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Abstract

We introduce a multi-armed bandit model where the reward is a sum of multiple
random variables, and each action only alters the distributions of some of them.
After each action, the agent observes the realizations of all the variables. This
model is motivated by marketing campaigns and recommender systems, where the
variables represent outcomes on individual customers, such as clicks. We propose
UCB-style algorithms that estimate the uplifts of the actions over a baseline. We
study multiple variants of the problem, including when the baseline and affected
variables are unknown, and prove sublinear regret bounds for all of these. We
also provide lower bounds that justify the necessity of our modeling assumptions.
Experiments on synthetic and real-world datasets show the benefit of methods that
estimate the uplifts over policies that do not use this structure.

1 Introduction

Multi-armed bandit (MAB) is an important framework for sequential decision making under un-
certainty [8, 19, 20]. In this problem, a learner repeatedly takes action and receives their rewards,
while the outcomes of the other actions are unobserved. The goal of the learner is to maximize
their cumulative reward over time by balancing exploration (select actions with uncertain reward
estimates) and exploitation (select actions with high reward estimates). MAB has applications in
online advertisement, recommender systems, portfolio management, and dynamic channel selection
in wireless networks [7].

One prominent question in the MAB literature is how the dependencies between the actions can
be exploited to improve statistical efficiency. Popular examples include linear bandits [11] and
combinatorial bandits [9]. In this work, we study a different structured bandit problem with the
following three features: (i) the reward is the sum of the payoffs of a fixed set of variables; (ii) these
payoffs are observed; and (iii) each action only affects a small subset of the variables. This structure
arises in many applications, as discussed below.

(a) Online Marketing. An ecommerce platform can opt among several marketing strategies
(actions) to encourage customers to make more purchases on their website. As different customers
can be sensitive to a different marketing strategy, regarding each of them as a variable, it is natural to
expect that each action would likely affect only a subset of the variables. The payoff associated to a
customer can be for example the revenue generated by that customer; then the reward is just the total
revenue received by the platform.
(b) Product Discount. Consider a company that uses discount strategies to increase their sales. It is
common to design discount strategies that only apply to a small subset of products. In this case, we
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Algorithm UCB UPUCB (b) UPUCB UPUCB-nAff UPUCB-iLift

Affected variables known No Yes Yes No No
Baseline payoffs known No Yes No No No

Regret Bound
Km2

∆

KL2

∆

KL2

∆

K clip(∆/∆up, L,m)2

∆

Table 1: Summary of our regret bounds for uplifting bandits. Constant and logarithmic factors are ignored
throughout. For simplicity, we assume here all actions affect exactly L of the m variables and all the suboptimal
actions have the same suboptimality gap ∆. K and ∆up are respectively the number of actions and a lower
bound on individual uplift (∆up is formally introduced in Appendix E). The operator clip restricts the value of
its first variable to the range defined by its second and third variables, clip(x, α, β) = max(α,min(β, x)).

can view the sales of each product as a variable and each discount strategy as an action, and assume
that each action only has a significant impact on the sales of those products discounted by this action.
(c) Movie Recommendation. Consider a bandit model for movie recommendation where actions
correspond to different recommendation algorithms, and the variables are all the movies in the catalog.
For each user, define a set of binary payoffs that indicate whether the user watches a movie in the
catalog, and the reward is the number of movies from the catalog that this user watches. Since a
recommendation (action) for this user contains (promotes) only a subset of movies, it is reasonable to
assume that only their associated payoffs are affected by that action.

Our Contributions. To begin with, we formalize an uplifting bandit model that captures the
aforementioned structure, with the term uplift borrowed from the field of uplift modeling [15, 22]
to indicate that the actions’ effects are incremental over a certain baseline. The model is stochastic,
that is, the payoffs of the variables follow an unknown distribution that depends on the chosen action.
We study this problem under various assumptions on the learners’ prior knowledge about (1) the
baseline payoff of each variable and (2) the set of affected variables of each action. Our first result
(Section 3) shows that when both (1) and (2) are known, a simple modification of the upper confidence
bound (UCB) algorithm [3] (Algorithm UPUCB (b)) for estimating the uplifts has a much lower
regret than its standard implementation. Roughly speaking, when m is the number of variables and L
is the number of variables affected by each action, we get a O(L2) regret bound instead of O(m2).
This results in a major reduction for L≪ m, and is a distinguishing feature of all our results.

Going one step further, we design algorithms that have minimax optimal regret bounds without
assuming that either (1) or (2) is known. When (1) the baseline payoffs are unknown and (2) the
affected variables are known, we compute differences of UCBs to estimate the uplifts (Algorithm UP-
UCB). In contrast to standard UCB methods, these differences are not optimistic, in the sense they
are not high-probability upper bounds on the estimated quantity. This construction reflects the fact
that the feedback for any single action also provides information about the baseline. When (2) the
affected variables are also unknown, we identify them on the fly to maintain suitable estimates of
the uplifts. We study two approaches, which differ in what they know about the affected variables.
Algorithm UPUCB-nAff (Section 6) knows an upper bound on number of affected variables, whereas
Algorithm UPUCB-iLift (Appendix E) knows a lower bound on individual uplift. Our regret bounds
are summarized in Table 1. These results are further complemented with lower bounds that justify the
need for our modeling assumptions (Section 4). To demonstrate the generality of our setup and how
our algorithmic ideas extend beyond vanilla multi-armed bandits, we discuss contextual extensions of
our model in Section 7. The experiments in Section 8 confirm the benefit of our approach.

Related Work. The goals of both uplifting modeling and MAB is to help selecting the optimal action.
The former achieves it by modelling the incremental effect of an action on an individual’s behavior.
Despite this apparent connection between the two concepts, few papers explicitly link them together.
We believe that this is because uplifting can be solved by classic bandit algorithms with a redefined
reward. This approach was taken in [6, 23].

Instead, our paper focuses on bandit problems in which estimating the uplifts improves the statistical
efficiency of the algorithms, and this is made possible thanks to the ‘sparsity’ of the actions’ effects.
Prior to our work, sparsity assumptions in bandits primarily concerned the sparsity of the parameter
vectors in linear bandits [2, 5, 16]. A notable exception is Kwon et al. [18] who studied a variant of
the MAB where the sparsity is reflected by the fact that the number of arms with positive reward
is small. Our work is orthogonal to all of these in that we look at a different form of sparsity. As
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we will see in Section 7, while sparsity in parameter can be a cause of sparsity in action effect, the
improvement of regret is established with a different mechanism.

The additive structure of the reward and observability of individual payoffs also suggest some
similarity between our model and that of combinatorial semi-bandits [10, 17, 21]. There, the learner
selects at each round a subset of ground items and the reward is generally defined as the sum of the
payoffs of the selected items. However, this seeming similarity comes with an important conceptual
difference: the set of items, or variables, for which we observe the outcomes are selected in semi-
bandits, while for us they are fixed and inherent to the reward generation mechanism. As an example,
in Application (c), combinatorial bandit models optimize the number of movies that are watched
among the recommended ones, while we also consider movies that are not recommended. In fact, as
argued by Wang et al. [24], a recommendation is only effective if the user actually watches the movie
and would not watch it without the recommendation. We refer the readers to Appendix B for more
technical details and also a comparison with the causal bandit model.

Organization. We introduce our uplifting bandit model along with its various variations in Section 2.
Over Sections 3, 5, 6, we provide regret bounds for these variations, with a lower bound presented
in Section 4. We discuss contextual extensions in Section 7 and experimental results in Section 8.

2 Problem Description

We start by formally introducing our uplifting bandit model. We illustrate it in Fig. 1 and summarize
our notation in Appendix A. Contextual extensions of this model are discussed in Section 7.

A (K,m)-uplifting bandit is a stochastic bandit with K actions and m underlying variables. Each
action a ∈ A := {1, ...,K} is associated with a distribution Pa on Rm. At each round t, the learner
chooses an action at ∈ A and receives reward rt =

∑
i∈V yt(i) where V := {1, ...,m} is the set of

all variables and yt = (yt(i))i∈V ∼ Pat is the payoff vector.2 Our model is distinguished by two
assumptions that we describe below.

(I) Limited Number of Affected Variables. Let Va ⊆ V be the subset of variables affected by
action a and P0 be the baseline distribution that the variables’ payoffs follow when no action is
taken. By definition Pa and P0 have the same marginal distribution on Va := V \ Va, the variables
unaffected by action a.3 While the above condition is always satisfied with Va = V , we are interested
in the case of La := card(Va) ≪ m, meaning only a few variables are affected by a. We define
L as a uniform bound on La, so that maxa∈A La ≤ L. For convenience of notation, we write
[T ] := {1, ..., T} and A0 = A∪{0}, where 0 is used for all the quantities related to the baseline.
(II) Observability of Individual Payoff. In addition to the reward rt, we assume that the learner
observes all the payoffs (yt(i))i∈V after an action is taken in round t.

Uplift and Noise. Let ya = (ya(i))i∈V be a random variable with distribution Pa. We define
µa(i) = E[ya(i)] and ξa(i) = ya(i) − µa(i) respectively as the expected value and the noise
component of ya(i). We use µa (resp. µ0) to denote the vector of (µa(i))i∈V (resp. (µ0(i))i∈V ), and
refer to µ0 as the baseline payoffs. The individual uplift associated to a pair (a, i) ∈ A×V is defined
as µa

up(i) = µa(i) − µ0(i). An individual uplift can be positive or negative. We obtain the (total)
uplift of an action by summing its individual uplifts over all the variables affected by that action

raup =
∑
i∈Va

µa
up(i) =

∑
i∈Va

(µa(i)− µ0(i)). (1)

Let ra =
∑

i∈V µa(i) be the expected reward of an action or of pure observation. We also have
raup = ra − r0 since µa(i) = µ0(i) as long as i /∈ Va.

A real-value random variable X is said to be σ-sub-Gaussian if for all γ ∈ R, it holds E[exp(γX)] ≤
exp(σ2γ2/2). Throughout the paper, we assume that ξa(i) is 1-sub-Gaussian for all a ∈ A0 and
i ∈ V . Note that we do not assume that (ya(i))i∈V are independent, i.e., the elements in the noise
vector (ξa(i))i∈V may be correlated, for the following two reasons:

2The terms reward and payoff distinguish rt and (yt(i))i∈V .
3If the actions in fact have small impact on the variables in Va, our model is misspecified and incurs additional

linear regret whose size is proportional to the impact of the actions on Va. An interesting question is how we
can design algorithms that self-adapt to the degree of misspecification.
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Figure 1: Illustration of the up-
lifting bandit model. This exam-
ple has K = 3 actions, m = 5
variables and each action affects
La = 2 variables. Dash lines indi-
cate the variables’ payoffs follow
the baseline distribution P0 by de-
fault.
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(a) UPUCB: After suboptimal ac-
tion at is taken, the confidence
intervals of (µa(i))i∈Vat and
(µ0(i))i∈Va⋆\Vat shrink (from
purple to pink). Hence the uplifting
index of at decreases while that of
a⋆ increases (from dash to solid).

[

[

[

[

[

[

[

[[

[

[

Identified Padding

(b) UPUCB-nAff (b): To compute
the uplifting index of an action, we
identify a set of variables whose
associated confidence intervals do
not contain the baseline payoff and
pad it with the variables with the
largest UCBs on uplifts.

Figure 2: Explanation about UPUCB and UPUCB-nAff (b) using model
from Fig. 1. The five vertical bars correspond to the five actions while the
y axis corresponds to the value of the payoff.

• The independence assumption is not always realistic. In our first example, it excludes any potential
correlation between two customers’ purchases.

• While a learner can exploit their knowledge on the noise covariance matrix to reduce the regret, as
for example shown by Degenne and Perchet [12], incorporating such knowledge complicates the
algorithm design and analysis. However, we believe this is an interesting future direction to pursue.

Regret. The learner’s performance is characterized by their regret. To define it, we denote by
a⋆ ∈ argmaxa∈A ra an action with the largest expected reward and by r⋆ = ra

⋆

= maxa∈A ra the
largest expected reward. The regret of the learner after T rounds is then given by

RegT = r⋆T −
T∑

t=1

rat =
∑
a∈A

T∑
t=1

1{at = a}∆a, (2)

where ∆a = r⋆ − ra is the suboptimality gap of action a. In words, we compare the learner’s cumu-
lative (expected) reward against the best we can achieve by taking an optimal action at each round. In
the following, we also write ∆ = mina∈A,∆a>0 ∆

a for the minimum non-zero suboptimality gap
and refer to it as the suboptimality gap of the problem.

UCB for Uplifting Bandits. The UCB algorithm [4], at each round, constructs an upper confidence
bound (UCB) on the expected reward of each action and chooses the action with the highest UCB.
When applied to our model, we get a regret of O(Km2 log T/∆), as the noise in the reward is
m-sub-Gaussian (recall that we do not assume independence of the payoffs). However, this approach
completely ignores the structure of our problem. As we show in Section 3, we can achieve much
smaller regret by focusing on the uplifts.

Problem Variations. In the following sections, we study several variants of the above basic problem
that differ in the prior knowledge about (Pa)a∈A0

that the learner possesses.

(a) Knowledge of Baseline Payoffs. We consider two scenarios based on whether the learner knows
the baseline payoffs µ0 := (µ0(i))i∈V or not.
(b) Knowledge of Affected Variables. We again consider two scenarios based on whether the
learner knows the affected variables associated with each action (Va)a∈A or not.

3 Case of Known Baseline and Known Affected Variables

We start with the simplest setting where both the affected variables and the baseline payoffs are known.
To address this problem, we make the crucial observation that for any two actions, the difference in
their rewards equals to that of their uplifts. As an important consequence, uplift maximization has
the same optimal action as total reward maximization, and we can replace rewards by uplifts in the
definition of the regret (2). Formally, we write r⋆up = ra

⋆

up = maxa∈A raup for the largest uplift; then
RegT = r⋆upT −

∑T
t=1 r

at
up . By making this transformation, we gain in statistical efficiency because
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raup = E[
∑

i∈Va(ya(i) − µ0(i))] can now be estimated much more efficiently under our notion of
sparsity. Since both µ0 and (Va)a∈A are known, we can directly construct a UCB on raup. For this,
we define for all rounds t ∈ [T ], actions a ∈ A, and variables i ∈ V the quantities

Na
t =

t∑
s=1

1{as = a}, cat =

√
2 log(1/δ′)

Na
t

, µ̂a
t (i) =

t∑
s=1

ys(i)1{as = a}
max(1, Na

t )
, (3)

where δ′ > 0 is a tunable parameter. In words, Na
t , µ̂a

t (i), and cat represent respectively the number
of times that action a is taken, the empirical estimate of µa(i), and the associated radius of confidence
interval calculated at the end of round t. The UCB for action a ∈ A and variable i ∈ Va at round t is
Ua
t (i) = µ̂a

t−1(i) + cat−1. We further define τat =
∑

i∈Va(Ua
t (i)− µ0(i)) as the uplifting index, and

refer to UPUCB (b) as the algorithm that takes an action with the largest uplifting index τat at each
round t (Algorithm 3, Appendix A). Here, the suffix (b) indicates that the method operates with the
knowledge of the baseline payoffs.

Since UPUCB (b) is nothing but a standard UCB with transformed rewards r′t =
∑

i∈Vat (yt(i)−
µ0(i)), and E[r′t] = rat

up defines exactly the same regret as the original reward, a standard analysis for
UCB yields the following result.
Proposition 1. Let δ′ = δ/(2KT ). Then the regret of UPUCB (b) (Algorithm 3, Appendix A), with
probability at least 1− δ, satisfies

RegT ≤
∑

a∈A:∆a>0

(
8(La)2 log(2KT/δ)

∆a
+∆a

)
. (4)

As expected, the regret bound does not depend on m and scales with L2. This is because the
transformed reward of action a is only La-sub-Gaussian. The improvement is significant when
L≪ m. However, this also comes at a price, as both the baseline payoffs and affected variables need
to be known. We address these shortcomings in Sections 5 and 6. On a side note, we remark that
observing the aggregated payoff

∑
i∈Vat yt(i) is sufficient for UPUCB (b), but this will not be the

case for the other algorithms presented in our paper.

Estimating Baseline Payoffs from Observational Data. In practice, the baseline payoffs µ0 can
be estimated from observational data, which gives confidence intervals that µ0(i) lie in with high
probability. The uplifting indices can then be constructed by subtracting the lower confidence bounds
of µ0(i) from Ua

t (i). If the number of samples is n, the widths of the confidence intervals are in
O(1/

√
n). Identification of a∗ is possible only when the sum of these widths over L variables is at

most ∆, which requires n = Ω(L2/∆2). Otherwise, these errors persist at each iteration and n must
be in the order of T to ensure O(

√
T ) regret.

Gap-Free Bounds. In Proposition 1, we state a high-probability instance-dependent regret bound,
and we will continue to do so for all the regret upper bounds that we present for the non-contextual
variants. This type of result can be directly transformed to bound on E[RegT ] by taking δ = 1/T .
Following the routine of separating ∆a into two groups depending on their scale, most of our proofs
can be modified to obtain a gap-free bound, which is usually in the order of O(L

√
KT log(T )). We

will not state these results to avoid unnecessary repetitions.

4 Lower Bounds

In this section, we shortly discuss the necessity of our modeling assumptions for obtaining the
improved regret bounds of Proposition 1. The complete discussion appears in Appendix D.

Intuitively, the regret can be improved both because the noise in the effect of an action is small,
and because the observation of this effect does not heavily deteriorate with noise. These two points
correspond respectively to assumptions (I) and (II). Moreover, the knowledge on (Va)a∈A allows
the learner to distinguish between problems with different structures. Without such distinction, there
is no chance that the learner can leverage the underlying structure. Therefore, the aforementioned
three points are crucial for obtaining (4). Below, we establish this formally for algorithms that are
consistent [19] over the class of 1-sub-Gaussian uplifting bandits, which means the induced regret of
the algorithm on any uplifting bandit with 1-sub-Gaussian noise satisfies Regt = o(tp) for all p > 0.
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Proposition 2. Let π be a consistent algorithm over the class of 1-sub-Gaussian uplifting bandits
that at most uses the knowledge of P0, (Va)a∈A, and the fact that the noise is 1-sub-Gaussian. Let
K,m > 0 and sequence (La,∆a)1≤a≤K ∈ ([m] × R+)

K satisfy ∆1 = 0. Assume either of the
following holds.

(a) La = m for all a ∈ A, so that in the bandits considered below all actions affect all variables.

(b) Only the reward is observed.

(c) The algorithm π does not make use of any prior knowledge about the arms’ expected payoffs
(µa)a∈A (in particular, the knowledge of (Va)i∈V is not used by π).

Then, there exists a 1-sub-Gaussian (K,m)-uplifting bandit whose suboptimality gaps and numbers
of affected variables are respectively (∆a)a∈A and (La)a∈A, such that the regret induced by π on it
satisfies: lim infT→+∞

E[RegT ]
log T ≥

∑
a∈A:∆a>0

2m2

∆a .

Proposition 2 states an instance-dependent lower-bound for a learner that may be equipped with full
knowledge of the baseline distribution.4 Its proof is presented in Appendix D. At this point, what
remains unclear is whether similar improvement of the regret is still possible when the baseline is
unknown or when the learner only has access to more restricted knowledge than (Va)a∈A. We give
affirmative answers to these two questions in the next two sections.

5 Case of Unknown Baseline

In this section, we consider the situation where the learner knows the sets of affected variables
(Va)a∈A, but not the baseline payoffs. Since the actual uplift at each round is never observed, the
uplifts of the actions can hardly be estimated directly in this case. Instead, we follow a two-model
approach. Leveraging the fact that Pa and P0 have the same marginal distribution on Va, we can
estimate the baseline payoffs by aggregating information from the feedback of different actions. This
leads to

N0
t (i) =

t∑
s=1

1{i /∈ Vas}, c0t (i) =

√
2 log(1/δ′)

N0
t (i)

, µ̂0
t (i) =

∑t
s=1 ys(i)1{i /∈ Vas}
max(1, N0

t (i))
. (5)

Compared to (3), we notice that both N0
t and c0t are functions of i. This is because for each taken

action a, we only increase the counters N0
t (i) for those i /∈ Va, which causes a non-uniform increase

of (N0
t (i))i∈V . Then, by looking at all the rounds that variable i is not influenced by the chosen

action, we manage to compute µ̂0
t (i), an estimate of µ0(i). To proceed, we define the following UCB

indices for all the pairs (a, i) ∈ A0 × V

Ua
t (i) =


0 if a = 0 and i ∈

⋂
a∈A Va,

µ̂a
t−1(i) + cat−1 if a ∈ A and i ∈ Va,

µ̂0
t−1(i) + c0t−1(i) otherwise.

(6)

The second and the third lines of (6) contain the usual definition of UCBs using the empirical
estimates and the radii of the confidence intervals defined in (3) and (5). In the special case that a
variable is affected by all the actions, it is impossible to estimate U0(i) but it is enough to compare
Ua(i) directly against Ua′

(i) for any two actions a, a′ ∈ A, so we just set U0
t (i) to 0 in this case.

We outline the proposed method, UPUCB, in Algorithm 1. The uplifting indices are given by
τat =

∑
i∈Va(Ua

t (i)− U0
t (i)). It may be counter-intuitive to compare the differences between two

UCBs. Indeed, τat is no longer an optimistic estimate of the uplifting effect raup, but it captures the
essential trade-off between learning action a’s payoffs and learning the baseline µ0. To provide some
intuition, we give an informal justification of UPUCB in Fig. 2a: If a suboptimal action a is taken
in round t, the estimates of all Ua

t (i) move closer to the actual mean from above. As a result, τat
decreases, since all Ua

t (i) for i ∈ Va do. Thus action a is less likely to be taken next. Moreover, τa
⋆

t
increases, since U0

t (i) decrease for any i affected by a⋆ but not a. Thus a⋆ is more likely to be taken
next. The effectiveness of UPUCB is confirmed by the following theorem.

4Of course, the problem only becomes more challenging if the learner does not know the baseline distribution.
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Algorithm 1 UPUCB

1: Input: Error probability δ′, the sets of variables each action affects {Va : a ∈ A}
2: Initialization: Take each action once
3: for t = K + 1, . . . , T do
4: Compute the UCB indices following (6)
5: For a ∈ A, set τat ←

∑
i∈Va(Ua

t (i)− U0
t (i))

6: Select action at ∈ argmaxa∈A τat

Theorem 1. Let δ′ = δ/(4KLT ). Then the regret of UPUCB (Algorithm 1) with probability at least
1− δ, satisfies:

RegT ≤
∑

a∈A:∆a>0

(
8(La + La⋆

)2 log(4KLT/δ)

∆a
+∆a

)
. (7)

Idea of proof. The full proof of Theorem 1 is presented in Appendix C.2, and proceeds as following.

1. With concentration of measure, we show that with probability 1− δ, it holds |µ̂a
t (i)−µa(i)| ≤ cat

and |µ̂0
t (i)−µ0(i)| ≤ c0t (i) for all relevant estimates. It is thus sufficient to show that (7) holds when

these inequalities are satisfied.
2. A suboptimal action a can only be taken if its uplifting index is larger than that of a⋆, i.e., if∑

i∈Va(Ua
t (i)− U0

t (i)) ≥
∑

i∈Va⋆ (Ua⋆

t (i)− U0
t (i)). Rearranging, we get∑

i∈Va

Ua
t (i) +

∑
i∈Va⋆\Va

U0
t (i) ≥

∑
i∈Va⋆

Ua⋆

t (i) +
∑

i∈Va\Va⋆

U0
t (i). (8)

Using the inequalities mentioned in the previous point and ∆a = ra
⋆

up − raup, bounding the two sides
of (8), we deduce ∆a ≤ 2Lacat−1 +

∑
i∈Va⋆\Va 2c0t−1(i).

3. Note that for all i ∈ Va⋆ \ Va, whenever action a is taken, the count of N0
s (i) also increases by 1.

We have thus N0
t−1(i) ≥ Na

t−1 and accordingly c0t−1(i) ≤ cat−1. We then get ∆a ≤ 2(La+La⋆

)cat−1.
This allows us to bound the number of times that action a is taken and conclude.

As in Proposition 1, the regret of Theorem 1 is inO(KL2 log T/∆). In fact, all decisions in UPUCB
are made on uncertain estimates of at most L variables; thus the statistical efficiency scales with L
and not m. A detailed comparison with Proposition 1 reveals that the difference is in the order of
K(La⋆

)2 log T/∆; this is only significant when the optimal actions affect many more variables then
the suboptimal ones. Hence, the price of not knowing the baseline payoffs is generally quite small.

6 Case of Unknown Affected Variables

Now we study the more challenging setting where the affected variables (Va)a∈A are unknown to
the learner. Proposition 2 states that improvement is impossible if the learner does not have any
prior knowledge to exploit the structure. To circumvent this negative result, we study two weak
assumptions motivated by practice: learner has access to (i) an upper bound on the number of affected
variables or (ii) a lower bound on individual uplift. Due to space constraints, we only present the first
setting here and defer the discussion of the other to Appendix E.

For the rest of this section, we assume that we know an upper bound on the number of affected
variables L (i.e., L ≥ maxa∈A La). We design algorithms with O(KL2 log T/∆) regret bounds that
takes L as input. We consider the cases of known and unknown baseline payoffs.

Known Baseline Payoffs. To illustrate our ideas, we start by assuming that the baseline payoffs
are known. We propose an optimistic algorithm that maintains a UCB on the total uplift with an
overestimate in the order of L. Let Na

t , cat , and µ̂a
t (i) be defined as in (3). The UCB, uplifting indices,

and the confidence intervals for each (action, variable) pair (a, i) ∈ A× V are

Ua
t (i) = µ̂a

t−1(i) + cat−1, ρ
a
t (i) = Ua

t (i)− µ0(i), Cat (i) = [µ̂a
t−1(i)− cat−1, µ̂

a
t−1(i) + cat−1]. (9)

In the rest of the paper, we refer to ρat (i) as the individual uplifting index of the pair (a, i). It is
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Algorithm 2 UPUCB-nAff

1: Input: Error probability δ′, Upper bound L on the number of variables that each action affects
2: Initialization: Take each action once
3: for t = K + 1, . . . , T do
4: Choose bt ∈ argmaxa∈A Na

t−1 and compute UCBs and confidence intervals using (9)
5: for a ∈ A do
6: Set V̂a

t ← {i ∈ V : Cat (i)∩C
bt
t (i) = ∅}

7: For i ∈ V , compute ρat (i)← Ua
t (i)− U bt

t (i)

8: Set La
t ← max(0, 2L− card(V̂a

t )) and La
t ← argmaxL⊆V\V̂a

t , card(L)≤La
t

∑
i∈L ρat (i)

9: Compute uplifting index τat ←
∑

i∈V̂a
t ∪La

t
ρat (i)

10: Select action at ∈ argmaxa∈A τat

an overestimate of the individual uplift µa
up(i). As for Cat (i), it is the confidence interval that µa(i)

lies in with high probability. Our algorithm, UPUCB-nAff (b) with nAff for number of affected,
leverages two important procedures to compute an optimistic estimate of the uplift raup: identification
of affected variables, and padding with variables with the highest individual uplifting indices.

To begin, UPUCB-nAff (b) constructs the set of identified variables V̂a
t = {i ∈ V : µ0(i) /∈ Cat (i)}

which is contained in Va with high probability. In fact, by concentration of measure, with high
probability µa(i) ∈ Cat (i), in which case µ0(i) /∈ Cat (i) indicates i ∈ Va. However, V̂a

t is not
guaranteed to capture all the affected variables, so we also need to provide an upper bound for∑

i∈Va\V̂a
t
µa

up(i), the uplift contributed by the unidentified affected variables. Since the individual
uplifting index ρat (i) is in fact a UCB on the individual uplift µa

up(i) here and card(Va) ≤ L, we can
simply choose the L− card(V̂a

t ) variables in V \ V̂a
t with the largest ρat (i). Let us refer to this set as

La
t . We then get a proper UCB on the uplift of action a by computing τat =

∑
i∈V̂a

t ∪La
t
ρat (i). This

process is summarized in Algorithm 4 in Appendix A and illustrated in Fig. 2b.

Unknown Baseline Payoffs. Now we focus on the most challenging setting, where also the baseline
payoffs are unknown. In this case, neither the sets of identified variables nor the uplifting indices
of UPUCB-nAff (b) can be defined. We also cannot estimate the baseline payoffs using (5) since
the sets of affected variables are unknown. To overcome these challenges, we note that for any two
actions a, a′ ∈ A, µa and µa′

only differ on Va ∪Va′
, and card(Va ∪Va′

) ≤ 2L. Therefore, µa and
µa′

differ in at most 2L variables, and we recover a similar problem structure by taking the payoffs
of any action as the baseline.

Combining this idea with the elements that we have introduced previously, we obtain UPUCB-nAff
(Algorithm 2). In each round, UPUCB-nAff starts by picking a most frequently taken action bt (Line
4) whose payoffs are treated as the baseline in that round. Then, in Line 6, UPUCB-nAff chooses
variables that are guaranteed to be either in Va or Vbt . This generalizes the identification step of
UPUCB-nAff (b). The individual uplifting indices ρat (i) = Ua

t (i)− U bt
t (i) are computed in Line 7.

The differences of UCBs are inspired by a similar construction in UPUCB. Line 8 constitutes the
padding step, during which variables with the highest uplifting indices are selected, and finally in
Line 9 we combine the above to get the uplifting index of the action. To see why UPUCB-nAff is
similar to UPUCB-nAff (b), suppose that one action has been taken frequently. Then the baseline
payoffs are precisely estimated and do not change much between consecutive rounds.

Regret. Both UPUCB-nAff (b) and UPUCB-nAff choose O(L) variables for estimating the uplift
of an action, and the decisions are based on these estimates. Therefore, the statistical efficiencies
of these algorithms only scale with L and not m. This in turn translates into an improvement of the
regret, as demonstrated by the theorem below.

Theorem 2. Let δ′ = δ/(2KmT ). Then the regret of UPUCB-nAff (Algorithm 2) (resp. UPUCB-
nAff (b), Algorithm 4), with probability at least 1− δ, satisfies:

RegT ≤
∑

a∈A:∆a>0

(
αL2 log(2KmT/δ)

∆a
+∆a

)
, (10)

where α = 512 (resp. 32) in the above inequality.
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Idea of proof. The full proof of Theorem 2 is presented in Appendix C.3. We outline below the main
steps to prove the result for UPUCB-nAff (b).

1. With concentration of measure, with probability 1− δ it holds µa(i) ∈ Cat (i). Then, as explained
in the text, V̂a

t ⊆ Va and τat is an upper bound on raup; especially τa
⋆

t ≥ ra
⋆

up .

2. For i /∈ V̂a
t , by definition µ0(i) ∈ Cat , from which we deduce 0 ≤ ρat (i) ≤ 2cat−1. With V̂a

t ⊆ Va

and La
t ⊆ V \ V̂a

t we can then write

τat =
∑

i∈V̂a
t ∪La

t

ρat (i) ≤
∑
i∈Va

ρat (i) +
∑
i∈La

t

ρat (i) ≤ raup + 4Lcat−1.

We have also used card(Va) ≤ L, card(La
t ) ≤ L, and ρat (i) ≤ µa(i) + 2cat−1.

3. Whenever a suboptimal action a is taken, we have τat ≥ τa
⋆

t . Combined with the two previous
point we then deduced ∆a ≤ 4Lcat−1. Subsequently, we bound the number of times that each
suboptimal action a is taken to conclude.

The proof of Theorem 2 is notable for two reasons. First, tracking of the identified variables guarantees
that the uplifting index τat does not overestimate the uplift raup too much. Take UPUCB-nAff (b)
as an example. An alternative to constructing a UCB on raup is to choose the L variables with the
highest individual uplifting indices ρat (i). However, this would result in a severe overestimate when a
negative individual uplift is present. Second, to prove (10) for UPUCB-nAff, we use that the widths
of confidence intervals of the chosen bt are always smaller than those of the taken action. This is
ensured by taking bt as the most frequent action (Line 4 in Algorithm 2).

7 Contextual Extensions

In this section, we briefly discuss potential contextual extensions of our model; a detailed case study
is presented in Appendix F. As in contextual bandits, context is a side information that helps the
learner to make a more informed decision, which results in a higher reward. To incorporate context,
one possibility is to associate each variable with a feature vector xt(i) ∈ Rd. The subscript t indicates
that the context can change from one round to another. We also associate each action with a function
fa so that the expected payoff of action a acting on a variable with feature xt(i) is fa(xt(i)). The
expected reward of choosing a at round t is then ra(xt) =

∑
i∈V fa(xt(i)). The optimal action

in round t is a⋆t = argmaxa∈A ra(xt) and the regret of a learner that takes the actions (at)t∈[T ] is
given by RegT =

∑T
t=1

∑
i∈V(f

a⋆
t (xt(i))− fat(xt(i))).

The key structure in our model (Section 2) is that there exists a baseline payoff vector µ0 such that
for any given action a, µa(i) = µ0(i) holds for most i ∈ V . Given context, this translates into the
existence of a baseline function f0 such that for any given a and t, fa(xt(i)) = f0(xt(i)) holds for
most i ∈ V . The uplift of action a is defined as raup(xt) =

∑
i∈V fa(xt(i))− f0(xt(i)).

For concreteness, let us consider a model with linear payoffs. Then, each action is associated with
an unknown parameter θa and the expected payoff is the scalar product of θa and the feature of the
variable, i.e., fa(xt(i)) = ⟨θa, xt(i)⟩. We also assume the aforementioned equality to hold for the
baseline function f0 and we use Va

t = {i ∈ V : ⟨θa, xt(i)⟩ ≠ ⟨θ0, xt(i)⟩} for the variables affected
by action a at round t. One sufficient condition for Va

t to be small is sparsity in both the parameter
difference θaup = θa − θ0 and the context vector xt(i). In fact, ⟨θa, xt(i)⟩ = ⟨θ0, xt(i)⟩ as long as
the supports of θaup and xt(i) are disjoint. We assume card(Va

t ) is uniformly bounded by L below.

Clearly, our algorithms can be directly applied as long as we can construct a UCB on ⟨θa, xt(i)⟩.
This can for example be done using the construction of linear UCB [1]. In this way, the decision
of the learner is again based on the uncertain estimates of at most O(L) variables, and we expect
similar improvements as in our earlier theorems. As an example, when both θ0 and Va

t are known,
UPUCB (b) adapted to this situation constructs UCB for

∑
i∈Va

t
⟨θaup, xt(i)⟩, and it is straightforward

to show that the regret of such algorithm can be as small as O(Ld
√
KT ). In contrast, if the learner

works directly with the total reward, the regret is in O(md
√
KT ).5

5We present gap-free bounds here and thus we get L versus m in the place of L2 versus m2. As in previous
sections, these bounds apply to a potentially dependent noise.
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8 Numerical Experiments
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Figure 3: Experimental results on a synthetic
and real-world dataset. All the curves are
averaged over 100 runs and the shaded areas
represent the standard errors.

In this section, we present numerical experiments to
demonstrate the benefit of estimating uplifts in our model.
We compare our methods introduced in Sections 3, 5 and 6
against UCB and Thompson sampling with Gaussian prior
and Gaussian noise that only use the observed rewards
(rt)t∈[T ]. To ensure a fair comparison, we tune all the
considered algorithms and report results for the parame-
ters that yield the best average performance. The detailed
procedure, and additional experimental details and results,
are provided in Appendices G and H. The experiments
for the contextual extension in Section 7 are presented in
Appendix F.3.

Gaussian Uplifting Bandit. We first study our algo-
rithms in a Gaussian uplifting bandit with K = 10 actions,
m = 100 variables, and La = 10 for all a ∈ A meaning
that each action affects 10 variables.6 The expected pay-
offs are contained in [0, 1], and the covariance matrix of
the noise is taken the same for all the actions. The subop-
timality gap of the created problem is around 0.2, and the
variance of the total noise

∑
i∈V ξa(i) is around 80.

Bernoulli Uplifting Bandit with Criteo Uplift. We use
the Criteo Uplift Prediction Dataset [13] with ‘visit’ as
the outcome variable to build a Bernoulli uplifting bandit,
where the payoff of each variable has a Bernoulli distribu-
tion. This dataset is designed for uplift modeling, and has outcomes for both treated and untreated
individuals. Thus it is suitable for our simulations. To build the model, we sample 105 examples from
the dataset, and use K-means to partition these samples into 20 clusters of various sizes. The 105

examples are taken as our variables. We consider 20 actions that correspond to treating individuals of
each cluster, and construct independent Bernoulli payoffs using the visit rates of the treated/untreated
individuals of the clusters following a procedure detailed in Appendix G.2. Here, L = 12654 and ∆
is around 30.

Results. Fig. 3 confirms that we can effectively achieve much smaller regret by restricting our
attention to the uplift. Moreover, when the sets of affected are known, the loss of not knowing the
baseline payoffs seems to be minimal. On the other hand, not knowing the affected variables has
a more severe effect in the second experiment. In fact, the design of UPUCB-nAff and UPUCB-
nAff (b) heavily rely on the additive structure of the uplifting index, and can thus hardly benefit from
the payoff independence which allow the other four algorithms to achieve smaller regret in this case.

This paper studies multi-armed bandit problems where the rewards are sums of observable variables.
When each action only affects a limited number of these variables, much smaller regret can be
achieved, and we developed algorithms with such guarantees under different forms of knowledge that
the learner possesses.

While we study here a UCB-style algorithm, we believe that understanding how similar improvement
can be achieved by other types of algorithms such as Thompson sampling and information directed
sampling is an important question. Moreover, further extending our work to cope with non-stationary
or even adversarial bandits is another promising direction to pursue. As for the former, a direct
combination with existing techniques [14] can readily make our algorithms bypass the stationarity
assumption that we make throughout the paper.
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