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A Limitations of Our Work

We would like to highlight that our theoretical results are based on Daneshmand et al. [6] which
verified CNC condition for small scale neural networks, verifying the CNC condition for large
networks and exactly characterizing the saddle point solutions obtained by SAM for minority classes,
are good directions for future work.

Also empirically, we propose to use Sharpness-Aware Minimization with high ρ for tail classes to
escape from saddle points. Although the general guideline is to use a higher ρ value like 0.5 or 0.8 to
achieve the best result, we do find that ρ as a hyperparameter still requires tuning to obtain the best
results. We believe making SAM hyper-parameter free is an interesting direction to pursue in the
future.
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B Proof of Theorem

In this section, we re-state Theorem 2 and provide it’s proof. The theorem analyzes the variance
of stochastic gradient for SAM along the direction of negative curvature and shows that SAM
amplifies the variance by a factor, which signals that it has a stronger component in direction of
negative curvature under certain conditions. Hence, SAM can be used for effectively escaping saddle
points in the loss landscape. This is based on Correlated Negative Curvature (CNC) Assumption
for stochastic gradients (Assumption 1). The vw,∇f(w) ∈ Rp×1 whereas the Hessian denoted by
H(f(w)) (also∇2f(w)) ∈ Rp×p where p is the number of parameters in the model.
THEOREM 1. Let vw be the minimum eigenvector corresponding to the minimum eigenvalue λmin

of the Hessian matrix∇2f(w). The∇f SAM
z (w) satisfies that it’s second moment of projection in vw

is atleast (1 + ρλmin)
2 times the original (component of∇fz(w)):

∃ γ ≥ 0 s.t. ∀w : E[< vw,∇f SAM
z (w) >2] ≥ (1 + ρλmin)

2γ (1)

Proof. Using the first-order approximation of a vector valued function through Taylor series:

f(w + ϵ) = f(w) + J(∇f(w))ϵ (2)

here J is the jacobian operator. After considering ρ to be small we have the following approximation
for the SAM gradient:

∇fSAM(w) = ∇f(w + ρ∇f(w)) (3)
= ∇f(w) + ρH(f(w))∇f(w) (4)

Here, we have used the following property that J(∇f(w)) is the Hessian matrix H(f(w)) (also
written as ∇2f(w)). Also, as we now want to work with stochastic gradients, we replace gradient
∇f(w) with it’s stochastic version ∇fz(w) and introduce an expectation expression. Now, we
analyze the second-moment of the SAM gradient along the direction of most negative curvature vw:

E[< vw,∇fSAM
z (w) >2] = E[< vw,∇fz(w) + ρH(f(w))∇fz(w)) >2]

= E[(< vw,∇fz(w) > +ρ < vw, H(f(w))∇fz(w) >)2]

= E[(< vw,∇fz(w) > +ρvw
TH(f(w))∇fz(w))2]

Here, we use the matrix notation for dot product < x, y >= xT y. Using the property of the eigen
vector: vT

wH(f(w)) = λminv
T
w, we substitute the value below:

E[< vw,∇fSAM
z (w) >2] = E[(< vw,∇fz(w) > +ρλminv

T
w∇fz(w) >)2]

= E[(< vw,∇fz(w) > +ρλmin < vw,∇fz(w) >)2]

= E[((1 + ρλmin) < vw,∇fz(w) >)2]

= (1 + ρλmin)
2E[< vw,∇fz(w) >2]

≥ (1 + ρλmin)
2γ

The last step follows from the CNC Assumption 1. This completes the proof.

C Experimental Details

Imbalanced CIFAR-10 and CIFAR-100: For the long-tailed imbalance (CIFAR-10 LT and CIFAR-
100 LT), the sample size across classes decays exponentially with β = 100. CIFAR-10 LT holds 5000
samples in the most frequent class and 50 in the least, whereas CIFAR-100 LT decays from 500
samples in the most frequent class to 5 in the least. The classes are divided into three subcategories:
Head (Many), Mid (Medium), and Tail (Few). For CIFAR-10 LT, the first 3 classes (> 1500 images
each) fall into the head classes, following 4 classes (> 250 images each) into the mid classes, and the
final 3 classes (< 250 images each) into the tail classes. Whereas for CIFAR-100 LT, head classes
consist of the initial 36 classes, mid classes contain the following 35 classes, and the tail classes
consist of the remaining 29 classes.
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Table 1: ρ value for used for reporting the results with SAM.
CIFAR-10 CIFAR-100

LT (β = 100) Step (β = 100) LT (β = 100) Step (β = 100)

CE + SAM 0.1 0.1 0.2 0.5

CE + DRW + SAM 0.5 0.2 0.8 0.2

LDAM + DRW + SAM 0.8 0.1 0.8 0.5

VS + SAM 0.5 0.2 0.8 0.2

In the step imbalance setting, both CIFAR-10 and CIFAR-100 are split into two classes, i.e., Head
(Frequent) and Tail (Minority), with β = 100. The first 5 (Head) classes of CIFAR-10 contain 5000
samples each, along with 50 samples each in the remaining 5 (Tail) classes. On the other hand, the
top first 50 (Head) classes of CIFAR-100 contain 500 samples each, and the remaining 50 (Tail)
classes consist of 5 samples each.

All the experiments on imbalanced CIFAR-10 and CIFAR-100 are run with ResNet-32 backbone and
SGD with momentum 0.9 as the base optimizer. All the methods train on imbalanced CIFAR-10 and
CIFAR-100 with a batch size of 128 for 200 epochs, except for VS Loss, which runs for 300 epochs.
We follow the learning rate schedule mentioned in Cao et al. [3]. In the initial 5 epochs, we linearly
increase the learning rate to reach 0.1. Following that, a multi-step learning rate schedule decays the
learning rate by scaling it with 0.001 and 0.0001 at 160th and 180th epoch, respectively. For LDAM
runs on imbalanced CIFAR, the value of C is tuned so that ∆j is normalised to set maximum margin
of 0.5 (refer to Equation. 1 in main text). In the case of VS Loss, we use γ as 0.05 and τ as 0.75 for
imbalanced CIFAR-10 and CIFAR-100 datasets (refer to Equation. 3 in main text).

ImageNet-LT and iNaturalist 2018: The classes in ImageNet-LT and iNaturalist 2018 datasets
are also divided into three subcategories, i.e., Head (Many), Mid (Medium), and Tail (Few). For
ImageNet-LT, the head classes consist of the first 390 classes, mid classes contain the subsequent 445
classes, and the tail classes hold the remaining 165 classes. Whereas for iNaturalist 2018, first 842
classes fall into the head classes, subsequent 3701 classes into the mid classes, and the remaining
3599 into the tail classes.

For ImageNet-LT and iNaturalist 2018, all the models are trained for 90 epochs with a batch size
of 256. We use ResNet-50 architecture as the backbone and SGD with momentum 0.9 as the base
optimizer. A cosine learning rate schedule is deployed with an initial learning rate of 0.1 and 0.2 for
iNaturalist 2018 and ImageNet-LT, respectively. For LDAM runs on ImageNet-LT and iNaturalist
2018, the value of C is tuned so that ∆j is normalised to set maximum margin of 0.3 (refer to
Equation. 1 in main text).

Optimum ρ value: Table 1 compiles the ρ value used by SAM across various methods on imbalanced
CIFAR-10 and CIFAR-100 datasets. The ρ value in these runs is kept constant throughout the
duration of training. We adopt a common step ρ schedule for the SAM runs on both ImageNet-LT
and iNaturalist 2018. We initialise the ρ with 0.05 for the initial 5 epochs and change it to 0.1 till the
60th epoch. Following that, we increase the ρ value to 0.5 for the final 30 epochs.

How to select ρ ? ρ is an hyperparameter in the SAM algorithm and it is important to choose the
right value of ρ for best performance on long-tailed learning. We observe that default value of ρ
(0.05) as suggested in Foret et al. [7] does not lead to significant gain in accuracy (Refer Fig. 4 in
main paper), as it is not able to escape the region of negative curvature. On long-tail CIFAR-10 and
CIFAR-100 setting with re-weighting (DRW), a large value of ρ (0.5 or 0.8) seems to work best
instead, as in this work our objective to escape saddle points instead of improving generalization. This
can be intuitively understood as large regularization (ρ) is required for highly imbalanced datasets
to escape saddle points as suggested by Theorem 2. In Table 1, we have reported the ρ value used
in every experiment. For the large scale datasets like ImageNet-LT and iNaturalist 18, we found
that progressively increasing the ρ value gives the best results. This is based on the idea that, as
the training progresses, more flatter regions can be recovered from the loss landscape [2]. In our
experiments on ImageNet-LT, we use a large ρ of 0.5 in the last 30 epochs of training and we observe
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Table 2: Results on ImageNet-LT (ResNet-50) with LDAM+DRW and comparison with other
methods. The numbers for methods marked with † are taken from [24].

Two stage Acc Head Mid Tail

CE 42.7 62.5 36.6 12.5

cRT [13] † 50.3 62.5 47.4 29.5
LWS [13] † 51.2 61.8 48.6 33.5
MisLAS [24] 52.7 61.7 51.3 35.8
DisAlign [23] 52.9 61.3 52.2 31.4
DRO-LT* [19] 53.5 64.0 49.8 33.1

LDAM + DRW 49.9 61.1 48.2 28.3
LDAM + DRW + SAM 53.1 62.0 52.1 34.8
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Figure 1: Eigen Spectral Density of Head (Class 0) and Tail (Class 7 and Class 9) with standard CE
(without re-weighting). Since CE minimizes the average loss, it can be seen that the loss on the tail
class samples (B and C) is quite high. On the head class (A), the loss is low and λmin is close to 0.

that the tail accuracy significantly increases at this stage of training. For using the proposed method
on a new imbalanced dataset, we suggest starting with ρ = 0.05 and increasing ρ till the overall
accuracy starts to decrease.

LPF-SGD and PGD: We use the official implementation of LPF-SGD [2] 2 to report the results
on CIFAR-10 LT and CIFAR-100 LT. For LPF-SGD, we use Monte Carlo iterations (M ) = 8 and
a constant filter radius (γ) of 0.001 (as defined in Algorithm 4.1 in Bisla et al. [2]). We implement
the stochastic PGD method [11, 12] on our own since there is no official PyTorch implementation
available. We sample the perturbation (noise) from a Gaussian distribution with zero mean and (σ)
standard deviation. We use a σ of 0.0001 for CIFAR-10 and CIFAR-100 LT experiments.

Hessian Experiments: For calculating the Eigen Spectral Density, we use the PyHessian library
[22]. PyHessian uses Lanczos algorithm for fast and efficient computation of the complete Hessian
eigenvalue density. The Hessian is calculated on the average loss of the training samples as done
in [8, 22]. λmin and λmax are extracted from the complete Hessian eigenvalue density. It has been
shown that the estimated spectral density calculated with the Lanczos algorithm can be used as an
approximate to the exact spectral density [8]. Several works [7, 8, 9, 22] have used the same method
to calculate spectral density and analyze the loss landscape of neural networks.

All of our implementations are based on PyTorch [18]. For experiments pertaining to imbalanced
CIFAR, we use NVIDIA GeForce RTX 2080 Ti, whereas for the large scale ImageNet-LT and
iNaturalist 2018, we use NVIDIA A100 GPUs. We log all our experiments with Wandb [1].

D Additional Eigen Spectral Density Plots

We find that the spectral density of a class is representative of the other classes in same category
(Head, Mid or Tail), hence for brevity we only display the eigen spectrum of one class per category
for analysis.

2https://github.com/devansh20la/LPF-SGD
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Figure 2: Eigen Spectral Density of the Head (Class 2), Mid (Class 5) and Tail classes (Class 7) with
CE+DRW and CE+DRW+SAM.

CE: The spectral density on the standard CE loss (without re-weighting) can be seen in Fig. 1. We
notice that the density and magnitude of negative eigenvalues is much larger for the tail class (Class
7 and Class 9 in Fig. 1B and 1C) compared to the head classes (Fig. 1A). On the other hand, the
spectral density of the head class (Class 0) is very different from that of the tail class, with λmin of
the head class very close to 0 indicating convergence to minima.

It must be noted that without re-weighting, the loss on the tail class samples is high because CE
minimizes the average loss. Hence, the solution may not converge for tail class loss. However,
in CE+DRW after re-weighting, we observe that the loss on tail class samples is very low, which
indicates convergence to a stationary point. Thus, in CE+DRW, we can evidently conclude that the
presence of large negative curvature indicates convergence to a saddle point. In summary, we find
that just using CE converges to a point with significant negative curvature in tail class loss landscape.
Further, though DRW is able to decrease the loss on tail classes, it still does converge to a point with
significant negative curvature. This indicates that it converges to a saddle point instead of a minima.
Hence, both CE and CE+DRW do not converge to local minima in tail class loss landscape.

CE+DRW: We show additional class wise Eigen Spectral Density plots with CE+DRW and CE+DRW
with SAM in Fig. 2. We analyze the spectral density plots on Head (Class 2), Mid (Class 5) and Tail
(Class 7). It can be seen that the magnitude of λmax and λmin is much lower with SAM in all the
classes (Fig. 2 D, E, F). This indicates that SAM reaches a flatter local minima with no significant
presence of negative eigenvalues, escaping saddle points.

LDAM: We also show Spectral density plots of Class 0 (Fig. 3 A, C) and Class 9 (Fig. 3 B, D) with
LDAM+DRW method (SGD and SAM) in Fig. 3. The existence of negative eigenvalues in the tail
class spectral density (Fig. 3B) indicates that even for LDAM loss (a regularized margin based loss),
the solutions do converge to a saddle point. This also indicates that observations with CE+DRW hold
good for long-tailed learning methods like LDAM which use margins instead of re-weighting directly.
Hence, this gives evidence of the reason why SAM can be combined easily with LDAM, VS Loss etc.
to effectively improve performance.

The spectral density of the tail class of LDAM with SAM (Fig. 3D) contains fewer negative
eigenvalues compared to SGD (Fig. 3B). This indicates convergence to local minima and clearly
explains why SAM improves the performance of LDAM by 12.7%.

E Additional Results

For further establishing the generality of our method, we choose two recent orthogonal method
Influence-Balanced Loss [17] (IB-Loss) and Parametric Contrastive Learning (PaCo) [5] and apply
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Figure 3: Eigen Spectral Density of the Head (Class 0) and Tail (Class 9) class trained with LDAM.
Even with LDAM, we observe existence of negative eigenvalues in the loss landscape for the tail
class, which reduce in magnitude when LDAM is used with SAM.

proposed high ρ SAM over them. We use the open-source implementations of IB-Loss 3 and PaCo
4 to reproduce the results and add our proposed method (high ρ SAM) to that setup to obtain the
results reported in the table below. We show results on CIFAR-100 LT with an imbalance factor
(β) of 100 and 200. We observe that SAM with high ρ significantly improves overall performance
along with the performance on tail classes with both IB-Loss and PaCo method (Table 5). Despite
PaCo baseline achieving close to state-of-the-art performance, the addition of high ρ SAM is able
to further improve the accuracy. This indicates the generality and applicability of proposed method
across various long-tailed learning algorithms.

We show additional results on the large scale ImageNet-LT (Table 2) and iNaturalist 2018 (Table 3
in main text) dataset with LDAM-DRW. We also compare with recent long-tail learning methods:
cRT [13], MisLAS [24], DisAlign [23] and DRO-LT [19]. On ImageNet-LT, LDAM+DRW with
SAM leads to a 3.2% gain in overall accuracy with 6.5% increase in tail class accuracy. It can
be seen that LDAM+DRW+SAM outperforms most other methods, including MisLAS which uses
mixup. Also, it is important to note that MisLAS is trained for 180 epochs unlike LDAM+DRW
which is trained only for 90 epochs. We observe that LDAM+DRW+SAM surpasses the performance
of two-stage training methods including MisLAS, cRT, LWS, and DisAlign. Compared to these
two-stage methods, our method is a single stage method and outperforms these two-stage methods.
We want to add that we were not able to reproduce the numbers reported in DRO-LT* [19] when we
were trying to incorporate SAM with DRO-LT.

With LDAM+DRW, the addition of SAM results in an increase in Head, Mid and Tail categories on
iNaturalist 2018 (Table 3 in main paper). Specifically, LDAM+DRW+SAM outperforms all other
methods in the tail class accuracy.

This further emphasizes that our analysis is applicable to large scale imbalanced datasets like
ImageNet-LT and iNaturalist 2018. We also want to highlight that our analysis shows that high ρ
SAM with re-weighting can be used as a strong baseline in long tailed visual recognition problem.

3https://github.com/pseulki/IB-Loss
4https://github.com/dvlab-research/Parametric-Contrastive-Learning
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Table 3: Results on CIFAR-10 LT with different Imbalance Factor (β).
β = 10 β = 50

Acc Head Mid Tail Acc Head Mid Tail

CE + DRW [3] 88.3 93.6 85.3 86.9 79.9 92.2 76.5 72.0
CE + DRW + SAM 89.7 93.4 86.1 90.8 83.8 91.3 80.5 80.8

LDAM + DRW [3] 87.8 91.9 85.0 87.5 82.0 90.9 78.7 77.5
LDAM + DRW + SAM 89.4 93.4 86.2 89.8 84.8 92.8 82.1 80.4

β = 100 β = 200

Acc Head Mid Tail Acc Head Mid Tail

CE + DRW [3] 75.5 91.6 74.1 61.4 69.9 91.1 70.0 48.4
CE + DRW + SAM 80.6 91.4 78.0 73.1 76.6 91.5 74.9 64.0

LDAM + DRW [3] 77.5 91.1 75.7 66.4 72.5 90.2 72.3 54.9
LDAM + DRW + SAM 81.9 91.0 79.2 76.4 78.1 91.2 75.6 68.4

Table 4: Results on CIFAR-100 LT with different Imbalance Factor (β).
β = 10 β = 50

Acc Head Mid Tail Acc Head Mid Tail

CE + DRW [3] 58.1 65.6 58.5 48.2 46.5 63.3 47.5 24.4
CE + DRW + SAM 60.7 66.0 60.5 54.4 50.0 61.9 50.9 33.7

LDAM + DRW [3] 57.8 67.5 58.9 44.5 47.1 62.9 48.2 26.1
LDAM + DRW + SAM 60.1 70.2 61.3 46.1 49.4 66.1 50.2 27.8

β = 100 β = 200

Acc Head Mid Tail Acc Head Mid Tail

CE + DRW [3] 41.0 61.3 41.7 14.7 36.9 59.7 36.1 9.6
CE + DRW + SAM 44.6 61.2 47.5 20.7 41.7 63.4 43.0 13.1

LDAM + DRW [3] 42.7 61.8 42.2 19.4 38.3 58.8 36.3 15.1
LDAM + DRW + SAM 45.4 64.4 46.2 20.8 42.0 63.0 41.4 16.6

We also find that SAM is highly compatible with different loss-based methods (like LDAM, VS) for
tackling imbalance and can be used to achieve significantly better performance.

F Additional Results with Varying Imbalance Factor

We show the results with different imbalance factors (β = 10, 50, 100 and 200) on CIFAR-10 LT
(Table 3) and CIFAR-100 LT (Table 4) datasets with two methods. It can be seen that the observations
in Table 1 are applicable with different degrees of imbalance. SAM with re-weighting improves
upon the performance of CE and LDAM losses in all the experiments with varied imbalance factor.
We observe an average increase of 3.9% and 3.2% on CIFAR-10 LT and CIFAR-100 LT datasets,
respectively. This gain in performance is primarily due to the improvement in the tail accuracy, which
increases by 8.6% on CIFAR-10 LT and 3.9% on CIFAR-100 LT.

As the dataset becomes more imbalanced (β increases), the gain in accuracy with SAM on the tail
classes improves significantly. For instance, on CIFAR-10 LT with β = 10 (Table 3), CE+DRW+SAM
improves upon CE+DRW by 1.2% with a 3.9% increase in tail class accuracy. However, with a more
imbalanced dataset (i.e. CIFAR-10 LT β = 200), SAM leads to a 6.7% boost in overall accuracy with
a massive 15.6% increase in the tail class performance.
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Table 5: Results on CIFAR-100 LT with IB-Loss and PaCo.
β = 100 β = 200

Acc Tail Acc Tail

IB [3] 40.4 14.9 36.7 10.3
IB + SAM 42.8 25.0 37.7 17.8

PaCo [5] 51.5 33.9 47.0 26.9
PaCo + SAM 53.0 36.0 48.0 27.8

Algorithm 1 DRW + SAM

Require: Network g with parameters w; Training set S; Batch size b; Learning rate η > 0; Neighbor-
hood size ρ > 0, Neighborhood size for re-weighted loss ρdrw >= ρ; Total Number of Iterations
E; Deferred Reweighting Threshold T ; Number of samples in class y: ny; Loss Function L
(Cross-Entropy, LDAM).

1: for i = 1 to E do
2: Sample a mini-batch B ⊂ S with size b.
3: if E < T then
4: Compute Loss L ← 1

b

∑
(x,y)∈B L(y; gw(x))

5: Compute ϵ← ρ ∗ ∇wL/||∇wL|| ▷ Compute Sharp-Maximal Point
6: Compute Loss at w + ϵ;L ← 1

b

∑
(x,y)∈B L(y; gw+ϵ(x))

7: Calculate gradient d: d← ∇wL
8: else ▷ Deferred Re-Weighting (DRW)
9: Compute re-weighted Loss LRW ← 1

b

∑
(x,y)∈B n

−1
y · L(y; gw(x))

10: Compute ϵ← ρdrw ∗ ∇wLRW/||∇wLRW||
11: Compute re-weighted Loss at w + ϵ;LRW ← 1

b

∑
(x,y)∈B n

−1
y · L(y; gw+ϵ(x))

12: Calculate gradient d: d← ∇wLRW

13: Update weights wi+1 ← wi − ηd

G Algorithm

We describe our method in detail in Algorithm 1. On the large scale ImageNet-LT and iNaturalist-18
dataset, we use ρdrw > ρ. For CIFAR-10 LT and CIFAR-100 LT, we find that ρ = ρdrw works well.

H Related Work: Long-tailed Learning

In this section, we discuss some recent approaches in long-tailed learning. Equalization loss is
proposed in Tan et al. [20] based on the proposition that the gradients of negative samples overpower
the gradient of positive samples for minority classes. Influence-Balanced Loss [17] is a sample-
level re-weighting method that reweights each sample by the inverse of the norm of the gradient
of each sample. The gradient of each sample estimates the influence of that sample in determining
the decision boundary. Distill the Virtual Examples (DiVE) [10] addresses the problem of class-
imbalanced learning from the lens of knowledge distillation. It is shown that the teacher models’
predictions (virtual examples) can be distilled into the student model by making use of cross-category
interactions. This leads to an improvement in the accuracy of the minority class samples.

Self-Supervised Learning methods have been shown to learn generalizable representations [4] which
are useful for a wide variety of downstream tasks. Self-Supervised pre-training (SSP) has been shown
to improve the performance of class-imbalanced learning [21]. Parametric Contrastive Learning
(PaCo) [5] introduces parametric class-wise learnable centers into the Supervised Contrastive Learning
[14] framework to improve the performance on imbalanced datasets. PaCo achieves close to state-of-
the-art performance on most of the long-tailed learning benchmarks. Self Supervised to Distillation
(SSD) [16] is a multi-stage training framework for long-tailed recognition with a total of four stages
of training. The first two stages involve self-supervised training followed by the generation of soft
labels. The final two stages include joint training with distillation and classifier fine-tuning. Balanced
Contrastive Learning (BCL) [25] adapts the Supervised Contrastive framework [14] by proposing a
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Balanced Contrastive loss which ensures that the feature space is balanced when training with an
imbalanced dataset.

I Code and License Details

Our codebase is derived from the official implementation of LDAM-DRW[3]5, VS-Loss [15]6 and
SAM[7]7 which have been released under the MIT license. We have included the code and the
pretrained weights of the CE+DRW model trained of CIFAR-10 LT in the supplementary material.
The code to reproduce the experiments is available at https://github.com/val-iisc/Saddle-LongTail.
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