
Supplementary Materials for Tracking Functional
Changes in Nonstationary Signals with Evolutionary

Ensemble Bayesian Model for Robust Neural Decoding

Xinyun Zhu1,2,4, Yu Qi3,4,∗, Gang Pan4,2, Yueming Wang1,4,∗

{zhuxinyun, qiyu, gpan, ymingwang}@zju.edu.cn
1Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China

2College of Computer Science and Technology, Zhejiang University, Hangzhou, China
3Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and the
MOE Frontier Science Center for Brain Science and Brain-machine Integration,

Zhejiang University School of Medicine, Hangzhou, China.
4The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China

A Training Subsets Selection

There are many ways to generate the training subsets. In this manuscript, we use the basic one in
which the subsets are consecutive, having the same length and being evenly distributed in the training
set.

Specifically, suppose the length of the training set is lall. In other words, the training set contains
lall time steps. The training subsets are chosen to be continuous segments, whose start and end
indices can be determined through deciding two parameters, namely segment ratio rseg and segment
number N . The segment length lseg can be computed according to the length of the training set lall
and the ratio rseg, where lseg = lall · rseg. The segment windows are uniformly distributed over the
training time with a stride lstride = d (1−rseg)·lall

N + 1
2e.Then the segment indices of the ith subset is

from (i− 1) · lstride + 1 to min{lall, (i− 1) · lstride + lseg}.
With the indices, we can cut the training data of both neural signals and kinematics and then fit them
in the measurement equation to get the initial candidate models.

B The Canonical DE

The differential evolution (DE) algorithm is a heuristic global optimization algorithm using a random
search method, which does not require gradient information [1, 2]. Unlike traditional genetic
algorithms, the individuals in the DE algorithm are encoded in real-value space, and the diversity
is achieved through differences between individuals. DE follows an iterative procedure including
population initialization, mutation, crossover and selection. There will be a number of iterations from
mutation to selection until the best fitness value in the population is good enough or the maximum
number of generations set in advance is reached.

B.1 Initialization

Usually, the parameter to be optimized can be represented by a D-dimension vector x =
[x1, x2, ..., xD]T . And the population containing N individuals, also called target vectors, can
be represented by {xi,G = x1,i,G,x2,i,G, ...,xD,i,G|i = 1, 2, ..., N}, where G denotes the Gth

iteration of mutation, crossover and selection. An objective function f(x) : RD → R, also called
∗Corresponding authors: Yu Qi and Yueming Wang

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

fitness function in DE is defined for searching the best parameter x∗, where f(x∗) > f(x) for all x
in the searching space.

In the initial process of DE, a N population, {xi,0 = x1,i,0,x2,i,0, ...,xD,i,0|i = 1, 2, ..., N}
is sampled randomly from a uniform distribution, where the boundaries are defined as xlow =
{x1,low,x2,low, ...,xD,low} and xup = {x1,up,x2,up, ...,xD,up}.

B.2 Mutation

For each generation G, a mutated population {vi,G|i = 1, 2, ..., N} will be created based on the
parent population {xi,G|i = 1, 2, ..., N} according to a certain mutation strategy. One of the most
popular mutation strategies, “DE/current-to-best/1", is as follows:

vi,G = xi,G + F · (xbest,G − xi,G) + F · (xr1i ,G
− xr2i ,G

), (1)

where the r1i and r2i are randomly selected indices in the range of [1, N], being distinct from each
other and also the index i. The xbest,G is the individual who has the best fitness value. The F is a
positive factor, used for scaling the difference between the best vector and the current vector, as well
as the difference between the randomly selected vectors.

B.3 Crossover

The final trial vector {ui,G = u1,i,G,u2,i,G, ...,uD,i,G|i = 1, 2, ..., N} is obtained through
crossover:

uj,i,G =

{
vj,i,G, if rand(0, 1) ≤ CR or j = jrand

xj,i,G, otherwise
, (2)

where jrand is a randomly chosen index from the range [1, D], which ensures that there is at least
one dimension of ui,G comes from the vi,G. And CR ∈ [0, 1] is a crossover factor, representing the
average fraction of vector components that are inherited from the mutation vector.

B.4 Selection

In the selection stage, the fitness values of the target vectors and the trial vectors are calculated, which
is used to determine whether a vector stays in the new population or not. The selected vectors are
described as follows:

xi,G+1 =

{
ui,G, if f(ui,G) > f(xi,G)

xi,G, otherwise
, (3)

where the f(·) represents the fitness function in a maximum problem.

The iteration of mutation, crossover and selection will be terminated when it reaches the pre-defined
number of generation, or satisfies the pre-specified fitness value. Also, an early-stopping strategy can
be adopted. That is, if the best fitness among the population no longer increases significantly during
several successive iterations, the process will be stopped advancely.

C Apply JaDE to the Evolution Process

In the context of the model evolution in neural decoding, the data that DE deals with can be particularly
different in each update process. It is difficult to cover all situations with a fixed set of parameters,
including the scaling factor F and the crossover probability CR. Improper parameters will lead to
stagnation or premature convergence [3]. Therefore, we apply JADE [4] to our evolution process,
which adjusts F and CR adaptively. Besides, following the JADE, we adopt the mutation strategy
“DE/current-to-pbest/1" with archive.

C.1 “DE/current-to-pbest/1" Strategy

To avoid the premature convergence problem and diversify the population, we adopt a mutation
strategy of “DE/current-to-pbest/1":

vi,G = xi,G + Fi · (xpbest,G − xi,G) + Fi · (xr1i ,G
− x̃r2i ,G

), (4)

2

where xpbest,G represents the individual randomly selected from the top 100× p% population. r1i
and r2i are randomly selected indices in the range of [1, N], being distinct from each other and also
the index i.

C.2 Adaptive Mutation Factor Selection

The F in Eq. (4) is a list of the positive mutation factor. In each generation G, the list is generated
from a Cauchy distribution with the initial mutation factor µF and a scale parameter 0.1:

F = randc(µF , 0.1), (5)
setting the maximum value to be 1 and the minimum value to be 0. When a generation finishes,
the list will be updated according to all the successful mutation factors in this generation, which is
denoted as SF :

µF = (1− c) · µF + c ·meanL(SF), (6)

where c ∈ (0, 1] is a ratio to control the effect of current generation and meanL(SF) represents the
Lehmer mean:

meanL(SF) =

∑
F∈SF

F 2∑
F∈SF

F
. (7)

C.3 “DE/current-to-pbest/1" with Archive

The x̃r2i ,G
in Eq. (4) is randomly selected from a collection storing the inferior individuals in the

previous selection operation. Specifically, in the selection process of each generation, the individual
after mutation and crossover whose fitness value is smaller than the original individual will fail to be
selected into the population in the next generation. We add these inferior individuals to a external
archive A as candidate individuals in the latter mutation process. Suppose current population is
denoted by P, then the x̃r2i ,G

is randomly selected from the union A ∪P.

C.4 Adaptive Crossover Factor Selection

The individual {ui,G = u1,i,G,u2,i,G, ...,uD,i,G|i = 1, 2, ..., N} after crossover is obtained through:

uj,i,G =

{
vj,i,G, if rand(0, 1) ≤ CRi or j = jrand

xj,i,G, otherwise
, (8)

where jrand is a randomly chosen index from the range [1, D], which ensures that there is at least one
dimension of ui,G comes from the vi,G. The CR is a list of the positive crossover factor, which is
similar to F . Specifically, in each generation G, the list is generated from a normal distribution:

CR = rand(µCR, 0.1), (9)
setting the maximum value to 1 and the minimum value to 0. The update formulation of CR is:

µCR = (1− c) · µCR + c ·meanA(SCR), (10)
where c ∈ (0, 1] is a the same ratio in Eq. (6), and SCR is all the successful crossover factors. The
meanA(SCR) represents the arithmetic mean as usual.

D More Details

D.1 More Details in the Procedure of EvoEnsemble

The EvoEnsemble approach consists of two phases, one is the calibration phase and the other is the
test phase.

During the calibration phase, training sample pairs (xt,yt) are collected and used to learn the
transition function g(·), as well as a set of initial models mk(·) to approximate the time-varying
observation function ht(·). Once the calibration phase is over, the transition function g(·) is fixed.
Meanwhile, a set of initial particles {x(1)

t ,x
(2)
t , ...,x

(Npar)
t } are randomly drown from a Gaussian

distribution, to approximate the posterior of the kinematic states p(xt|y0:t).

3

During the test phase, the observation function ht(·) changes along with the incoming neural signals
yt through adaptively assembling the models mk(·) in the model poolM. Note that, the model
weights wk

t are updated at each time slot, and the model parameters pk are updated every several
time slots, which is the most critical point of EvoEnsemble.

Specifically, we use particle filter algorithm to implement this process. And there are several steps to
recursively estimate the posterior of kinematic states p(xt|y0:t):

Step 1: For each particle x
(s)
t , use the kinematic posterior p(xt−1|y0:t−1) at time t − 1 and the

transition function g(·) to estimate the kinematic prior p(xt
−|y0:t) at time t .

Step 2: Use the kinematic prior p(xt
−|y0:t) at time t and the encoding models mk(·) to estimate

corresponding neural signals ŷk
t

Step 3: Compute likelihood pk(s)(yt|y0:t−1) for each particle in each model mk(·) by comparing the
encoded neural signals ŷk

t with the observed neural signals yk
t . The model likelihood pk(yt|y0:t−1)

is equal to the sum of its particle likelihood.

Step 4: Estimate the state posterior pk(xt|y0:t) calculated by each model through taking a weighted
sum of its particles. Compute the final state posterior p(xt|y0:t) through taking a weighted sum of
all models’ estimation.

When all models’ likelihoods in the model pool are small, the model pool will be updated by
EvoEnsemble through a differential evolution algorithm, where model fitness is equal to the model
likelihood.

D.2 More Details in Particle-based Solution

We randomly sample particles x(s)t from a standard Gaussian distribution. At each time slot, they
are estimated one step ahead through transition function g(·). For each encoding model mk(·), its
corresponding particle likelihoods are calculated by comparing the encoded neural signals ŷk

t with
the observed neural signals yk

t . Here, we assume the single observation functions are linear, and the
distribution of the state and observation variables are multivariate Gaussian. Then for each model
mk(·), the single observation equation can be described as follows:

yt = Mkxt + vt, (11)

where vt ∼ N (0, Q). Then the importance weights for each particle of each model can be calculated
by:

ω
k(s)
t = p(ŷk

t |x
(s)
t) = (2π)−dy/2|Q|−1/2 exp {−1/2(ŷk

t −Mx
(s)
t)′Q−1(ŷk

t −Mx
(s)
t)}. (12)

D.3 More Details in Simulation Data

The kinematics xt is randomly generated in the range of [0, 1] and is smoothed with a window size
of 20. The measurement in the training data is generated by the fixed mapping matrix [h10, h

2
0]

T,
while the measurement in the test data yt is generated by a continuous changing mapping matrix
[h1t , h

2
t]

T. Random Gaussian noiseN(0, 0.01) is added to the measurements. "E" is the representation
in scientific notation.

D.4 More Details in Clinical Data

"Ortho-impedance" is a commonly used computer assistant way in the brain-machine interface, which
reserves the projection of the control velocity in the ideal direction, i.e., the direction from the cursor
to the target, and decreases the projection of control velocity in perpendicular to the ideal direction,
preventing deviation from the target direction.

4

E Parameter Configurations

E.1 Simulations

We fix the parameters for all five conditions. We use a model pool with N = 50 models, and each
model is fit on a subset of training set, where the segment ratio rseg is 0.1. The parameters in JaDE are
set to p = 0.1, c = 0.05, µF = 0.1 and µCR = 0.1. We adopt a regular update strategy with update
interval tup = 15. The max generation of DE is set to 100, with an early-stopping operation if the
fitness do not decrease significantly for 10 iterations. The window length of the previous time steps
we used for one time update lpre is 30. The preserve ratio in history-model-archive strategy is 0.8.

E.2 Data-M

For Data-M, We use a model pool with N = 20 models, and each model is fit on a subset of training
set, where the segment ratio rseg is 0.5. The parameters in JaDE are set to p = 0.2, c = 0.05,
µF = 0.2 and µCR = 0.1. We both adopt regular and adaptive update strategy to achieve better
performance, with update interval tup = 15 and update ratio rup = 2/3. The max generation of
DE is set to 300, with an early-stopping operation if the fitness do not decrease significantly for 20
iterations. The window length of the previous time steps we used for one time update lpre is 15. The
preserve ratio in history-model-archive strategy is 0.5.

E.3 Data-P

For Data-P1/P2/P3, We use a model pool with N = 20 models, and each model is fit on a subset of
training set, where the segment ratio rseg is 0.5. The parameters in JaDE are set to p = 0.2, c = 0.05,
µF = 0.3 and µCR = 0.1. We both adopt regular and adaptive update strategy to achieve better
performance, with update interval tup = 15 and update ratio rup = 0.4. The max generation of DE is
set to 300, with an early-stopping operation if the fitness do not decrease significantly for 20 iterations.
The window length of the previous time steps we used for one time update lpre is 15. The preserve
ratio in history-model-archive strategy is 0.3.

Figure S1: The changes of log-likelihood on the three clinical datasets. EvoEnsemble improves most on the
dataset which the likelihood drops most.

References
[1] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for global

optimization over continuous spaces. Journal of global optimization, 11(4):341–359, 1997.

[2] Kelly Fleetwood. An introduction to differential evolution. In Proceedings of Mathematics
and Statistics of Complex Systems (MASCOS) One Day Symposium, 26th November, Brisbane,
Australia, pages 785–791, 2004.

[3] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE transactions on Evolutionary
Computation, 13(2):398–417, 2008.

[4] Jingqiao Zhang and Arthur C Sanderson. Jade: adaptive differential evolution with optional
external archive. IEEE Transactions on evolutionary computation, 13(5):945–958, 2009.

5

Figure S2: Tracking performance of EvoEnsemble(w/o DE) on 20 mapping parameters in Data-M. The horizontal
axis t denotes the tth update in EvoEnsemble. The red line is the ground-truth which we fit on the test dataset
while the yellow one is the assembled parameters from the model pool of EvoEnsemble(w/o DE).

Figure S3: Tracking performance of EvoEnsemble on 20 mapping parameters in Data-M.

6

	Training Subsets Selection
	The Canonical DE
	Initialization
	Mutation
	Crossover
	Selection

	Apply JaDE to the Evolution Process
	``DE/current-to-pbest/1" Strategy
	Adaptive Mutation Factor Selection
	``DE/current-to-pbest/1" with Archive
	Adaptive Crossover Factor Selection

	More Details
	More Details in the Procedure of EvoEnsemble
	More Details in Particle-based Solution
	More Details in Simulation Data
	More Details in Clinical Data

	Parameter Configurations
	Simulations
	Data-M
	Data-P

