

−1+c

|f (µ) − h(µ)|2 +
∑

µ∈T ′\U

∫ 1−c

−1+c

|f (µ)|2 .

Note that this can be done using a simple greedy procedure. First, we obtain a bound on the value EU

that we compute. Let U0 be the set of all integer multiples of 2π/c that are within distance 10l′2/c
of S0 (recall that S0 is the Fourier support ofM which consist of k points). By assumption, we
know that U0 ⊂ T ′ and it is clear that |U0| ≤ k(10l′)2. Note that by definition, for any µ /∈ U0, the
function Tµ,l′,2πl′/c ∗M is identically 0. Now using (16), then Claim E.10,

EU0 ≤ 20
∑
µ∈U0

(
γ2 +

∫ 1−c

−1+c

|f (µ) − Tµ,l′,2πl′/c ∗M|2
)
+

∑
µ∈T ′\U0

∫ 1−c

−1+c

|f (µ)|2

≤ 80
∑
µ∈T ′

(
poly(l′/c)γ2 +

∫ ∞

−∞
|M0,(2πl′/c)2(x− µ)r̂(x)|2dx

)
≤ |T ′|poly(l′/c)γ2 + 80

∫ ∞

−∞
|r̂(x)|2

∑
µ∈(2π/c)Z

M0,(2πl′/c)2(x− µ)2dx

≤ γ + poly(l′)∥r∥22 .

Note that we used the fact that γ is sufficiently small and the tail decay properties of the Gaussian
multipliers in the last step. Thus, we can ensure that the error that we compute satisfies EU ≤
γ + poly(l′)∥r∥22. Now we output the function

M̃ =
∑
µ∈U

1

l′
√
2π

h(µ) .

It remains to bound the error between M̃ and f . First we apply Claim E.9 to decouple over all µ ∈ T ′.
Note that h(µ) and Tµ,l′,2πl′/c∗M both have Fourier support contained in the interval [µ−2πl′2/c, µ+
2πl′2/c]. For distinct µ that are integer multiples of 2π/c, there are at most O(l′2) intervals that
contain any point. Also, note that for all µ, ∥h(µ)∥1 ≤ poly(l′/c) and ∥ ̂Tµ,l′,2πl′/c ∗M∥1 ≤ 1. Thus,
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by Claim E.9 (with appropriate rescaling of the functions and the interval),∫ 1−2c

−1+2c

∣∣∣∣∣∣M̃ −
∑
µ∈T ′

1

l′
√
2π
Tµ,l′,2πl′/c ∗M

∣∣∣∣∣∣
≤ poly(l′/c)γ + poly(l′)

∑
µ∈U

∫ 1−c

−1+c

|h(µ) − Tµ,l′,2πl′/c ∗M|2 +
∑

µ∈T ′\U

∫ 1−c

−1+c

|Tµ,l′,2πl′/c ∗M|2


≤ poly(l′/c)γ + poly(l′)

∑
µ∈U

∫ 1−c

−1+c

|h(µ) − f (µ)|2 +
∑

µ∈T ′\U

∫ 1−c

−1+c

|f (µ)|2


+ poly(l′)
∑
µ∈T ′

∫ 1−c

−1+c

|f (µ) − Tµ,l′,2πl′/c ∗M|2

≤ poly(l′/c)γ + poly(l′)

EU +
∑
µ∈T ′

(
poly(l′/c)γ2 +

∫ ∞

−∞
|M0,(2πl′/c)2(x− µ)r̂(x)|2dx

)
≤ poly(l′/c)γ + poly(l′)(EU + ∥r∥22)
≤ poly(l′)ϵ2

where we used that γ = (ϵc/(kN))O(1) is sufficiently small and Claim E.10 and the last two
inequalities follow from the same argument as in the bound for EU0 . Next, by Claim E.8 (and the
definition of T ′), we have that

∥M−
∑
µ∈T ′

1

l′
√
2π
Tµ,l′,2πl′/c ∗M∥∞ ≤ O(ϵ)

so overall, we conclude ∫ 1−2c

−1+2c

|M̃ −M|2 ≤ poly(l′)ϵ2

from which we immediately deduce∫ 1−2c

−1+2c

|M̃ − f |2 ≤ poly(l′)ϵ2 .

It is also clear that M̃ is (kpoly(l′/c), kpoly(l′/c))-simple (since it is a sum of at most k(10l′)2
functions that are (poly(l′/c),poly(l′/c))-simple). Now we are done because l′ = O(l). ■

Similar to obtaining Corollary D.3 from Lemma D.1, we can extend Lemma E.1 to work even when
we do not know the target accuracy but only a lower bound on it.
Corollary E.11. Assume we are given N, k, ϵ, c with 0 < ϵ < 0.1. Let l = ⌈log kN/(ϵc)⌉ be some
parameter. LetM be a function that is (k, 1)-simple. Also, assume that we are given a set T ⊂ R of
size N such that all of the support of M̂ is within distance 1 of N . Further, assume we are given
access to a function f . There is an algorithm that runs in poly(N, k, l, 1/c) time and outputs a
function M̃ that is (kpoly(l/c), kpoly(l/c))-simple and such that∫ 1−c

−1+c

|M̃(x)− f(x)|2dx ≤ ϵ2 + poly(l)

∫ 1

−1

|f(x)−M(x)|2dx .

Proof. This will be the exact same argument as the proof of Corollary D.3. For a target accuracy
ϵ′ > ϵ we run the algorithm in Lemma E.1 to get a function M̃ϵ′(x). We then check whether∫ 1−c

−1+c

|M̃ϵ′(x)− f(x)|2dx ≤ poly(l)ϵ′2 .

If the check passes, we take ϵ′ ← 0.99ϵ′ and repeat the above until we find the smallest ϵ′ (up to a
constant factor) for which the check passes. The guarantee of Lemma E.1 implies that for this ϵ′, we
can just output M̃ϵ′(x) and it is guaranteed to satisfy the desired inequality. ■
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E.3 Proof of Main Theorem

Using Theorem 2.12 and Corollary E.11, we can prove our main theorem, Theorem 1.3. The main
thing that we need to prove is that the frequencies in the function f ′ computed by Theorem 2.12
cover (within distance poly(k, log 1/ϵ)) all of the frequencies inM. This will then let us use the
frequencies in f ′ to construct a set T of size poly(k, log 1/ϵ) that covers all frequencies inM to
within distance 1 that we can then plug into Corollary E.11. We will need the following technical
lemma from Chen et al. [2016].
Lemma E.12. [Lemma 5.1 in Chen et al. [2016]] For any k-Fourier sparse signal g : R→ C,

max
x∈[−1,1]

|g(x)|2 ≤ O(k4 log3 k)

∫ 1

−1

|g(x)|2dx .

The above lemma roughly says that the mass of a k-Fourier sparse function cannot be too concentrated.
We now finish the proof of Theorem 1.3.

Proof of Theorem 1.3. We first apply Theorem 2.12 to compute a function f ′. such that

1. f ′ is (poly(k, log 1/ϵ), exp(poly(k, log 1/ϵ)))- simple

2. ∫ 1

−1

|f ′ − f |2 ≤ O

(
ϵ2 +

∫ 1

−1

|f −M|2
)

.

Let L = (k log 1/ϵ)K for some sufficiently large absolute constant K. Let γ = e−L. Now apply
Claim E.8 on the function f ′ with parameters a← L, l ← L, ϵ← γ. Let S ⊂ LZ be the set of all
integer multiples of L that are within distance L3 of the Fourier support of f ′. We have

∥f ′ − 1

L
√
2π

∑
µ∈S

Tµ,L,L2 ∗ f ′∥∞ ≤ 2∥f̂ ′∥1γ (17)

Next, we apply Claim E.6 on the function (M− f ′). We deduce that for any µ,

∥Kµ,L,2π/L2 ∗ (M− f ′)− Tµ,L,L2 ∗ (M− f ′)∥∞ ≤ O
(
γL
(
∥f̂ ′∥1 + ∥M̂∥1

))
. (18)

Finally, by Claim E.7 applied to the function (M− f ′) (with parameters ϵ ← γ, l ← L, c ←
(2π)/L2), we have∫ 1

−1

∣∣∣∣∣∣ 1

L
√
2π

∑
µ∈S

Kµ,L,2π/L2 ∗ (M− f ′)

∣∣∣∣∣∣
2

≤ (1 +O (γ|S|))2
∫ 1+2π/L

−1−2π/L

|M− f ′|2 ≤ 2

∫ 1

−1

|M− f ′|2 .

Note that in the last step we use Lemma E.12 and the fact thatM− f ′ is poly(k, log 1/ϵ)-Fourier
sparse so choosing L = (k log 1/ϵ)O(1) sufficiently large ensures that∫ 1+2π/L

−1−2π/L

|M− f ′|2 ≤ 1.1

∫ 1

−1

|M− f ′|2 .

Define the functions

A(x) = f ′ − 1

L
√
2π

∑
µ∈S

Tµ,L,L2 ∗M

B(x) =
1

L
√
2π

∑
µ∈S

Kµ,L,2π/L2 ∗ (M− f ′)

Note ∥A∥∞, ∥B∥∞ ≤ |S|
(
∥f̂ ′∥1 + ∥M̂∥1

)
. Combining (17, 18) we have∫ 1

−1

|A(x)|2 −
∫ 1

−1

|B(x)|2 ≤ γpoly
(
L, |S|, ∥f̂ ′∥1 + ∥M̂∥1

)
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However, we proved that
∫ 1

−1
|B(x)|2 ≤ 2

∫ 1

−1
|M − f ′|2 so choosing L = (k log 1/ϵ)O(1) suffi-

ciently large and since γ = e−L, we conclude∫ 1

−1

|A(x)|2 ≤ ϵ2 + 2

∫ 1

−1

|M− f ′|2 ≤ O

(
ϵ2 +

∫ 1

−1

|M− f |2
)

(19)

where we are using the guarantee from Theorem 2.12. Now note that the function

M′ =
1

L
√
2π

∑
µ∈S

Tµ,L,L2 ∗M

is k-Fourier sparse and has ∥M̂′∥1 ≤ 2∥M̂∥1 by Lemma B.4. Furthermore, all of its Fourier
support is within distance poly(L) of the Fourier support of f ′ (by the construction of the set
S). Thus, we can apply Corollary E.11 on f ′ (where we treat the unknown function asM′) with
N = poly(L) = poly(k, log 1/ϵ) and recover a function M̃ such that∫ 1−c

−1+c

|M̃ − f ′|2 ≤ ϵ2 + poly(log k/(ϵc))

∫ 1

−1

|f ′ −M′| = ϵ2 + poly(log k/(ϵc))

∫ 1

−1

|A(x)|2

= poly(log k/(ϵc))

(
ϵ2 +

∫ 1

−1

|M− f |2
)

where the last step is from (19). Since
∫ 1

−1
|f ′ − f |2 ≤ O

(
ϵ2 +

∫ 1

−1
|f −M|2

)
, the above implies∫ 1−c

−1+c

|M̃ − f |2 ≤ poly(log k/(ϵc))

(
ϵ2 +

∫ 1

−1

|M− f |2
)

and we are done. ■

E.4 Implementation of Computations

In the proof of Theorem 1.3, we use the result from Chen et al. [2016] to obtain an approxima-
tion f ′ that is written as a sum of poly(k, log 1/ϵ) exponentials and has coefficients bounded by
exp(poly(k, log 1/ϵ)). We then perform explicit computations using this function in our algorithm
to eventually compute a sparser approximation with smaller coefficients. Here we briefly explain
why these explicit computations can all be implemented efficiently. Note that all of the functions that
we perform computations on can be written as sums of polynomials multiplied by exponentials i.e.

P1(x)e
2πiθ1x + · · ·+ Pn(x)e

2πiθnx (20)

where there are at most poly(k, log 1/ϵ) terms in the sum, all of the polynomials have degree at
most poly(k, log 1/ϵ) and all of the coefficients are bounded by exp(poly(k, log 1/ϵ)). To see this,
note that convolving by a polynomial P (x) truncated to an interval (recall the truncated polynomial
kernel in Definition E.3 ) preserves a function of the form in (20) (only increasing the degrees of
the polynomials by deg(P )). All other computations that we need such as computing the exact
value, adding and multiplying and integrating over some interval can clearly be done explicitly in
poly(k, log 1/ϵ) time and to exp(poly(k, log 1/ϵ))−1 accuracy for functions of the form specified in
(20).

F Basic Tools

In this section, we have a few basic tools that are used repeatedly throughout the paper.

F.1 Chebyshev Polynomials

Here we will introduce several basic results about the Chebyshev polynomials, which have algorithmic
applications in a wide variety of settings Rivlin [2020], Guruswami and Zuckerman [2016].
Definition F.1 (Chebyshev Polynomials). The Chebyshev Polynomials are a family of polynomials
defined as follows: T0(x) = 1, T1(x) = x and for n ≥ 2,

Tn(x) = 2xTn−1(x)− Tn−2(x) .
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Fact F.2. The Chebyshev polynomials satisfy the following property:

Tn(cos θ) = cosnθ .

As an immediate consequence of the above, we have a few additional properties.
Fact F.3. The Chebyshev polynomials satisfy the following properties:

1. Tn(x) has degree n and leading coefficient 2n−1

2. For x ∈ [−1, 1], Tn(x) ∈ [−1, 1]

3. Tn(x) has n zeros all in the interval [−1, 1]

4. There are n+ 1 values of x for which Tn(x) = ±1, all in the interval [−1, 1]

In light of the previous properties, we make the following definition.
Definition F.4. For an integer n, we define the Chebyshev points of degree n, say t0, . . . , tn, as the
points in the interval [−1, 1] where the Chebyshev polynomial satisfies Tn(tj) = ±1. Note that the
Chebyshev points are exactly

{cos 0, cos π
n
, . . . cos

(n− 1)π

n
, cosπ} .

Next, we have a result saying that if we have a bound on the value of a degree-n polynomial at all of
the degree n Chebyshev points, then we can bound the value over the entire interval [−1, 1]. Similar
results are used in Rivlin [2020], Guruswami and Zuckerman [2016], but there does not appear to be
a directly usable reference.
Claim F.5. Let P (x) be a polynomial of degree at most n with real coefficients. Let t0, . . . , tn be the
Chebyshev points of degree n. Assume that |P (tj)| ≤ 1 for j = 0, 1, . . . , n. Then |P (x)| ≤ 2n for
all x ∈ [−1, 1].

Proof. By Lagrange interpolation, we may write

P (x) =
P (t0)(x− t1) · · · (x− tn)

(t0 − t1) · · · (t0 − tn)
+ · · ·+ P (tn)(x− t0) · · · (x− tn−1)

(tn − t0) · · · (tn − tn−1)
.

Thus, it suffices to upper bound the quantity

F (x) =

∣∣∣∣ (x− t1) · · · (x− tn)

(t0 − t1) · · · (t0 − tn)

∣∣∣∣+ · · ·+ ∣∣∣∣ (x− t0) · · · (x− tn−1)

(tn − t0) · · · (tn − tn−1)

∣∣∣∣
on the interval [−1, 1]. Note that by Lagrange interpolation on Tn(x), we have

Tn(x) =
Tn(t0)(x− t1) · · · (x− tn)

(t0 − t1) · · · (t0 − tn)
+ · · ·+ Tn(tn)(x− t0) · · · (x− tn−1)

(tn − t0) · · · (tn − tn−1)
.

Also note that Tn(tj) = (−1)n−j which has the same sign as (tj − t0) · · · (tj − tj−1)(tj −
tj+1) · · · (tj − tn). Thus,∣∣∣∣ 1

(t0 − t1) · · · (t0 − tn)

∣∣∣∣+ · · ·+ ∣∣∣∣ 1

(tn − t0) · · · (tn − tn−1)

∣∣∣∣ = 2n−1 ,

since the leading coefficient of Tn(x) is 2n−1. Now we will upper bound

M = max (|(x− t1) · · · (x− tn)|, . . . , |(x− t0) · · · (x− tn−1)|)
and once we do this, we will have a bound on F (x) since F (x) ≤ 2n−1M . Define the polynomial

Q(x) = (x− t0)(x− t1) · · · (x− tn) =

√
x2 − 1

2n

(
(x+

√
x2 − 1)n − (x−

√
x2 − 1)n

)
.

To see why the last equality is true, note that the RHS has roots at t0, . . . , tn and is a monic polynomial
of degree n+ 1 so it must be equal to (x− t0) · · · (x− tn). Now,

M = max

(∣∣∣∣ Q(x)

x− t0

∣∣∣∣ , . . . , ∣∣∣∣ Q(x)

x− tn

∣∣∣∣) ≤ max |Q′(x)|
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where the last step holds by the mean value theorem (because Q(tj) = 0 for all j). Now note that

Q(cos θ) = − sin θ sin(nθ)

2n−1

so

Q′(cos θ) =
n cosnθ

2n−1
+

cos θ sin(nθ)

sin(θ)2n−1

and from the above it is clear that

|Q′(cos θ)| ≤ n

2n−1
+

n

2n−1
=

n

2n−2
.

Now we are done because

max
x∈[−1,1]

|P (x)| ≤ F (x) ≤ 2n−1M ≤ 2n .

■

It turns out that we can restate the above result in terms of convex hulls of points on the moment
curve. This reformulation is the version that is useful in our algorithms.
Definition F.6. For a real number x, we define the moment vector Vn(x) = (1, x, . . . , xn).

Corollary F.7. Let t0, t1, . . . , tn be the Chebyshev points of degree n. Then for any x ∈ [−1, 1], the
point Vn(x) is contained in the convex hull of the points

{±2nVn(t0), . . . ,±2nVn(tn)} .

Proof. Assume for the sake of contradiction that the above is not true. Then there must be a separating
hyperplane. Assume that this hyperplane is given by a · x = b where a is a vector and b is a real
number. Now WLOG b ≥ 0 and we must have

a · Vn(x) ≥ b

|a · Vn(tj)| ≤
b

2n
∀j

However, applying Claim F.5 with P (x) = 2n(a·Vn(x)))
b gives a contradiction. Thus, no separating

hyperplane can exist and we are done. ■

F.2 Approximating a Gaussian with a Polynomial

We will also need to approximate Gaussians with polynomials. This is a somewhat standard result
which we state below.
Lemma F.8. Let G = N(0, 1) be the standard Gaussian. Let l be some parameter. Then we can
compute a polynomial P (x) of degree (10l)2 such that for all x ∈ [−2l, 2l],

|G(x)− P (x)| ≤ e−l .

Proof. Write

G(x) =
1√
2π

e−x2/2 .

and now we can write the Taylor expansion

e−
x2

2 =

∞∑
m=0

(
−x2

2

)m
m!

=

∞∑
m=0

(−1)mx2m

2mm!

Now define

P (x) =

(10l)2∑
m=0

(−1)mx2m

2mm!
.
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For x ∈ [−2l, 2l], we have

|G(x)− P (x)| ≤

∣∣∣∣∣∣
∞∑

m=(10l)2+1

(−1)mx2m

2mm!

∣∣∣∣∣∣ ≤
∞∑

m=102l+1

(2l)2m

2mm!
≤

∞∑
m=102l+1

(
(2l)2

2m/3

)m

≤
∞∑

m=102l+1

1

2m
≤ e−l .

■

In light of the above, we use the following notation.
Definition F.9. We will use Pl(x) to denote the polynomial computed in Lemma F.8 for parameter l.
Note that Pl is a polynomial of degree (10l)2 and for G = N(0, 1), we have

|G(x)− Pl(x)| ≤ e−l

for x ∈ [−2l, 2l].

F.3 Linear Regression

Recall that at the core of the problems we are studying, we are given some function f and want to
approximate it as a weighted sum a1f1 + · · · + anfn of some functions f1, . . . , fn ∈ F for some
family of functions F . The result below allows us to solve the problem of computing the coefficients
if we already know the components f1, . . . , fn that we want to use. The precise technical statement
is slightly more complicated in order to incorporate the various types of additional constraints that
we may want to impose on the coefficients a1, . . . , an.
Lemma F.10. LetD be a distribution on R that we are given. Also assume that we are given functions
f, f1, . . . , fn, g, g1, . . . , gn : R→ R. Assume that there are nonnegative coefficients a1, . . . , an such
that a1 + · · ·+ an ≤ 1 and∫ ∞

−∞
(f(x)−a1f1(x)−· · ·−anfn(x))2D(x)dx+

∫ ∞

−∞
(g(x)−a1g1(x)−· · ·−angn(x))2D(x)dx ≤ ϵ2

for some parameter ϵ > 0. Then there is an algorithm that runs in poly(n, log 1/ϵ) time and outputs
nonnegative coefficients b1, . . . , bn such that b1 + · · ·+ bn ≤ 1 and∫ ∞

−∞
(f(x)−b1f1(x)−· · ·−bnfn(x))2D(x)dx+

∫ ∞

−∞
(g(x)−b1g1(x)−· · ·−bngn(x))2D(x)dx ≤ 2ϵ2 .

Proof. Let v = (1, b1, . . . , bn). Note that we can write∫ ∞

−∞
(f(x)−b1f1(x)−· · ·−bnfn(x))2D(x)dx+

∫ ∞

−∞
(g(x)−b1g1(x)−· · ·−bngn(x))2D(x)dx = vTMv

where M is a matrix whose entries are
∫∞
−∞ (f(x)fj(x) + g(x)gj(x))D(x)dx in the first row and

column and the other entries are
∫∞
−∞ (fi(x)fj(x) + gi(x)gj(x))D(x)dx. Since all of these func-

tions are given to us, we can explicitly compute M . Also note that clearly M is positive semidefinite.
Thus, we can compute its positive semidefinite square root, say N . Now

vTMv = ∥Nv∥22
so it remains to solve minv ∥Nv∥22 which is a convex optimization problem that we can solve
efficiently (the size of the problem is poly(n)). ■
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