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Abstract

In learning theory, a standard assumption is that the data is generated from a finite
mixture model. But what happens when the number of components is not known in
advance? The problem of estimating the number of components, also called model
selection, is important in its own right but there are essentially no known efficient
algorithms with provable guarantees let alone ones that can tolerate adversarial
corruptions. In this work, we study the problem of robust model selection for
univariate Gaussian mixture models (GMMs). Given poly(k/ϵ) samples from a
distribution that is ϵ-close in TV distance to a GMM with k components, we can
construct a GMM with Õ(k) components that approximates the distribution to
within Õ(ϵ) in poly(k/ϵ) time. Thus we are able to approximately determine the
minimum number of components needed to fit the distribution within a logarithmic
factor. Prior to our work, the only known algorithms for learning arbitrary univariate
GMMs either output significantly more than k components (e.g. k/ϵ2 components
for kernel density estimates) or run in time exponential in k. Moreover, by adapting
our techniques we obtain similar results for reconstructing Fourier-sparse signals.

1 Introduction

Many works in learning theory operate under the assumption that the data is generated from a finite
mixture model, and furthermore that the number of components is known in advance. But what
happens when the number of components is not known in advance? The problem of estimating the
number of components is called model selection and has been intensively studied in statistics for over
fifty years [Neyman and Scott, 1966]. Indeed, in many scientific applications, it is the central issue.
Consider the motivation given by Chen et al. [2004]: In genetics, we might have a continuous-valued
trait, like height, that can be measured across a population and we want to understand its genetic
basis. But is the underlying genetic mechanism simple or complex? Is it controlled by just a few
genes or are there many more genes waiting to be discovered that each have a small effect on it?

From a statistical perspective, what makes model selection challenging is that the standard analysis
of the likelihood ratio test breaks down because of lack of regularity and non-identifiability [Hartigan,
1985]. Despite many attempts [Ghosh and Sen, 1984, Lo et al., 2001, Huang et al., 2017] and
rejoinders [Jeffries, 2003], even understanding the asymptotic distribution of the likelihood ratio
statistics has remained a long-standing challenge in the field [Kasahara and Shimotsu, 2015]. From
an algorithmic standpoint, the problem is even more difficult.

In this work, we study the problem of robust model selection for one-dimensional Gaussian mixture
models with k components (k-GMMs for short). A natural approach for this problem is via agnostic
proper learning, where the task is to, given samples from an unknown distribution, output the best
k-GMM approximation to this distribution in TV distance. An efficient agnostic proper learning
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algorithm, combined with standard tools from hypothesis testing, would immediately yield an
algorithm for model selection.

Unfortunately, while there are many efficient algorithms for learning one-dimensional GMMs, they
all fall into one of several categories: (1) They assume some strong separation conditions on the
components so that the samples can be clustered based on which component they were generated
from. (2) They solve the harder problem of learning the parameters of the components, which
information-theoretically requires the number of samples to be exponential in k [Moitra and Valiant,
2010]. (3) They employ brute-force search [Daskalakis and Kamath, 2014, Acharya et al., 2014]
or solve a system of polynomial inequalities [Li and Schmidt, 2017], and run in time exponential
in k. (4) They learn an approximation that is either not a GMM, e.g. a piece-wise polynomial
approximation [Chan et al., 2013, Acharya et al., 2017] or output a GMM where the number of
components is much larger than k [Wu and Xie, 2018, Devroye and Lugosi, 2012, Bhaskara et al.,
2015]. (5) They assume that the components in the GMM have the same or similar variances and
means not too far apart so that there is a good approximation to the density with just a logarithmic
number of components [Wu and Yang, 2018, Polyanskiy and Wu, 2020]. In all cases, these guarantees
are insufficient for efficient model selection, and/or yield a trivial approximation to the number
of components in a GMM except in restricted settings. In this work, we ask: Are there efficient
algorithms for learning arbitrary one-dimensional GMMs that output an approximation with Õ(k)
components? Relatedly: Are there efficient algorithms for approximating the number of components
in a GMM? We give efficient algorithms whose running time and sample complexity are polynomial
in k for both of these problems, and also the related problem of reconstructing Fourier-sparse signals
with an unknown number of frequencies.

1.1 Learning and model selection for GMMs

Our main result is a new robust learning algorithm for one-dimensional GMMs. We show:

Theorem 1.1. Let k, ϵ > 0 be parameters and let f be a distribution such that dTV(M, f) ≤ ϵ for
some unknown mixture of GaussiansM = w1G1 + · · ·+wkGk. Assume that we are given Õ(k/ϵ2)
samples from f . Then there is an algorithm that runs in poly(k/ϵ) time and with probability 0.9

(over the random samples), outputs a mixture of Õ(k) Gaussians, M̃, such that

dTV(M̃, f) ≤ Õ(ϵ) .

In contrast to other known learning algorithms (discussed earlier), our learning algorithm works for
arbitrary GMMs, runs in polynomial time and uses a polynomial number of samples, and while it
does not output a GMM with exactly k components, it does the next best thing: it outputs a GMM
with at most a polylogarithmic factor more components.

As a corollary, we also give an algorithm for robust approximate model selection for GMMs. The
connection to model selection is that when our algorithm fails to find a GMM with Õ(k) components
that fits the data we can be assured that there must more than k components to begin with. Notice in
particular that improper approximations by themselves do not suffice for the model selection problem,
as a good improper approximation could exist even if the distribution is far from any GMM with
Õ(k) components.

Theorem 1.2. Let k, ϵ > 0 be parameters we are given. Let F1 be the family of distributions that are
ϵ-close to a k-GMM with k components (in TV distance). Let F2 be the family of distributions that
are not Õ(ϵ)-close to any GMM with Õ(k) components. There is an algorithm that given poly(k/ϵ)
samples from a known distribution D, runs in poly(k/ϵ) time, and outputs 1 if D ∈ F1 and outputs 2
if D ∈ F2 both with failure probability at most 0.2.

Remark. Even if the distribution D is completely unknown and we are only given samples from it,
the above result still holds as long as D is somewhat well behaved (note that such an assumption is
necessary as hypothesis testing with respect to total variation distance without any assumptions on D
is impossible). In particular we can use piecewise polynomial approximation [Chan et al., 2013] or
kernel density estimates [Terrell and Scott, 1992] to learn a distribution D′ that is close to D that we
have an explicit form for and then run the hypothesis test using D′.
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1.2 Fourier sparse interpolation

Our techniques also immediately apply to the problem of Fourier sparse interpolation, where the goal
is to interpolate a signal based on noisy measurements of it at a few points [Chen et al., 2016]. We
say that a functionM is (k,C) simple if it can be written in the form

M(t) =

k∑
j=1

aje
2πiθjt ,

where additionally
∑

j |aj | ≤ C. In other words, a function is (k,C) simple if it is k-sparse in the
Fourier domain, and its Fourier coefficients are bounded in ℓ1 by C.

We consider the following problem. We get query access to a function f(t) =M(t) + η(t) at any
point in the interval [−1, 1], whereM is (k,C) simple and has all frequencies in the interval [−F, F ],
and η(t) is noise that we will assume is bounded in L2 norm. The goal is to compute a Fourier-sparse
approximation M̃(t) that is close to f(t), in the sense that its error is comparable to that ofM(t).
Recently Chen et al. [2016] showed how to construct an approximation M̃(t) that satisfies

∥f(t)− M̃(t)∥2 ≤ ∥η(t)∥2 + ϵ∥M(t)∥2
where the L2 norm is taken over the interval [−1, 1]. Their algorithm works for any ϵ > 0 and
uses poly(k, log 1/ϵ) logF measurements. Moreover the M̃(t) that they output is poly(k, log 1/ϵ)-
Fourier sparse. Similarly to the GMM setting, a natural goal is to perform robust interpolation but
with tighter bounds on the number of frequencies. We show:
Theorem 1.3. Let f,M be as above whereM is (k, 1)-simple. Then for any desired accuracy ϵ > 0
and constant c > 0, in poly(k, log 1/ϵ) logF queries and poly(k/c, log 1/ϵ) log2 F time, we can
output a function M̃ such that with probability 1− 2−Ω(k),

1. M̃ is Õ(k)-Fourier sparse with ∥̂̃M∥1 ≤ Õ(k)

2.
∫ 1−c

−1+c
|M̃ − f |2 ≤ Õ

(
ϵ2 +

∫ 1

−1
|f −M|2

)
Remark. Note the constraints ∥M̂∥1 and ∥̂̃M∥1 translate into bounds on the sizes of the coefficients
of the exponentials inM and M̃ respectively.

The natural open question left by our work is to improve the sparsity bounds, both for interpola-
tion/learning and model selection. In principle it could be possible that there are efficient algorithms
for these problems, however it now seems somewhat unlikely. Even without noise, learning a Gaus-
sian mixture model with k components without a separation condition in time poly(k, 1/ϵ) is open.
From our work (see Section 2), we see that even in the well-conditioned case this is equivalent to
finding a non-trivially sparse solution to a system of polynomial equations where there seems to be
no structure that makes algorithmic search better than brute-force possible. Moreover, this question
has already been open for many years, but there hasn’t been any progress on proper learning. Thus,
we conjecture that both the learning and model selection problems are computationally hard if we are
not allowed to relax the number of components.

1.3 Related work

There is a vast literature on the three problems we consider. Here we will give a more detailed review
of related work.

Learning Mixtures of Gaussians and Model Selection Since the pioneering work of Pearson
[1894], mixtures of Gaussians have become one of the most ubiquitous and well-studied generative
models in both theory and practice. Numerous problems have been studied on the context of
learning mixtures of Gaussians, including clustering [Dasgupta, 1999, Vempala and Wang, 2004,
Achlioptas and McSherry, 2005, Dasgupta and Schulman, 2007, Arora and Kale, 2007, Kumar and
Kannan, 2010, Awasthi and Sheffet, 2012, Mixon et al., 2017, Hopkins and Li, 2018, Kothari et al.,
2018, Diakonikolas et al., 2018], learning in the presence of adversarial noise in high dimensional
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settings [Diakonikolas et al., 2018, Hopkins and Li, 2018, Kothari et al., 2018, Bakshi et al., 2020,
Diakonikolas et al., 2020, Kane, 2021, Liu and Moitra, 2020, 2021], parameter estimation [Kalai
et al., 2010, Belkin and Sinha, 2015, Moitra and Valiant, 2010, Hardt and Price, 2015], learning in
smoothed settings [Hsu and Kakade, 2013, Anderson et al., 2014, Bhaskara et al., 2014, Ge et al.,
2015], and density estimation [Devroye and Lugosi, 2012, Chan et al., 2014, Acharya et al., 2017].

Of particular interest to us is the line of work on proper learning [Feldman et al., 2006, Acharya
et al., 2014, Li and Schmidt, 2017, Ashtiani et al., 2018], where the goal is to output a mixture of
k-Gaussians which is close in total variation to the underlying ground truth. Unfortunately, while the
sample complexity of these algorithms is usually polynomial, the runtime for all known approaches is
exponential in k. In contrast, our runtimes are polynomial, albeit for a relaxed version of the problem,
where the output is allowed to be a mixture of k′ Gaussians, for k′ > k.

For this “semi-proper” regime, efficient algorithms are known, albeit either only for restricted settings,
or with significantly worse quantitative results than we achieve. In the “well-conditioned” case,
where the means are close together, and the variances of all the components are comparable, the
aforementioned work of [Wu and Yang, 2018, Polyanskiy and Wu, 2020] demonstrates that the
nonparametric MLE can efficiently obtain an estimate using only logarithmically many pieces.
However, the nonparametric MLE is not suited for the general setting, where the means could be
far apart, and variances could be very different, and will not converge in general. Moreover, while
nonparametric MLE is robust to perturbations in KL, it is not robust to perturbations in total variation
distance, as we consider here.

For the general case, by using kernel density estimates, one can achieve ϵ approximation using
k′ = O(k/ϵC) for some constant C [Devroye and Lugosi, 2012]. Similarly Bhaskara et al. [2015]
achieves ϵ error using k′ = O(k/ϵ3) pieces. That is, for both of these approaches, they require a
number of pieces which scales polynomially with 1/ϵ. In comparison, our dependence on ϵ in terms
of the number of pieces is logarithmic.

As discussed previously, there are strong connections between proper learning and model selection
[Neyman and Scott, 1966, Hartigan, 1985, Ghosh and Sen, 1984, Lo et al., 2001, Jeffries, 2003, Kasa-
hara and Shimotsu, 2015, Huang et al., 2017]. Related notions have been considered in distribution
testing [Parnas et al., 2006, Valiant and Valiant, 2010a,b, 2011, Jiao et al., 2016, 2017, Han et al.,
2016] and testing properties of boolean functions [Diakonikolas et al., 2007, Iyer et al., 2021].

Continuous Time Sparse Fourier Transforms Sparse Fourier transforms in the continuous
setting, also known as sparse Fourier transforms off the grid, has been the subject of intensive study.
Indeed, the first algorithm for this problem dates back to Prony [1795]. Modern algorithms include
MUSIC [Schmidt, 1982], ESPRIT [Roy et al., 1986], maximum likelihood estimators [Bresler and
Macovski, 1986], convex programming based methods [Candès and Fernandez-Granda, 2014] and
the matrix pencil method [Moitra, 2015].

Most of these works, especially those that work in a noisy setting, require a frequency gap. Moreover
they require more than k samples (their bound usually depends on the frequency gap), even if the
underlying signal is k-sparse in the Fourier domain. A recent line of work has focused on the problem
of improving the sample complexity – in particular getting bounds which only depend on k with
runtimes that are polynomial in k [Fannjiang and Liao, 2012, Duarte and Baraniuk, 2013, Tang
et al., 2013, 2014, Boufounos et al., 2015, Huang and Kakade, 2015, Price and Song, 2015]. The
setting where there is no gap and there is noise is particularly challenging. One approach is to relax
the definition of a frequency gap, and require it only between “clusters" of frequencies [Batenkov
et al., 2020]. Another line of work [Avron et al., 2019, Chen and Price, 2019] shows how to output
a hypothesis which is k-sparse without any gap assumptions and with sample complexity which
is polynomial in k. However these methods run in exponential time. As we previously discussed,
the most relevant works to us are Chen et al. [2016] and Chen and Price [2019], which give an
algorithm whose running time and sample complexity are polynomial in k that works without any
gap assumptions, but for a relaxation where we are allowed to output a Õ(k2)-Fourier sparse signal.

2 Technical overview

We now give an overview of our approach. We will focus on just the GMM case in this overview.
Our approach for sparse Fourier interpolation follows a very similar outline. We first present our
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techniques assuming that we have explicit access to f . In Section 2.3 we show how to reduce to this
case when we are only given samples. In other words, the problem is as follows: we are given a
function f , and we want to find a sparse approximation to f as a nonnegative sum of Gaussians, i.e.
we want to write

f ∼ a1G1 + · · ·+ anGn

with n small, where each Gi is a Gaussian.

2.1 Well-conditioned case

We first solve the “well-conditioned" case. Roughly, we say that a GMM is well-conditioned if
the variances of the components are all constant scale and the means are all not too far from zero.
Formally, we have the following definition:
Definition 2.1. We say a Gaussian G = N(µ, σ2) is δ-well-conditioned if |µ| ≤ δ and |σ2 − 1| ≤ δ.
Furthermore we say a mixture of GaussiansM = w1G1 + · · ·+ wkGk is δ-well-conditioned if all
of the components G1, . . . , Gk are δ-well-conditioned.

Naturally, our techniques also apply to a shared scaling and/or translation of the components, but
we will ignore this for now. Earlier work of [Wu and Yang, 2018, Polyanskiy and Wu, 2020] proved
an important structural result that a well-conditioned GMM can be ϵ-approximated by a mixture
with O(log 1/ϵ) components. However we will want a robust and algorithmic version: In particular,
instead of requiring the distribution to be exactly a well-conditioned GMM, we will only require that
it be close in total variation distance. Even in this setting, with some level of model misspecification,
we want an efficient algorithm for constructing an approximating GMM with few components. To
this end, a key result, proved in Section A, is:
Lemma 2.2. Let ϵ > 0 be a parameter. Assume we are given access to a distribution f such that
dTV(f,M) ≤ ϵ whereM = w1G1 + · · ·+ wkGk is a 0.5-well-conditioned mixture of Gaussians.
Then we can compute, in poly(1/ϵ) time, a mixture M̃ of at most O(log 1/ϵ) Gaussians such that
dTV(M,M̃) ≤ Õ(ϵ).

Our approach departs from the moment matching framework of Wu and Yang [2018], Polyanskiy
and Wu [2020]. Instead we take the probability density function of any well-conditioned Gaussian
Gj . We can expand it as a Taylor series around 0 of the form

Gj(x) = c
(0)
Gj

+
c
(1)
Gj

x

1!
+

c
(2)
Gj

x2

2!
+ . . .

for some coefficients c
(i)
Gj

. We can then associate it with the vector cGj
= (c

(0)
Gj

, . . . , c
(ℓ−1)
Gj

) of
length ℓ = O(log 1/ϵ). Then, for any well-conditioned mixtureM = a1G1 + · · ·+ akGn, we can
associate it with the corresponding convex combination of the vectors of its components, i.e., we
define cM = a1cG1

+ . . .+ . . . akcGk
∈ Rℓ.

The point of this is the following implication: if two well-conditioned mixtures get mapped to vectors
which are close, then these two mixtures must be close in total variation distance. The intuition is
that when we write down the L1 distance between the two mixtures, because the Taylor coefficients
of Gaussians decay exponentially fast, the contribution of terms with degree l > O(log 1/ϵ) to the
integral becomes negligible.

Now, we can associate the set of well-conditioned mixtures with a convex body in O(log 1/ϵ)-
dimensions, where the vertices of the convex body are given by single Gaussians. Consequently we
can use Caratheodory’s theorem to argue that any point within this body can be approximated as an
O(log 1/ϵ)-sparse convex combination of the vertices, or equivalently, any well-conditioned mixture
can we approximated by a mixture of O(log 1/ϵ) well-conditioned Gaussians.

It remains to demonstrate how to actually find this sparse mixture of Gaussians. Naively, the number
of vertices is infinite, as there are infinitely many well-conditioned Gaussians. However, it is not too
hard to show that if we consider a slight coarsening of this body by only taking the vertices to be
the vectors associated to the well-conditioned Gaussians which belong in some poly(1/ϵ)-sized net,
then the quality of our solution only degrades by constant multiplicative factors. At this point we can
appeal to standard results in convex optimization to find the desired sparse approximation. We defer
the details of this argument to Section A.

5



2.2 Localization

After solving the well-conditioned case, the next step is to reduce the general case to the well-
conditioned case via localization. We begin with an important definition.
Definition 2.3 (Gaussian Multiplier). For parameters µ, σ, we define

Mµ,σ2(x) = e−
(x−µ)2

2σ2

i.e. it is a Gaussian scaled so that its maximum value is 1.

Gaussian multipliers will be crucial in the localization step. Now assume that f can be written as
some unknown k-sparse combination, say

f = a1G1 + · · ·+ akGk

We can then modify f , e.g. by multiplying by a Gaussian multiplier Mµ,σ2 . Heuristically, this
operation changes the coefficients a1, . . . , ak in a predictable way. Namely, the coefficients aj
of Gaussians Gj that are far from N(µ, σ2) are exponentially attenuated based on the distance to
N(µ, σ2). This effectively ”localizes” the mixture. More formally,
Claim 2.4. We have the identity

Mµ,σ2(x)N(µ1, σ
2
1) =

1√
1 +

σ2
1

σ2

e
− (µ1−µ)2

2(σ2
1+σ2)N

(
µσ2

1 + µ1σ
2

σ2
1 + σ2

,
σ2
1σ

2

σ2
1 + σ2

)
.

Proof. We prove the above through direct computation.

Mµ,σ2(x)G1(x) = e
− (x−µ)2

2σ2 − (x−µ1)2

2σ2
1

1

σ1

√
2π

=
1

σ1

√
2π
· e

− 1
2

((
1
σ2 + 1

σ2
1

)
x2−2

(
µ

σ2 +
µ1
σ2
1

)
x+µ2

σ2 +
µ2
1

σ2
1

)

=
1

σ1

√
2π
· exp

−1

2

√ 1

σ2
+

1

σ2
1

x−
µ
σ2 + µ1

σ2
1√

1
σ2 + 1

σ2
1

2

− 1

2
· (µ1 − µ)2

σ2
1 + σ2


=

1√
1 +

σ2
1

σ2

e
− (µ1−µ)2

2(σ2
1+σ2)N

(
µσ2

1 + µ1σ
2

σ2
1 + σ2

,
σ2
1σ

2

σ2
1 + σ2

)
.

■

The hope is that this will leave us with only components that are not too far from each other –
exactly the well-conditioned case which we already know how to solve. If the variances of all of
the components are comparable, then this is indeed the case. However, additional complications
arise when one of the components Gi = N(µ, σ2

i ) has variance σi ≪ σ because this component will
still have much smaller variance than the others after localizing. Nevertheless, we show that we can
carefully localize at different scales, using smaller variance Gaussian multipliers to localize around
smaller variance components so that all of the localized mixtures are well-conditioned.

The main remaining question is to select a good family of localizations so that we can then fully
reconstruct the original mixture from the localized mixtures. Each localized mixture will cost us
O(log 1/ϵ) components, and therefore we must use at most Õ(k) different localizations. When all
of the variances of the Gaussians are not too dissimilar, we can do so by leveraging the following
structural result, which states that one can ϵ-approximate the constant function using a sum of evenly
spaced Gaussians with variance 1 and spacing (log 1/ϵ)−1/2 (or smaller). The intuition behind this
observation is that the Fourier transform of a Gaussian is also a Gaussian, which has exponential tail
decay.

Lemma 2.5. Let 0 < ϵ < 0.1 be a parameter. Let c be a real number such that 0 < c ≤ (log 1/ϵ)−1/2.
Define

f(x) =

∞∑
j=−∞

c√
2π

Mcjσ,σ2(x) .

Then 1− ϵ ≤ f(x) ≤ 1 + ϵ for all x.

6



Proof. WLOG σ = 1. Now the function f is c-periodic and even, so we may consider its Fourier
expansion

f(x) = a0 + 2a1 cos

(
2πx

c

)
+ 2a2 cos

(
4πx

c

)
+ . . .

and we will now compute the Fourier coefficients. First note that

a0 =
1

c

∫ c

0

f(x)dx =
1√
2π

∞∑
j=−∞

∫ cj

c(j+1)

M0,1(x)dx = 1 .

Next, for any j ≥ 1,

aj =
1

c

∫ c

0

f(x) cos

(
2πjx

c

)
dx =

1√
2π

∞∑
j=−∞

∫ cj

c(j+1)

M0,1(x) cos

(
2πjx

c

)
dx

=
1√
2π

∫ ∞

−∞

1

2

(
e

−x2

2 + 2πijx
c + e

−x2

2 − 2πijx
c

)
dx = e−

2π2j2

c2

where in the above we use the notation i =
√
−1. Using the assumption that c ≤ (log 1/ϵ)−1/2, it is

clear that
∞∑
j=1

e−
2π2j2

c2 ≤ ϵ

2

so we deduce that for any x,

|f(x)− 1| ≤ 2(|a1|+ |a2|+ · · · ) = 2

∞∑
j=1

e−
2π2j2

c2 ≤ ϵ .

In other words, the function f is between 1− ϵ and 1 + ϵ everywhere and we are done. ■

In light of the above lemma, we can use a set of evenly spaced Gaussian multipliers and simply sum
the different localized mixtures. Note that it suffices to use Õ(k) different localizations because we
only need to sum over the Gaussian multipliers that have some nontrivial overlap with one of the k
true components (since for Gaussian multipliers that are far from all of the components, the localized
mixture will be approximately 0).

To handle the fully general case, when the variances of the Gaussians are unbounded, we need a
generalization of the previous lemma that allows us to ϵ-approximate the indicator function of an
interval with a sum of O(log2 1/ϵ) Gaussians. The proof of this generalization is in Section B.
Definition 2.6 (Significant Interval). For a Gaussian multiplier Mµ,σ2 , we say the C-significant
interval of M is [µ− Cσ, µ+ Cσ]. We will use the same terminology for a Gaussian N(µ, σ2).
Theorem 2.7. Let l be a positive real number and 0 < ϵ < 0.1 be a parameter. There is a function f
with the following properties

1. f can be written a linear combination of Gaussian multipliers

f(x) = w1Mµ1,σ2
1
(x) + · · ·+ wnMµn,σ2

n
(x)

where n = O(log2 1/ϵ) and 0 ≤ w1, . . . , wn ≤ 1

2. The 10
√

log 1/ϵ-significant intervals of all of the Mµi,σ2
i

are contained in the interval
[−(1 + ϵ)l, (1 + ϵ)l]

3. 0 ≤ f(x) ≤ 1 + ϵ for all x

4. 1− ϵ ≤ f(x) ≤ 1 + ϵ for all x in the interval [−l, l]

5. 0 ≤ f(x) ≤ ϵ for x ≥ (1 + ϵ)l and x ≤ −(1 + ϵ)l

We combine this structural result with a dynamic program which allows us to efficiently choose the
scales at which to localize. Putting all of these pieces together yields our full algorithm, assuming we
have access to the pdf of the unknown function. We show how to eliminate the need for pdf access
below and present our full algorithm in complete detail in Section C.
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2.3 Abstracting away the samples

In the previous sections, we have assumed that we have access to the underlying pdf function f .
Typically, however, we only have sample access to the unknown distribution. To rectify this, we
will use the improper learner in [Chan et al., 2013] (see Theorem 37) whose output is a piecewise
polynomial. We can then only work with this piecewise polynomial, which is an explicit function
that we can then perform explicit computations with.
Definition 2.8. A function f is t-piecewise degree d if there is a partition of the real line into intervals
I1, . . . , It and polynomials q1(x), . . . , qt(x) of degree at most d such that for all i ∈ [t], f(x) = qi(x)
on the interval Ii.

The work in [Chan et al., 2013] guarantees to learn a piecewise polynomial f ′ that is close toM in L1

distance when given Õ(k/ϵ2) samples (and they also show that this sample complexity is essentially
optimal).
Theorem 2.9 (Chan et al. [2013]). Let M = w1G1 + · · · + wkGk be an unknown mixture of
Gaussians and f a distribution such that dTV(f,M) ≤ ϵ. There is an algorithm that, given Õ(k/ϵ2)
samples from f , runs in poly(k/ϵ) time and returns an O(k)-piecewise degree O(log 1/ϵ) function
f ′ such that with 0.9 probability (over the random samples),

∥f ′ − f∥1 ≤ O(ϵ) .

For technical reasons, we will need a few simple post-processing steps after using Theorem 2.9. We
can ensure that the output hypothesis f ′ is always nonnegative by splitting each polynomial into
positive and negative parts and zeroing out the negative parts (since this will not increase the L1 error).
Finally, we can re-normalize so that the output f ′ is actually a distribution. This renormalization at
most doubles the L1 error. Thus we have:
Corollary 2.10. Let M = w1G1 + · · · + wkGk be an unknown mixture of Gaussians and f a
distribution such that dTV(f,M) ≤ ϵ. There is an algorithm that, given Õ(k/ϵ2) samples from D,
runs in poly(k/ϵ) time and returns an O(k log 1/ϵ)-piecewise degree O(log 1/ϵ) function f ′ such
that f ′ is a distribution and with 0.9 probability (over the random samples),

dTV(f, f
′) ≤ O(ϵ) .

2.4 Hypothesis testing for model selection

We now show how our result for model order selection, Theorem 1.2, follows immediately from com-
bining Theorem 1.1 with a standard procedure for testing the TV-distance between two distributions
from samples (see Yatracos [1985]).
Claim 2.11. Let D1,D2 be two distributions for which we have explicitly computable density
functions. Let ϵ, τ > 0 be parameters. Assume that we are given O(1/ϵ2 · log 1/τ) samples from D1

and can efficiently sample from D2. Then in poly(1/ϵ log 1/τ) time, we can compute d such that
with probability 1− τ ,

|d− dTV(D1,D2)| ≤ ϵ .

Proof of Theorem 1.2. We can run the algorithm in Theorem 1.1 with parameters k, ϵ to obtain an
output distribution M̃ that is a mixture of Õ(k) Gaussians. We can then use Claim 2.11 with
parameters ϵ, 0.01 to measure the TV-distance between M̃ and D (note that we have explicit access
to the pdf of D) and output 1 or 2 depending on if our estimate of the TV distance is less than Õ(ϵ).
Combining the guarantees of Theorem 1.1 and Claim 2.11 ensures that our output satisfies the desired
properties. ■

2.5 Sparse Fourier

We now briefly describe how our techniques can be used for sparse Fourier reconstruction. Recall
that the problem is to, given query access to a function f on [−1, 1] which is approximately k-Fourier
sparse, approximate it with an Õ(k)-Fourier sparse function. As before, we first abstract away the
query access, by leveraging the following result from Chen et al. [2016]:
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Theorem 2.12 (Theorem 1.1 in Chen et al. [2016]). Let f be a function defined on [−1, 1] and
assume we are given query access to f . LetM be a function that is (k, 1)-simple and has frequencies
in the interval [−F, F ]. Then for any desired accuracy ϵ, in poly(k, log 1/ϵ) logF samples and
poly(k, log 1/ϵ) log2 F time, we can output a function f ′ such that with probability 1− 2−Ω(k),

1. f ′ is (poly(k, log 1/ϵ), exp(poly(k, log 1/ϵ)))- simple

2. ∫ 1

−1

|f ′ − f |2 ≤ O

(
ϵ2 +

∫ 1

−1

|f −M|2
)

.

Remark. While the bound on the coefficients of f ′ is not explicitly stated in Theorem 1.1 in Chen
et al. [2016], it immediately follows from the proof.

Our algorithm for postprocessing this into a Õ(k)-Fourier sparse signal follows roughly the same
steps as in the Gaussian case. First, we show that in a certain “well-conditioned” regime, namely,
when the frequencies are not too dissimilar, there is a signal using O(log 1/ϵ) frequencies which
approximates the function. To handle the general case, we use localizations based on carefully chosen
kernels to reduce every signal to a sum of well-conditioned signals (at least, approximately).

One important distinction between the GMM and sparse Fourier reconstruction setting we highlight
is that in the latter, the goal is usually to have runtimes which scale logarithmically with 1/ϵ, whereas
in the GMM setting, poly(1/ϵ) sample complexity and thus runtime is unavoidable. However, our
naive method of solving the well-conditioned case required constructing a net of poly(1/ϵ) many
Gaussians, and thus required poly(1/ϵ) runtime. To circumvent this difficulty, we demonstrate that
in fact this can be improved, and that by being more careful, and choosing the (much smaller) set
of vertices based on the Chebyshev points, we can in fact improve this runtime significantly. See
Sections D and E for a full treatment of our algorithm.

2.6 Paper organization

The remainder of the paper will be devoted to proving Theorem 1.1, our main result for GMMs
and Theorem 1.3, our main result for sparse Fourier reconstruction. Due to space constraints, the
remaining parts are deferred to the appendix. We first present the proof of our result for GMMs.
In Section A, we deal with the well-conditioned case. In Section B, we present some tools for
localization which we will then use in Section C to prove our full result for GMMs. We then present
the proof of our main result for sparse Fourier reconstruction which follows a very similar outline.
We deal with the well-conditioned case in Section D and then the general case in Section E. Appendix
F contains several basic tools that will be used throughout the paper.
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