1 Full Algorithm of BMU-MoCo

We provide the pseudocode of our BMU-MoCo in Algorithm 1.

Algorithm 1 Pseudocode of BMU-MoCo.

Input: Video encoder $f_{θ_V}$ (with parameters $θ_V$); Text encoder $f_{θ_T}$ (with parameters $θ_T$); A dataset $D = [D_1, D_2, \cdots, D_n]$ of n video-text tasks; The hyper-parameters $m, \hat{m}, τ$.

Output: The learned $f^∗_{θ_V}$ and $f^∗_{θ_T}$.

1: Initialize the local momentum encoders $f_{θ_{V,m}} = f_{θ_V}, f_{θ_{T,m}} = f_{θ_T}$;
2: Initialize the global momentum encoders $\tilde{f}_{θ_{V,m}} = f_{θ_V}, \tilde{f}_{θ_{T,m}} = f_{θ_T}$;
3: Randomly initialize queues $Q^V, Q^T, \tilde{Q}^V, \tilde{Q}^T$;
4: for all task = 1, 2, ···, n do
5: for all iteration = 1, 2, ···, MaxIteration do
6: Sample a mini-batch with N_B video-text pairs $\{V_i, T_i\}_{i=1}^{N_B}$ from D_t;
7: Obtain the query embeddings q^V_i, q^T_i with Eq. (7);
8: Obtain the local key embeddings k^V_i, k^T_i with Eq. (9);
9: Obtain the global key embeddings $\tilde{k}^V_i, \tilde{k}^T_i$ with Eq. (15);
10: Compute the final loss L_{final} with Eqs. (16)-(18);
11: Compute the gradients $\nabla_{θ_V} L_{final}$ and $\nabla_{θ_T} L_{final}$ with Eq. (18);
12: Update $θ_V$ and $θ_T$ using Adam;
13: Update $θ_{V,m}$ and $θ_{T,m}$ with Eq. (12) and Eq. (13);
14: Update $θ_{V,m}$ and $θ_{T,m}$ with Eq. (14);
15: Enqueue k^V_i, k^T_i to Q^V, Q^T;
16: Enqueue $\tilde{k}^V_i, \tilde{k}^T_i$ to \tilde{Q}^V, \tilde{Q}^T;
17: Dequeue the earliest embeddings from $Q^V, Q^T, \tilde{Q}^V, \tilde{Q}^T$;
18: end for
20: Re-initialize the local momentum encoders $f_{θ_{V,m}} = f_{θ_V}, f_{θ_{T,m}} = f_{θ_T}$;
21: end for
22: return the found best $f^∗_{θ_V}$ and $f^∗_{θ_T}$.

*The corresponding author.
More Comparative Results

Detailed \(R@1 \) Results. In our main paper, we present the detailed results of the first two tasks (VATEX [11] and ActivityNet [7]) in Figure 3 for simplicity. Here, we further provide the detailed comparative results of other tasks (MSR-VTT [12], DiDeMo [6], and MSVD [4]) in Figure 1. Concretely, for each sub-figure (with task index \(t \)), we present the results of \(M_t \sim M_5 \) on task \(t \), i.e., \(A_i^t (t \leq i \leq 5) \). We observe that our BMU-MoCo outperforms its competitors on all tasks and leads to the slowest performance degradation. Moreover, our BMU-MoCo simultaneously ensures that the model achieves competitive performance on current tasks (the beginning of each line).

R@5 and R@10 Results. For comprehensive study, we evaluate our BMU-MoCo and its competitors with the widely-used metrics Recall@5 (R@5) and Recall@10 (R@10) in Table 1 and Table 2, respectively. Results for the forgetting rate (FR) and harmonic mean (HM) are also re-calculated based on R@5 or R@10. We can see that our BMU-MoCo outperforms all competitors by a large margin, especially on the overall metrics (R@5/R@10, FR, and HM).

Visualization of Training Loss. To show that our re-implemented infoNCE loss (i.e., Eq. (16) of our main paper) is stable, we respectively draw two training loss plots on ActivityNet and MSR-VTT.
Table 2: Comparative results obtained by the final model M_n on five video-text datasets/tasks under our CVLM setting. † denotes applying extra encoders. ‘Mem.’ denotes applying memory buffer during training. ‘BMU-MoCo (local)’ denotes BMU-MoCo without global momentum encoders. The R@10 results and its corresponding FR/HM are reported.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mem.</th>
<th>Task1 R@10↑ FR↑</th>
<th>Task2 R@10↑ FR↑</th>
<th>Task3 R@10↑ FR↑</th>
<th>Task4 R@10↑ FR↑</th>
<th>Task5 R@10↑ FR↑</th>
<th>Overall R@10↑ FR↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base-MoCo [9]</td>
<td>No</td>
<td>81.33 10.92 59.14 20.34 65.70 6.90 66.30 8.18 80.14 70.52</td>
<td>46.34 74.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LwF† [8]</td>
<td>No</td>
<td>84.10 8.15 61.38 17.48 65.40 5.80 65.80 9.27 80.20 71.38</td>
<td>40.65 75.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER-ring [3]</td>
<td>Yes</td>
<td>84.43 8.09 63.43 15.03 66.30 4.20 70.59 3.59 79.11 72.77</td>
<td>30.91 75.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DER [1]</td>
<td>Yes</td>
<td>81.76 10.49 61.62 16.80 67.80 3.20 70.79 3.79 79.62 72.32</td>
<td>34.28 75.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co2L† [2]</td>
<td>Yes</td>
<td>82.97 9.28 61.48 17.53 66.40 3.60 68.59 6.98 79.82 72.85</td>
<td>37.39 75.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUMP† [10]</td>
<td>Yes</td>
<td>82.99 9.26 60.89 17.80 67.20 2.30 70.49 4.78 79.23 72.16</td>
<td>34.14 75.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMU-MoCo (local)</td>
<td>No</td>
<td>88.24 4.01 66.79 11.94 69.00 1.20 69.79 5.09 81.99 75.16</td>
<td>22.24 77.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMU-MoCo†</td>
<td>No</td>
<td>89.36 2.89 66.79 11.16 67.50 1.80 71.88 3.19 82.09 75.52</td>
<td>19.04 77.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: The change of training loss on ActivityNet and MSR-VTT.

In Figure 2, we can see that the losses tend to converge after 3,000 training iterations. Therefore, our re-implemented infoNCE loss is indeed effective and stable.

3 Implementation Details of Baseline Methods

In Table 1 of our main paper, we compare our BMU-MoCo with many recent continual learning methods under our proposed CVLM setting. Since all the competitors are originally proposed for other continual learning settings (e.g., unsupervised continual learning for image classification), we thus re-implement them to adapt to our proposed CVLM setting. Below we present the implementation details for each baseline method:

(1) LwF [8] is a regularization-based method which aligns the representations of old and current models as new data arrives. Under the CVLM setting, based on Base-MoCo, we additionally maintain a pair of video and text encoders whose parameters are copied from previous encoders. For each iteration, we align both video and text representations of old and current models.

(2) ER-ring [3] is a rehearsal-based method which has a ring-buffer to save the memory data. Following its continual learning strategy, we maintain a ring-buffer (with 10K capacity in total) to save the video-text pairs. The memory data are simply used as training samples in the training process. The model architecture is exactly the same as Base-MoCo.

(3) DER [1] is a rehearsal- and regularization-based method which aligns the logits of old and current models on the memory data. Note that the ring-buffer maintained for DER actually saves the retrieval logits obtained from the training process, instead of the original video-text pairs.

(4) Co2L [2] is also a rehearsal- and regularization-based method which saves the memory data and aligns the logits of old and current models on the new/old data. Different from DER, the logits
used in Co2L are obtained by different augmentations. Therefore, for each mini-batch, we take two augmentations to construct the alignment loss defined in Co2L.

(5) LUMP [10] is a rehearsal-based method which mixes up the memory data and the current data during training. Note that LUMP is originally based on SimSiam [5]. Under the CVLM setting, we transfer LUMP to cross-modal MoCo by taking the mixed data as positive samples while pushing them into negative queues after loss calculation.

References

