
A Proof of Theorem 1

Here, we only focus on the minimization problem, i.e., ˆATD ! ATD. The proof of ˆATD ! ATD
will similarly follow.

Assumptions

Before stating our proof, we list the assumptions needed as follows. These are mainly technical
assumptions that will simplify the derivations.

1. In this proof we assume all random variables are one-dimensional. 4

2. Since the true SCM M is G-constrained (Assumption 1) and linear, we will consider linear
G-constrained SCMs as our parameter search space. More concretely, each random variable
Vi in an SCM M✓

G can be written in the following form:

Vi = ✓>
Vi
pa(Vi) + ✓̂>

Vi
ÛCi (14)

where ✓Vi 2 R|pa(Vi)|, ✓̂Vi 2 R|ÛCi |, and ✓ 2 ⇥ is the concatenation of all ✓Vi , ✓̂Vi in a
topological order of Vis. Note that ✓ 2 R|E|, where E is the set of edges in the causal graph
G, containing edges to both observed and unobserved random variables.

3. We assume the set of feasible parameters ⇥ is a bounded closed subset of R|E|. In practice,
even in non-identifiable cases with infinite bounds, we use regularization to ensure the
parameters of the network are bounded.

4. The induced probability over observed random variables PM✓
G

, which we will write as P✓,
and the true distribution P belong to the Wasserstein space of order p = 1, which we refer to
as P1. In other words,

R
Rd |v0 � v| dP✓(v) < +1 for any arbitrary point v0 2 Rd. Again,

in practice, since the support of all observed random variables is bounded, all probability
distributions defined on them belong to the Wasserstein space.

Before the main proof, we will state and prove the following useful lemmas.
Lemma 1. Let define the set of feasible parameters for n number of samples as ⇥n = {✓ 2
⇥; W1(PM✓

G
, Pn)  ↵n}. Then, PM✓n

G
! P weakly for every sequence of ✓n 2 ⇥n.

Proof. First, note that the empirical distribution Pn weakly converges to P as n ! 1. Since W1

metrizes P1, we have W1(Pn, P )! 0 [Villani, 2009]. Hence, we can choose the sequence of ↵n for
the distributional constraint, such that W1(P, Pn)  ↵n and ↵n ! 0 as n!1. For any parameter
✓n 2 ⇥n, we have W1(PM✓n

G
, Pn)  ↵n}. Therefore, W1(PM✓n

G
, Pn) ! 0. Using the triangle

inequality, we have

W1(PM✓n
G
, P ) W1(PM✓n

G
, Pn) +W1(P

n, P ) (15)

Therefore, W1(PM✓n
G
, P )! 0 or equivalently, PM✓n

G
! P weakly.

Lemma 2. For any linear G-constrained SCM M✓
G , we have

V✓ = A(✓)Û (16)

where each element in the matrix A(✓) 2 Rd⇥|dim(Û)| is a continuous function of ✓.

Proof. Consider a topological order of observed variables (V1, · · · , Vd). We prove the result by
induction. For V1, from eq. 14, we have

V1 = 0 + ✓̂>
V1
ÛC1 = �>

V1
Û (17)

4For high-dimensional variables, if the node-level causal graph is given, i.e., the relation between each
dimension of variables, we can convert each multi-dimensional variable to multiple one-dimensional ones and
follow the same proof. If the node-level causal graph is unknown and there is no inter-dependence between
each dimension, one can follow the same proof technique by assuming Vi as a vector in eq. 14. We leave these
extensions as future work.
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where the elements of �V1 matches ✓̂V1 for ÛC1 and equal to zero for Û\ÛC1 . Now, assume all
variables V1, · · · , Vd�1 can be written as �>

Vi
Û, where �Vi is a continuous function of ✓. Then, from

eq. 14,

Vd = ✓>
Vd
pa(Vd) + ✓̂>

Vd
ÛCd = ✓>

Vd
(�>

pa1(Vd)Û, · · · ,�>
par(Vd)Û)> + ✓̂>

Vd
ÛCd = �>

Vd
Û (18)

where �Vd is a linear function of ✓Vd ,�V1 , · · · ,�Vd�1 , and ✓̂Vd . Defining matrix A(✓) with rows
�Vi concludes the proof.

Now, we are ready to prove the main result.
Theorem 2 (Tight Bounds). Assume the dataset {v(1), · · · ,v(n)} is generated from a linear SCM.
Then, under assumptions 1, and 2, the solution to the constrained optimization problem in eq. 7
converges to the optimal bound over the ATD in infinite samples, i.e., ( ˆATD, ˆATD)! (ATD,ATD).

Proof. The goal is to show the solution to

min
✓2⇥

ATDM✓
G

s.t. W1

⇣
PM✓

G
, Pn

⌘
 ↵n (19)

converges to the solution to
min
✓2⇥

ATDM✓
G
, s.t. PM✓

G
= P (20)

as n ! 1. We first aim to re-write the value of ATD. Note that, in a linear G-constrained

SCM, the partial derivative
@YM✓

G(T=t)
(u)

@t is only a function of SCM parameters ✓. Let define

g(✓) =
@YM✓

G(T=t)
(u)

@t . Then,

ATDM✓
G
=

Z

⌦

@YM✓
G(T=t)(u)

@t

���
t=T (u)

dPÛ(u) =

Z

⌦
g(✓) dPÛ(u) = g(✓) (21)

Therefore, we need to show the following to conclude the proof:

min
✓n2⇥n

g(✓n)! min
✓12⇥1

g(✓1) (22)

where

⇥n = {✓ 2 ⇥; W1(P✓, P
n)  ↵n}

⇥1 = {✓ 2 ⇥; P✓ = P} = {✓ 2 ⇥; W1(P✓, P ) = 0} (23)

Since ⇥1 ✓ ⇥n for each n 2 N, we know that

min
✓n2⇥n

g(✓n)  min
✓12⇥1

g(✓1) (24)

It is sufficient to show that, for each ✏ > 0, there is n0 such that for all n > n0 we have

min
✓n2⇥n

g(✓n) � min
✓12⇥1

g(✓1)� ✏ (25)

Suppose this is not true, i.e., there exists ✏ > 0 such that for each n 2 N we have

min
✓n2⇥n

g(✓n) < g(✓1)� ✏ (26)

for all ✓1 2 ⇥1. Let ✓n
? = argmin✓2⇥n g(✓). The sequence (✓n

? )n2N is a subset of ⇥ and therefore
is a bounded sequence in R|E|. Thus, by Bolzano-Weierstrass theorem, there exists a convergent
sub-sequence (✓ni

? )i2N that converges to some fixed parameter ✓0. Also, ✓0 2 ⇥ as ⇥ is closed. Now,
since g is continuous, we have

g(✓0) = lim
i!1

g(✓ni
? )  g(✓1)� ✏ (27)

for all ✓1 2 ⇥1. Hence, ✓0 62 ⇥1.

On the other hand, using Lemma 2, we have V✓
ni
?

= A(✓ni
? )Û. Since A(✓ni

? ) is a continuous
function of ✓ni

? , from the continuous mapping theorem, we have P✓
ni
?
! P✓0 weakly. Also, from

Lemma 1, we have P✓
ni
?
! P . Therefore, P = P✓0 . Since ✓0 2 ⇥, we conclude that ✓0 2 ⇥1, a

contradiction.
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Remark. In this proof, we did not separate identifiable and non-identifiable cases. In fact, the notion
of identifiability can be seen as a property of the set of feasible parameters ⇥n and ⇥1. For example,
in identifiable cases, we expect the set ⇥1 to only contain one element while in non-identifiable
cases, it consists of multiple possible solutions. Our proof holds as long as ⇥n and ⇥1 are bounded
subsets of R|E|.

B Proof of Corollary 1

Similar to the proof of Theorem 1, define the set of feasible parameters as ⇥n = {✓ 2
⇥ W1(PM✓

G
, Pn)  ↵n}. Then,

ATEM✓
G
(d) = Eu⇠PÛ

h
YM✓

G(T=d)(u)� YM✓
G(T=t0)(u)

i

= Eu⇠PÛ

"Z d

t0

@YM✓
G(T=t)

@t
dt

#

= (d� t0) · Eu⇠PÛ

"Z d

t0

@YM✓
G(T=t)

@t

1

d� t0
dt

#

= (d� t0) · Eu⇠PÛ

"
Et⇠Unif[t0,d]

"
@YM✓

G(T=t)

@t

##

= (d� t0) · UATDM✓
G
[t0, d] (28)

Therefore,
✓⇤ = arg min

✓2⇥n
UATDM✓

G
[t0, d] = arg min

✓2⇥n
(d� t0) · UATDM✓

G
[t0, d] = arg min

✓2⇥n
ATEM✓

G
(d)

(29)

For the second part, similar to the proof of Theorem 1, we have
@YM✓

G(T=t)

@t = g(✓) for some
continuous function g. Then,

ATEM✓
G
(d)

eq. 28
= (d� t0) · Eu⇠PÛ

"
Et⇠Unif[t0,d]

"
@YM✓

G(T=t)

@t

##
= (d� t0) · g(✓) (30)

The rest of the proof can be directly derived from the proof of Theorem 1.

C ATE and ATD

Here, we provide more intuition on the difference between ATE and ATD. Consider a simple setting
with only two random variables T and Y , where the causal graph is T ! Y . Here, the average
treatment effect is identifiable and can be computed (with infinite samples) using the following
formula:

ATEM(d) = EP [Y |T = d]� EP [Y |T = t0] (31)

Now, assume we have a finite dataset D = {(t(1), y(1)), · · · , (t(n), y(n))}, where t(i) 6= t0 and
t(i) 6= d for all i 2 [n]. One way to find a (high probability) upper bound on the value of ATE is to
solve the following direct optimization:

max
✓

ATEM✓
G
(d) s.t. W1(PM✓

G
, Pn)  ↵n (32)

With no assumption on the regularity of the response functions YM✓
G(T=t), it is possible to find a

solution to eq. 32 that matches all points in D, i.e., W1(PM✓
G
, Pn) = 0, while getting arbitrarily

values of ATEM✓
G
(d). See Figure 5 for a demonstration. This shows that ATE, in the continuous

treatment setting with finite number of samples, is not well-behaved and it is generally impossible to
find informative non-parametric bounds on that (see also Gunsilius [2020]). On the other hand, ATD,
which is the average partial derivative of response function w.r.t. the observed treatment distribution
is defined globally over the support of T . Therefore, it is not possible to maximize ATD arbitrarily
without violating the distributional constraint in this setting.
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Figure 5: (a) Irregularity of the ATE objective. In finite sample setting, it is possible to find a model
that matches the empirical distribution, while creating arbitrarily large values of ATE between T = 2
and T = �2.

D Algorithm

Algorithm 1 Partial Identification of Average Treatment Derivatives
Input: Dataset D = {X(i), T (i), Y (i)}N

i=1, causal graph G, Sinkhorn approximation parameter ✏,
learning rate �, Lagrange learning rate �L

Output: ˆATD: lower bounds on ATD . The algorithm to find ˆATD is similar

Phase 1: Matching Distributions
1: Initialize M✓(0)

G and i = 0

2: while S✏(D̂,D) not converged do . Train the model to approximate the observed distribution.
3: D̂  {X̂(j), T̂ (j), Ŷ (j)}N

j=1 ⇠M✓(i)

G . Generate dataset from the trained SCM
4: ✓(i+1)  ✓(i) � �r✓S✏(D̂,D)
5: i i+ 1
6: end while

7: ↵ S✏(D̂,D) . Set the distributional constraint level to the minimum Sinkhorn loss
Phase 2: Joint Optimization Phase
8: Initialize Lagrange multiplier �(0) and j = 0
9: while ATDM✓(i+j)

G
not converged do

10: ATDM✓(i+j)
G

 calculate ATD using eq. 13
11: # Alternate optimization
12: ✓̄(i+j)  ✓(i+j) � �r✓ATDM✓(i+j)

G
. Update the parameters to minimize the ATD

13: D̂  {X̂(k), T̂ (k), Ŷ (k)}N
k=1 ⇠M✓̄(i+j)

G
14: ✓(i+j+1)  ✓̄(i+j) � �r✓S✏(D̂,D) . Update the parameters to minimize the Sinkhorn loss
15: # Lagrange multiplier update
16: �(j+1)  �(j) + �L(S✏(D̂,D)� ↵)
17: j  j + 1
18: end while

19: return ATDM✓(i+j)
G

Extension of Algorithm 1 to ATEs. We can use a similar method to Algorithm 1 for partial
identification of average treatment effects (ATEs). The only difference is that, instead of maximiz-
ing/minimizing ATDM✓

G
, we optimize for the value of UATDM✓

G
[t0, d]. More concretely, we use the

following approximation to estimate UATDM✓
G
[t0, d]:

UATDM✓
G
[t0, d] ⇡

1

n

nX

i=1

1

✏

h
YM✓

G(T=t(i)+✏)(u
(i))� YM✓

G(T=t(i))(u
(i))

i
(33)
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Table 1: The bounds derived by our method over the ATE. The results include the optimal bound.

Causal Graph Ours Optimal Bound True Value

Front-door (Discrete) (0.4374, 0.5322) – 0.5085
IV (Discrete) (-0.5629, -0.0821) (-0.55, -0.15) -0.25

where {t(i)}n
i=1 are samples from a uniform distribution within [t0, d] with a Gaussian tail, and

{u(i)}n
i=1 are the latent variables generated from a uniform distribution. Note that, the only difference

between eq. 33 and eq. 13 is the distribution of treatment variables, where in the former we use a
uniform distribution with Gaussian tail, while the latter uses the same distribution of treatments in the
observed dataset. In our experiments, for the uniform distribution with Gaussian tail, we generate
samples from N (µ,�), where µ = t0+d

2 and � = d�t0
2 . Then, for each sample within [t0, d], we

generate a new sample from uniform distribution Unif[t0, d].

E Additional Experiments

E.1 Discrete Setting

To showcase the generality of our framework, we study two datasets with binary treatments. We
consider the binary IV dataset described in Duarte et al. [2021], where the true value of ATE is not
identifiable, but the optimal bound is known. We also use the Front-door binary dataset in Zhang et al.
[2021] where the causal effect is identifiable (See Appendix G). Here, the partial derivatives do not
exist, so we directly optimize the ATE. Note that, in the discrete setting, the network cannot generate
arbitrary large values in the intervention points without violating the distributional constraint. Table 1
shows our derived bounds and compares them to the optimal bounds. In the identifiable Front-door
causal graph, we find a tight bound over the true ATE. In the non-identifiable IV setting, our bound
includes the optimal bound with a small gap.

E.2 ACIC Dataset

To demonstrate the applicability of our method on datasets with higher-dimensional covariates, we
consider the Atlantic Causal Inference Conference (ACIC) 2019 Data Challenge [Gruber et al., 2019].
The dataset is constructed based on the spam detection data from UCI [Dua and Graff, 2017]. The
outcome of interest Y is whether an email is marked as spam or not. The treatment variable T is also
a binary variable showing if the number of capital letters in an email exceeds a threshold. There are
22 continuous covariates that correspond to certain word frequencies.

We follow a similar setup as in Guo et al. [2022]. In particular, we consider the problem of partial
identification under noisy measurements. Here, the data-generating causal graph is the Back-door
setting, and the causal effect of T on Y is identifiable. However, we assume measurement error on
the covariates by imposing synthetic noise on them and aim to estimate bounds on ATE under this
uncertainty. Since our algorithm can incorporate uncertainty through the distributional constraint, it
will lead to a valid and informative bound by choosing an appropriate value for ↵n.

We generate a dataset of 2,000 samples using ACIC’s data-generating process. Similar to Guo
et al. [2022], we synthetically add five different levels of Gaussian noise with mean 2
(0.1, 0.2, 0.3, 0.4, 0.5) and standard deviation 2 (0.5, 0.5, 1, 1, 1). We then run our algorithm on
these five noisy datasets and the original noiseless one, 10 different trials for each. Figure 6 illustrates
our derived bounds and the true ATE for each of the noise levels. The results always include the
actual value of ATE, while not being too conservative. As the noise level increases, our derived
bounds get naturally less informative. 5

F Implementation Choices

We use similar neural network architectures for each variable in the causal graph. For hyper-parameter
tuning, we search over networks with {2, 3, 5} hidden layers, {16, 64, 256} neurons in each layer,

5We heuristically choose the value of hyper-parameter ↵n by multiplying the minimum Sinkhorn divergence
by factors of (1.2, 1.3, 1.5, 1.6, 1.7) for the noise levels, respectively.
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Figure 6: Partial identification of ATE in the ACIC dataset under noisy measurements. Level
0 corresponds to the original data, and 1 to 5 represents the noise levels, from lower to higher
measurement error. The result bounds always include the true ATE while not being highly conservative
(returning the full support [�1, 1]). We take the average over 10 runs with different random seed for
each noise level.

learning rate within {0.001, 0.005, 0.01}, and Lagrange multiplier learning rate {0.5, 1}. The hyper-
parameters with the lowest Sinkhorn loss are chosen for each causal graph. We run all experiments
for 500 epochs and use all samples (N = 5000) in each iteration. To find the level of distribution
constraint ↵n, we minimize the Sinkhorn loss and check the loss value on a validation set until it
does not decrease for 30 epochs. We then choose the minimum value of Sinkhorn loss on the training
data as ↵n. We use an alternate optimization approach to maximize/minimize the ADE (or ATE).
In each step, we first minimize the Sinkhorn loss and then maximize/minimize the value of ADE.
We use gradient clipping for the ADE optimizer with the value of 0.2. The learning rate of the ADE
optimizer is half the learning rate for the Sinkhorn loss optimizer. To find the upper (lower) bounds
on ATD/ATE, we find their maximum (minimum) value within all steps that satisfy the distributional
constraint. All implementation is done in PyTorch Lightning using Adam optimizer. To evaluate and
calculate gradients of Sinkhorn loss, we use the "geomloss" library [Feydy et al., 2019]. 6

G Data Generating Processes

Linear Back-door.

X ⇠ N (2, 1)

T ⇠ 0.1X2 �X +N (1, 2)

Y ⇠ 0.5T 2 � TX +N (0, 2) (34)

Nonlinear Back-door.

X1, X2, X3 ⇠ N (1, 1)

T ⇠ X1 �X2 + 2X3 + 2 +N (0, 3)

Y ⇠ 3X1 +X2 � 0.5X3 + 3T +N (0, 2) (35)

Front-door.

U ⇠ N (�1, 1)
T ⇠ U +N (2, 2)

X ⇠ 2T +N (1, 2)

Y ⇠ 0.25X2 �X + U +N (0, 2) (36)

Linear IV (weak instrument, strong confounding).

Z1 ⇠ N (�1, 1)
Z2 ⇠ N (0, 1)

U ⇠ N (0, 1)

T ⇠ Z1 � Z2 + 0.5U +N (0, 1)

Y ⇠ 0.5T � 3U +N (0, 1) (37)
6https://www.kernel-operations.io/geomloss/
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Nonlinear IV (strong instrument, weak confounding).

Z1 ⇠ N (�1, 1)
Z2 ⇠ N (0, 1)

U ⇠ N (0, 1)

T ⇠ 3Z1 + 1.5Z2 + 0.5U +N (0, 1)

Y ⇠ 0.3T 2 � 1.5T + U +N (0, 1) (38)

Leaky Mediation.

U1 ⇠ N (1, 1)

U2 ⇠ N (�1, 1)
C ⇠ N (0, 1)

T ⇠ C +N (0, 1)

X1 ⇠ T + U1 +N (0, 1)

X2 ⇠ 2T + U2 +N (0, 1)

Y ⇠ �1.5X1 + 2X2 + U1 + U2 + C +N (0, 1) (39)

Binary IV [Duarte et al., 2021]. We use the noncompliance IV dataset in Section D.1 from Duarte
et al. [2021]. The true value of ATE is �0.25 while the optimal bound is [�0.55,�0.15].
Binary Front-door [Zhang et al., 2021].

U1 ⇠ Unif(0, 1)
U2 ⇠ N (0, 1)

T ⇠ Binomial(1, U1)

W ⇠ Binomial(1,
1

1 + exp(�T � U2)
)

Y ⇠ Binomial(1,
1

1 + exp(W � U1)
) (40)

Linear IV with strong confounding [Padh et al., 2022].

Z ⇠ N (0, 1)

U ⇠ N (0, 1)

T ⇠ 0.5Z + 3U +N (0, 1)

Y ⇠ T � 6U +N (0, 1) (41)

Nonlinear IV with nonlinear interaction between treatment and confounding [Padh et al., 2022].

Z ⇠ N (0, 1)

U ⇠ N (0, 1)

T ⇠ 3Z + 0.5U +N (0, 1)

Y ⇠ 0.3T 2 � 1.5TU +N (0, 1) (42)
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