
A Usage of EnvPool

In this section, we include comprehensive examples of the Python user APIs for EnvPool usage,
including both synchronous and asynchronous execution modes, and for both OpenAI gym and
dm_env APIs.

A.1 Synchronous Execution, OpenAI gym APIs

import numpy as np
import envpool

# make gym env
env = envpool.make("Pong-v5", env_type="gym", num_envs=100)
obs = env.reset() # with shape (100, 4, 84, 84)
act = np.zeros(100, dtype=int)
obs, rew, done, info = env.step(act, env_id=np.arange(100))
# env_id = info["env_id"]

A.2 Synchronous Execution, DeepMind dm_env APIs

import numpy as np
import envpool

# make dm_env
env = envpool.make("Pong-v5", env_type="dm", num_envs=100)
obs = env.reset().observation.obs # with shape (100, 4, 84, 84)
act = np.zeros(100, dtype=int)
timestep = env.step(act, env_id=np.arange(100))
# timestep.observation.obs, timestep.observation.env_id,
# timestep.reward, timestep.discount, timestep.step_type

A.3 Asynchronous Execution

For maximizing the throughput of the environment execution, users may use the asynchronous
execution mode. Both typical step API and more low-level APIs recv, send are provided.

import numpy as np
import envpool

# async by original API
env = envpool.make_dm("Pong-v5", num_envs=10, batch_size=9)
action_num = env.action_spec().num_values
timestep = env.reset()
env_id = timestep.observation.env_id
while True:

action = np.random.randint(action_num, size=len(env_id))
timestep = env.step(action, env_id)
env_id = timestep.observation.env_id
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# or use low-level API, faster than previous version
env = envpool.make_dm("Pong-v5", num_envs=10, batch_size=9)
action_num = env.action_spec().num_values
env.async_reset() # this can only call once at the beginning
while True:

timestep = env.recv()
env_id = timestep.observation.env_id
action = np.random.randint(action_num, size=len(env_id))
env.send(action, env_id)

import numpy as np
import envpool

# make asynchronous with gym API
num_envs = 10
batch_size = 9
env = envpool.make("Pong-v5", env_type="gym", num_envs=num_envs,

batch_size=batch_size)
env.async_reset()
while True:

obs, rew, done, info = env.recv()
env_id = info["env_id"]
action = np.random.randint(batch_size, size=len(env_id))
env.send(action, env_id)

B CPU Specifications for Pure Environment Simulation

This section lists the detailed CPU specifications for the pure environment simulation experiments
presented in the main paper.

The laptop has 12 Intel CPU cores, with Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz. And the
workstation has 32 AMD CPU cores, with AMD Ryzen 9 5950X 16-Core Processor. Evaluating
EnvPool on these two configurations can demonstrate its effectiveness with small-scale experiments.

An NVIDIA DGX-A100 has 256 CPU cores with AMD EPYC 7742 64-Core Processor and 8 NUMA
nodes. Note that running multi-processing on each NUMA node not only makes the memory closer
to the processor but also reduces the thread contention on the ActionBufferQueue.

C Speed Improvements on Single Environment

We present experiments with a single environment (i.e., N = 1) in Table 2, where EnvPool manages
to reduce overhead compared to the Python counterpart and achieves considerable speedup.

D ActionBufferQueue and StateBufferQueue

D.1 ActionBufferQueue

ActionBufferQueue is the queue that caches the actions from the send function, waiting to be
consumed by the ThreadPool. Many open-source general-purpose thread-safe event queues can be
used for this purpose. In this work, we observe that in our case the total number of environments N ,
the batch_sizeM , and the number of threads are all pre-determined at the construction of EnvPool.
The ActionBufferQueue can thus be tailored for our specific case for optimal performance.
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Table 2: Single environment simulation speed on different hardware setups. The speed is in frames
per second.

System Method Atari Pong-v5 MuJoCo Ant-v3 dm_control cheetah run

Laptop Python 4,891 12,325 6,235
Laptop EnvPool 7,887 15,641 11,636
Laptop Speedup 1.61× 1.27× 1.87×

Workstation Python 7,739 19,472 9,042
Workstation EnvPool 12,623 25,725 16,691
Workstation Speedup 1.63× 1.32× 1.85×
DGX-A100 Python 4,449 11,018 5,024
DGX-A100 EnvPool 7,723 16,024 10,415
DGX-A100 Speedup 1.74× 1.45× 2.07×

We implemented ActionBufferQueue with a lock-free circular buffer. A buffer with a size of 2N
is allocated. We use two atomic counters to keep track of the head and tail of the queue. The counters
modulo 2N is used as the indices to make the buffer circular. We use a semaphore to coordinate
enqueue and dequeue operations and to make the threads wait when there is no action in the queue.

D.2 StateBufferQueue

StateBufferQueue is in charge of receiving data produced by each environment. Like the
ActionBufferQueue, it is also tailored exactly for RL environments. StateBufferQueue is a
lock-free circular buffer of memory blocks, each block contains a fixed number of slots equal to
batch_size, where each slot is for storing data generated by a single environment.

When one environment finishes its step inside ThreadPool, the corresponding thread will ac-
quire a slot in StateBufferQueue to write the data. When all slots are written, a block is
marked as ready (see yellow slots in Figure 1). By pre-allocating memory blocks, each block
in StateBufferQueue can accommodate a batch of states. Environments will use slots of the
pre-allocated space in a first come first serve manner. When a block is full, it can be directly taken as
a batch of data, saving the overhead for batching. Both the allocation position and the write count of a
block are tracked by atomic counters. When a block is ready, it is notified via a semaphore. Therefore
the StateBufferQueue is also lock-free and highly performant.

Data Movement The popular Python vectorized environment executor performs memory copies at
several places that are saved in EnvPool. There is one inter-process copy for collecting the states
from the worker processes, and one copy for batching the collected states. In EnvPool, these copies
are saved thanks to the StateBufferQueue because:

• We pre-allocate memory for a batch of states, the pointer to the target slot of memory is
directly passed to the environment execution and written from the worker thread.

• The ownership of the block of memory is directly transferred to Python and converted into
NumPy arrays via pybind11 when the block of memory is marked as ready.
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E Jitting for JAX

Jitting the environment simulation code with the neural networks is supported via a set of jittable
functions in EnvPool:

import envpool
import jax.lax as lax

env = envpool.make(..., env_type="gym" | "dm")
handle, recv, send, step = env.xla()

def actor_step(iter, loop_var):
handle0, states = loop_var
action = policy(states)
# for gym
handle1, (new_states, rew, done, info) = step(handle0, action)
# for dm
# handle1, new_states = step(handle0, action)
return (handle1, new_states)

@jit
def run_actor_loop(num_steps, init_var):

return lax.fori_loop(0, num_steps, actor_step, init_var)

states = env.reset()
run_actor_loop(100, (handle, states))

Currently, EnvPool supports jitting for CPU and GPU when used with JAX [3]. All jittable functions
are implemented via XLA’s custom call mechanism [8]. When the environment code is jitted, the
control loop of the actor is lowered from Python code to XLA’s runtime, allowing the entire control
loop to run on a native thread and freeing the Python Global Interpreter Lock (GIL). Note that when
the EnvPool function is jitted for GPU, the environment simulation is still executed on the CPU, as
EnvPool only supports existing environments written in C/C++. We implemented GPU jitting by
wrapping the CPU code in a GPU custom call, with memory transfers between two devices.

F Complete Results of End-to-end Agent Training

F.1 CleanRL Training Results

This section presents the complete training results using CleanRL’s PPO and EnvPool. CleanRL’s PPO
closely matches the performance and implementation details of openai/baselines’ PPO [13]. The
source code is made available publicly3. The hardware specifications for conducting the CleanRL’s
experiments are as follows:

• OS: Pop!_OS 21.10 x86_64

• Kernel: 5.17.5-76051705-generic

• CPU: AMD Ryzen 9 3900X (24) @ 3.800GHz

• GPU: NVIDIA GeForce RTX 2060 Rev. A

• Memory: 64237MiB

CleanRL’s Atari experiment’s hyperparameters and learning curves can be found in Table 3 and
Figure 7. CleanRL’s MuJoCo experiment’s hyperparameters and learning curves can be found in
Table 5 and Figure 8. CleanRL’s tuned Pong experiment’s hyperparameters can be found in Table 4.

3See https://github.com/vwxyzjn/envpool-cleanrl
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Note the CleanRL’s EnvPool experiments with MuJoCo use the v4 environments and the gym’s
vecenv experiments use the v2 environments. There are subtle differences between the v2 and v4
environments4.

Table 3: PPO hyperparameters used for CleanRL’s Atari experiments (i.e., ppo_atari.py and
ppo_atari_envpool.py). The hyperparameters used is aligned with [28].

Parameter Names Parameter Values

Ntotal Total Time Steps 10,000,000
α Learning Rate 0.00025 Linearly Decreased to 0
Nenvs Number of Environments 8
Nsteps Number of Steps per Environment 128
γ (Discount Factor) 0.99
λ (for GAE) 0.95
Nmb Number of Mini-batches 4
K (Number of PPO Update Iteration Per Epoch) 4
ε (PPO’s Clipping Coefficient) 0.1
c1 (Value Function Coefficient) 0.5
c2 (Entropy Coefficient) 0.01
ω (Gradient Norm Threshold) 0.5
Value Function Loss Clipping 5 True

Table 4: PPO tuned hyperparameters used for CleanRL’s Pong experiments in Figure 6.
Parameter Names Parameter Values

Ntotal Total Time Steps 7,000,000
α Learning Rate 0.002
Nenvs Number of Environments 64
Nsteps Number of Steps per Environment 128
γ (Discount Factor) 0.99
λ (for GAE) 0.95
Nmb Number of Mini-batches 4
K (Number of PPO Update Iteration Per Epoch) 4
ε (PPO’s Clipping Coefficient) 0.1
c1 (Value Function Coefficient) 2.24
c2 (Entropy Coefficient) 0.0
ω (Gradient Norm Threshold) 1.13
Value Function Loss Clipping False
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Figure 7: CleanRL example runs with Python vectorized environments and with EnvPool, using the
same number of parallel environments N = 8.

4See https://github.com/openai/gym/pull/2762#issuecomment-1135362092
5See “Value Function Loss Clipping” in [13]
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Table 5: PPO hyperparameters used for CleanRL’s MuJoCo experiments (i.e.,
ppo_continuous_action.py and ppo_continuous_action_envpool.py). Note that
[28] uses Nenvs = 1 so we needed to find an alternative set of hyperparameters.

Parameter Names Parameter Values

Ntotal Total Time Steps 10,000,000
α Learning Rate 0.00295 Linearly Decreased to 0
Nenvs Number of Environments 64
Nsteps Number of Steps per Environment 64
γ (Discount Factor) 0.99
λ (for GAE) 0.95
Nmb Number of Mini-batches 4
K (Number of PPO Update Iteration Per Epoch) 2
ε (PPO’s Clipping Coefficient) 0.2
c1 (Value Function Coefficient) 1.3
c2 (Entropy Coefficient) 0.0
ω (Gradient Norm Threshold) 3.5
Value Function Loss Clipping False
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Figure 8: CleanRL example runs with Python vectorized environments and with EnvPool, using the
same number of parallel environments N = 64.
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F.2 rl_games Training Results

This section presents the complete training results using rl_games’ PPO and EnvPool. The hyper-
parameters configuration can be found in rl_games’ repository.6 The hardware specifications for
conducting the rl_games’ experiments are as follows:

• OS: Ubuntu 21.10 x86_64
• Kernel: 5.13.0-48-generic
• CPU: 11th Gen Intel i9-11980HK (16) @ 4.900GHz
• GPU: NVIDIA GeForce RTX 3080 Mobile / Max-Q 8GB/16GB
• Memory: 64,012MiB

The commit used to run the experiments is 7f259a6436f396274c9931d0bd7004cee2ecabfa, and
the hyperparameters are tuned per environment and are available at

• Ant: rl_games/configs/MuJoCo/ant_envpool.yaml
• Walker2D: rl_games/configs/MuJoCo/walker2d_envpool.yaml
• HalfCheetah: rl_games/configs/MuJoCo/halfcheetah_envpool.yaml
• Humanoid rl_games/configs/MuJoCo/humanoid_envpool.yaml
• Breakout rl_games/configs/atari/ppo_breakout_envpool.yaml
• Pong rl_games/configs/atari/ppo_pong_envpool.yaml

We compare the training performance of rl_games using EnvPool against using Ray [23]’s parallel
environments. In Figure 10, it’s observed that EnvPool can boost the training system with multiple
times training speed compared to Ray’s integration.

For example using well-tuned hyperparameters we can train Atari Pong game in under 2 min to 18+
training and 20+ evaluation score on a laptop.

Well-established implementations of SAC [14, 36] can only train Humanoid to a score of 5,000 in
three to four hours. It’s worth highlighting that we can now train Humanoid to a score over 10,000
just in 15 minutes with a laptop.

rl_games’s Atari experiment’s learning curves can be found in and Figure 9. rl_games’s MuJoCo
experiment’s learning curves can be found in Figure 10. Table 6, Table 7 and Table 8 are the
hyperparameters.
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Figure 9: rl_games example runs with Ray environments and with EnvPool, using the same number
of parallel environments N = 64.

6See the files postfixed with envpool in https://github.com/Denys88/rl_games/tree/master/rl_
games/configs/atari.
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Table 6: PPO baseline hyperparameters used for rl_games’s MuJoCo experiments. Some environ-
ments use different neural network architectures.

Parameter Names Parameter Values

Nenvs Number of Environments 64
Nsteps Number of Steps per Environment 256 for HalfCheetah

64 for Ant
128 for Humanoid and Walker2D

γ (Discount Factor) 0.99
λ (for GAE) 0.95
Nmb Number of Mini-batches 2
K (Number of PPO Update Iteration Per Epoch) 4 for Ant

5 for HalfCheetah, Walker2D and Humanoid
ε (PPO’s Clipping Coefficient) 0.2
c1 (Value Function Coefficient) 2.0
c2 (Entropy Coefficient) 0.0
ω (Gradient Norm Threshold) 1.0
α Learning Rate 0.0003 dynamically adapted based on ν
ν KL Divergence threshold (for α) 0.008
Value Function Loss Clipping True
Value Bootstrap on Terminal States True
Reward Scale 0.1
Smooth Ratio Clamp True
Observation Normalization True
Value Normalization True
MLP Sizes [128, 64, 32] for HalfCheetah

[256, 128, 64] for Ant and Walker2D
[512, 256, 128] for Humanoid

MLP Activation Elu
Shared actor critic network True
MLP Layer Initializer Xavier

Table 7: PPO hyperparameters used for rl_games’s Atari Breakout experiments.
Parameter Names Parameter Values

Nenvs Number of Environments 64
Nsteps Number of Steps per Environment 128
γ (Discount Factor) 0.999
λ (for GAE) 0.95
Nmb Number of Mini-batches 4
K (Number of PPO Update Iteration Per Epoch) 2
ε (PPO’s Clipping Coefficient) 0.2
c1 (Value Function Coefficient) 2.0
c2 (Entropy Coefficient) 0.01
ω (Gradient Norm Threshold) 1.0
α Learning Rate 0.0008
Value Function Loss Clipping False
Observation Normalization False
Value Normalization True
Neural network Nature CNN
Activation ReLU
Shared actor critic network True
Layer Initializer Orthogonal
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Table 8: PPO hyperparameters used for rl_games’s Atari Pong experiments.
Parameter Names Parameter Values

Ntotal Total Time Steps 8,000,000
Nenvs Number of Environments 64
Nsteps Number of Steps per Environment 128
γ (Discount Factor) 0.999
λ (for GAE) 0.95
Nmb Number of Mini-batches 8
K (Number of PPO Update Iteration Per Epoch) 2
ε (PPO’s Clipping Coefficient) 0.2
c1 (Value Function Coefficient) 2.0
c2 (Entropy Coefficient) 0.01
ω (Gradient Norm Threshold) 1.0
α Learning Rate 0.0003 dynamically adapted based on ν
ν KL Divergence threshold (for α) 0.01
Value Function Loss Clipping True
Observation Normalization True
Value Normalization True
Neural network Nature CNN
Activation Elu
Shared actor critic network True
Layer Initializer Orthogonal
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Figure 10: rl_games example runs with Ray environments and with EnvPool, using the same number
of parallel environments N = 64.
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F.3 Acme-based Training Results

We integrate EnvPool with Acme [12] for experiments of PPO [28] in MuJoCo tasks, to show
EnvPool’s efficiency with different num_envs and its advantage over other vectorized environments
such as Stable Baseline’s DummyVecEnv [26]. The codes and hyperparameters can be found in our
open-sourced codebase.

All the experiments were performed on a standard TPUv3-8 machine on Google Cloud with the
following hardware specifications:

• OS: Ubuntu 20.04 x86_64

• Kernel: 5.4.0-1043-gcp

• CPU: Intel(R) Xeon(R) CPU @ 2.00GHz

• TPU: v3-8 with v2-alpha software

• Memory: 342,605MiB
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Figure 11: Comparison of EnvPool and DummyVecEnv using Acme’s PPO implementation on
MuJoCo HalfCheetah-v3 environment. Both settings use num_envs of 32.

In Figure 11, we compare EnvPool with another popular batch environment DummyVecEnv, which is
argued to be more efficient than its alternative SubprocVecEnv for light environments, both provided
by Stable Baseline 3 [26]. Using the same number of environments, EnvPool spent less than half of
the wall time of DummyVecEnv to achieve a similar final episode return, proving our efficiency.
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Figure 12: Training curves of Acme’s PPO implementation on MuJoCo HalfCheetah-v3 environment
using EnvPool of a different number of parallel environments.

Figure 12 shows that under the same environment interaction budget, tuning the num_envs can
greatly reduce the training time while maintaining similar sample efficiency. We note that the key to
maintaining the sample efficiency is to keep the same amount of environment steps under the same
set of policy parameters. In our case, we simply maintain num_envs× batch_size a constant.
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G Hyper-parameters Tuning

The motivation to find a set of hyperparameters is well-explained in Section 4.2 — the idea is to use a
large N such as 32 or 64 to better leverage EnvPool’s throughput and use less stale data. This section
explains the process of tuning hyperparameters in this paper.

Specifically, regarding the CleanRL + Atari experiments in Figure 4, we have used the same hyperpa-
rameters as in the original PPO paper [28, Table 5]. CleanRL’s hyperparameters in Figure 8 were
tuned via Weights and Biases’ automated hyperparameters search that optimizes average normalized
scores in HalfCheetah-v4, Walker2d-v4, and Ant-v4 for 3 random seeds using Bayesian optimiza-
tion. CleanRL’s hyperparameters in Table 4 were tuned via a similar procedure to optimize just for
Pong-v5.

All the hyperparameters used rl_games were tuned through trial and error, following the same practice
in IsaacGym [21].

H License of EnvPool and RL Environments

EnvPool is under Apache2 license. Other third-party source codes and data are under their corre-
sponding licenses.

I Data Collection Process and Broader Social Impact

All the data outputted by EnvPool is generated by the underlying simulators and game engines.
Wrappers (e.g., transformation of the inputs) implemented in EnvPool conduct data pre-processing for
the learning agents. EnvPool provides an effective way to parallel execution of the RL environments
and does not have the typical supervised learning data labelling or collection process.

EnvPool is an infrastructure component to improve the throughput of generating RL experiences
and the training system. EnvPool does not change the nature of the underlying RL environments or
the training systems. Thus, to the best of the authors’ knowledge, EnvPool does not introduce extra
social impact to the field of RL and AI apart from our technical contributions.

J Author Contributions

Jiayi Weng and Min Lin designed and implemented the core infrastructure of EnvPool.

Shengyi Huang originally demonstrated the effectiveness of end-to-end agent training with Atari
Pong and Breakout using EnvPool.

Jiayi Weng conducted pure environment simulation experiments.

Bo Liu conducted environment alignment test and contributed to EnvPool bug reports and debugging.

Shengyi Huang, Denys Makoviichuk, Viktor Makoviychuk, and Zichen Liu conducted end-to-
end agent training experiments with CleanRL, rl_games, Ray, and Acme with Atari and MuJoCo
environments.

Jiayi Weng developed Atari, ViZDoom, and OpenAI Gym Classic Control and Toy Text environments
in EnvPool.

Jiayi Weng, Bo Liu, and Yufan Song developed OpenAI Gym MuJoCo and DeepMind Control
Suite benchmark environments in EnvPool.

Jiayi Weng and Ting Luo developed OpenAI Gym Box2D environments in EnvPool.

Yukun Jiang developed OpenAI Procgen environments in EnvPool.

Shengyi Huang implemented CleanRL’s PPO integration with EnvPool.

Denys Makoviichuk and Viktor Makoviychuk implemented rl_games integration with EnvPool.

Zichen Liu contributed to EnvPool Acme integration.

Min Lin and Zhongwen Xu led the project from its inception.
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