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Abstract

A conceptually appealing approach for learning Extensive-Form Games (EFGs)
is to convert them to Normal-Form Games (NFGs). This approach enables us
to directly translate state-of-the-art techniques and analyses in NFGs to learning
EFGs, but typically suffers from computational intractability due to the exponential
blow-up of the game size introduced by the conversion. In this paper, we ad-
dress this problem in natural and important setups for the Φ-Hedge algorithm—A
generic algorithm capable of learning a large class of equilibria for NFGs. We show
that Φ-Hedge can be directly used to learn Nash Equilibria (zero-sum settings),
Normal-Form Coarse Correlated Equilibria (NFCCE), and Extensive-Form Corre-
lated Equilibria (EFCE) in EFGs. We prove that, in those settings, the Φ-Hedge
algorithms are equivalent to standard Online Mirror Descent (OMD) algorithms
for EFGs with suitable dilated regularizers, and run in polynomial time. This new
connection further allows us to design and analyze a new class of OMD algo-
rithms based on modifying its log-partition function. In particular, we design an
improved algorithm with balancing techniques that achieves a sharp Õ(

√
XAT )

EFCE-regret under bandit-feedback in an EFG with X information sets, A actions,
and T episodes. To our best knowledge, this is the first such rate and matches the
information-theoretic lower bound.

1 Introduction

Extensive form games (EFGs) is a natural formulation for multi-player games with imperfect informa-
tion and sequential play, which models real-world games such as Poker [9, 10], Bridge [45], Scotland
Yard [41], Diplomacy [7] and has many other important applications such as cybersecurity [32],
auction [39], marketing [29]. In multi-player general-sum EFGs, computing an approximate Nash
equilibrium (NE) [40] is PPAD-hard [15] and thus likely intractable. A reasonable and computa-
tionally tractable solution concept in general-sum EFGs is the extensive-form correlated equilibria
(EFCE) [46, 27, 13, 23]. It is known that, as long as each player runs an uncoupled dynamics
minimizing a suitable EFCE-regret, their average joint policy will converge to an EFCE [28].

Existing algorithms of minimizing the EFCE-regret are mostly built upon the regret decomposition
techniques [51], which utilize the structure of the game and the set of policy modifications [13, 38, 23,
42]. For example, Morrill et al. [38] decomposes the EFCE-regret to local regrets at each information
set (infoset) with each of them handled by a local regret minimizer; Farina et al. [23] utilizes the
trigger structure of the policy modification set to decompose the regret to external-like regrets.
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There are at least two alternative approaches to designing regret minimization algorithms for EFGs.
The first is to convert a EFG to a normal-form game (NFG) and use NFG-based algorithms such as
Φ-Hedge [28]. This approach typically admits simple algorithm designs and sharp regret bounds by
directly translating existing results in NFGs [44]. However, the conversion introduces an exponential
blow-up in the game size, and makes such algorithms computationally intractable in general. The
computational efficiency of these NFG-based algorithms is recently investigated by Farina et al. [25]
in the external regret minimization problem, who provided an efficient implementation of an NFG-
based algorithm using “kernel tricks”. The second is to use Online Mirror Descent (OMD) algorithms
via suitably designed regularizers over the parameter space. This approach has been successfully
implemented in minimizing the external regret [35] but not yet generalized to the EFCE-regret, as it
remains unclear how to design suitable regularizers for the policy modification space.

In this paper, we develop the first line of EFCE-regret minimization algorithms along both lines of
approaches above, and identify an equivalence between them. We consider EFCE-regret minimization
in EFGs with X infosets, A actions, and maximum L1-norm of sequence-form policies bounded by
∥Π∥1 (cf. Section 2.2 for the formal definition). Our contributions can be summarized as follows:

• We present an efficient implementation of the Φ-Hedge algorithm for minimizing the extensive-
form trigger regret, by recursively evaluating the gradient of a log-partition function (Section 3.1).
The implementation further reveals that this algorithm (via reparametrization) is equivalent to an
OMD algorithm with dilated regularizers, which we term as EFCE-OMD (Section C.1).

• We show that EFCE-OMD achieves trigger regret bound Õ(
√

∥Π∥1 T ) under full feedback and
Õ(
√
X ∥Π∥1 AT ) under bandit feedback (Section 3.3). Notably, the proofs are done using the

corresponding NFG analysis straightforwardly, and is independent of the actual implementation.
• We design an improved algorithm Balanced EFCE-OMD, and show that it achieves a sharp
Õ(

√
XAT ) trigger regret under bandit feedback (Section 4). This improves over EFCE-OMD by

a factor of ∥Π∥1 and is the first to match the information-theoretic lower bound. The algorithm
works by modifying the above log-partition function using a variety of balancing techniques,
and is equivalent to another OMD algorithm (but no longer an NFG algorithm).

• As another example of our framework, we show that the Φ-Hedge algorithm for vanilla (external)
regret minimization in EFGs, along with its efficient implementation via “kernelization” devel-
oped recently in [25], is actually equivalent to standard OMD with dilated entropy (Section 5).

1.1 Related work

Φ-regret minimization and correlated equilibrium The Φ-regret minimization framework was
introduced in Greenwald and Jafari [28] and Stoltz and Lugosi [44]. In particular, Greenwald and
Jafari [28] showed that uncoupled no Φ-regret dynamics leads to Φ-correlated equilibria, a generalized
notion of correlated equilibria introduced by Aumann [5]. Stoltz and Lugosi [44] then developed a
family of Φ-regret minimization algorithms using the fixed-point method (including the Φ-Hedge
algorithm considered in this paper), and derived explicit regret bounds. Two important special cases
of Φ-regret are the internal regret and swap regret in normal-form games [43, 8]. A recent line of
work developed algorithms with O(polylogT ) swap regret bound in normal-form games [2, 3].

Regret minimization in EFG from full feedback A line of work considers external regret min-
imization in EFGs from full feedback [51, 12, 11, 21, 50]. In particular, Zhou et al. [50] achieves
Õ(

√
XT ) external regret. The recent work of Farina et al. [25] develops the first algorithm to achieve

Õ(∥Π∥1 polylogT ) external regret in EFGs by converting it to an NFG and invoking the fast rate of
Optimistic Hedge [16], along with an efficient implementation via the “kernel trick”. Our Φ-regret
framework covers their algorithm as a special case, and we further show that their algorithm (along
with its efficient implementation) is equivalent to the standard OMD with dilated entropy.

The notion of Extensive-Form Correlated Equilibria (EFCE) in EFGs was introduced in Von Stengel
and Forges [46]. Optimization-based algorithms for computing computing EFCEs in multi-player
EFGs from full feedback have been proposed in Huang and von Stengel [31], Farina et al. [20].

Gordon et al. [27] first proposed to use uncoupled EFCE-regret minimization dynamics to compute
EFCE; however, they do not explain how to efficiently implement each iteration of the dynamics.
Recent works [13, 23, 38, 42] developed uncoupled EFCE regret minimization learning dynamics
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with efficient implementation; All of these algorithms are based on counterfactual regret decomposi-
tion [51] and minimizing each trigger regret (first considered by Dudik and Gordon [17], Gordon
et al. [27]) using a different regret minimizer. Celli et al. [13] decomposed the regret to each laminar
subtree, but they did not give an explicit regret bound. Farina et al. [23] decomposed the regret to
each trigger sequence and used CFR type algorithm to minimize the regret on each trigger sequence
and achieved an Õ(

√
X2T ) EFCE-regret bound. Morrill et al. [38], Song et al. [42] decomposed

the regret to each information set and use regret minimization algorithms with time-selection func-
tions [8, 33] to minimize the regret on each information set, giving Õ(

√
X2T ) and Õ(

√
XT ) regret

bounds respectively. In this paper, we show that the simple Φ-Hedge algorithm, which has an efficient
implementation and an intuitive interpretation, can also achieve the state-of-art Õ(

√
XT ) regret

bound in the full feedback setting.

Regret minimization in EFG from bandit feedback Minimizing the external regret in EFGs from
bandit feedback is considered in a more recent line of work [36, 22, 19, 24, 49, 47, 34, 6]. Dudík and
Gordon [18] consider sample-based learning of EFCE in succinct extensive-form games; however,
their algorithm relies on an approximate Markov-Chain Monte-Carlo sampling subroutine that does
not lead to a sample complexity guarantee.

A concurrent work by Song et al. [42] also achieves Õ(X/ε2) sample complexity for learning EFCE
under bandit feedback (when only highlighting X) using the Balanced K-EFR algorithm. Our work
achieves the same linear in X sample complexity, but using a very different algorithm (Balanced
EFCE-OMD). We also remark that the algorithm of [42] cannot minimize the EFCE-regret against
adversarial opponents from bandit feedback like our algorithm, as their algorithm requires playing
multiple episodes against a fixed opponent, which is infeasible when the opponent is adversarial.

2 Preliminaries

2.1 Φ-regret minimization and Φ-Hedge algorithm

Consider a generic linear regret minimization problem on a policy set Π ⊂ Rd
≥0 with respect to a

policy modification set Φ ⊂ Rd×d. Here Π is a convex compact subset of Rd, and Φ is a convex
compact subset of Rd×d, where each ϕ ∈ Φ is a policy modification function which is a linear
transformation from Rd to Rd that maps Π to itself (ϕ(Π) ⊆ Π). For any algorithm that plays policies
{µt}Tt=1 within T rounds and receives loss functions {ℓt}Tt=1 ⊂ Rd

≥0, the Φ-regret is defined as

RegΦ(T ) := supϕ∈Φ

∑T
t=1 ⟨µt − ϕµt, ℓt⟩ . (1)

The Φ-regret subsumes the vanilla regret (i.e. external regret) as a special case by taking Φ to be
the set of all constant modifications Φext := {ϕµ⋆

: µ⋆ ∈ Π} where ϕµ⋆µ = µ⋆ for all µ ∈ Π.
Another widely studied example is the swap regret [8] (and the closely related internal regret [26])
for normal-form games, where Π = ∆d is the probability simplex over d actions, and Φ is the set of
all stochastic matrices (i.e. those mapping ∆d to itself). A primary motivation for minimizing the
Φ-regret is for computing various types of Correlated Equilibria (CEs) in multi-player games using
the online-to-batch conversion (see e.g. [14]), which has been established in many games and has
been a cornerstone in the online learning and games literature.

Φ-Hedge algorithm A widely used strategy for minimizing the Φ-regret is to use any (black-box)
linear regret minimization algorithm on the Φ set to produce a sequence of {ϕt}Tt=1 ⊂ Φ, combined
with the fixed point technique (e.g. [43])—Output policy µt that satisfies the fixed-point equation
ϕtµt = µt in each round t. In the common scenario where Φ is the convex hull of a finite number of
vertices, i.e. Φ = conv(Φ0) where Φ0 is a finite subset of Φ, a standard regret minimization algorithm
over Φ is Hedge (a.k.a. Exponential Weights) [4], leading to the Φ-Hedge algorithm (Algorithm 1).

It is a standard result ([44], see also Lemma A.1) that Algorithm 1 achieves Φ-regret bound

RegΦ(T ) ≤ log |Φ0|
η + η

2

∑T
t=1

∑
ϕ∈Φ0

ptϕ(⟨ϕµt, ℓt⟩)2. (2)

By choosing η > 0, this result implies a quite desirable bound RegΦ(T ) ≤ L
√

2 log |Φ0| · T in the
full-feedback setting (assuming bounded loss ⟨ϕµt, ℓt⟩ ≤ L), and can also be used to prove regret
bounds in the bandit-feedback setting.
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Algorithm 1 Φ-Hedge
Require: Finite vertex set Φ0 ⊂ Rd×d such that conv(Φ0) = Φ; Learning rate η.

1: Initialize p1 ∈ ∆Φ0 with p1ϕ = 1/|Φ0| for ϕ ∈ Φ0.
2: for iteration t = 1, . . . , T do
3: Compute ϕt =

∑
ϕ∈Φ0

ptϕϕ.
4: Set policy µt to be the fixed point of equation µt = ϕtµt.
5: Receive loss function ℓt ∈ Rd

≥0, suffer loss ⟨µt, ℓt⟩.
6: Update pt+1

ϕ ∝ϕ ptϕ · exp{−η ⟨ϕµt, ℓt⟩}.

2.2 Extensive-form games (EFGs) and extensive-form trigger regret

In this paper, we consider m-player imperfect-information extensive-form games (EFGs) with perfect-
recall (see Appendix B.1 for detailed definitions). For the purpose of this work, we consider an
alternative formulation of EFGs—Tree-Form Adversarial Markov Decision Processes (TFAMDP).
This model is equivalent to studying EFGs from the perspective of a single player, while treating all
other players as adversaries who can change both transitions and rewards in each round.

Tree-form adversarial MDP We consider an episodic, tabular TFAMDP which consists of the
followings (H, {Xh}h∈[H],A, T , {pth}h∈{0}∪[H],t≥1, {Rt

h}h∈[H],t≥1). Here H ∈ N+ is the horizon
length; Xh is the space of information sets (henceforth infosets) at step h with size |Xh| = Xh

and
∑H

h=1 Xh = X; A is the action space with size |A| = A. Next, T = {C(x, a)}(x,a)∈X×A
defines the tree structure over the infosets and actions, where C(xh, ah) ⊂ Xh+1 denotes the set of
immediate children of (xh, ah). Furthermore, {C(xh, ah)}(xh,ah)∈Xh×A forms a partition of Xh+1.
It directly follows from the tree structure of TFAMDP that the player has perfect recall, i.e., for any
infoset xh ∈ Xh, there is a unique history (x1, a1, . . . , xh−1, ah−1) that leads to xh. Furthermore,
pt0(·) ∈ ∆X1

is the initial distribution over X1 at episode t; pth(·|xh, ah) is the transition probability
from (xh, ah) to its immediate children C(xh, ah) at episode t; Rt

h(·|xh, ah) is the distribution of the
stochastic reward r ∈ [0, 1] received at (xh, ah) at episode t, with expectation R

t

h(xh, ah).

At the beginning of episode t, an adversary will first choose the initial distribution pt0, transition
{pth}h∈[H], and reward distribution {Rt

h}h∈[H]. Then in the bandit feedback setting, at each step
h, the player observes the current infoset xh, takes an action ah, receives a bandit feedback of the
reward rth ∼ Rt

h(·|xh, ah), and the environment transitions to the next state xh+1 ∼ pth(·|xh, ah).

Policies We use µ = {µh(·|xh)}h∈[H],xh∈Xh
to denote a policy, where each µh(·|xh) ∈ ∆A is the

action distribution at infoset xh. We say µ is a deterministic policy if µh(·|xh) takes some single
action with probability 1 for any (h, xh). Let Π denote the set of all possible policies. We denote the
sequence form representation of policy µ ∈ Π by

µ1:h(xh, ah) :=
∏h

h′=1 µh′(ah′ |xh′), (3)

where (x1, a1, . . . , xh−1, ah−1) is the unique history of xh. We also identify µ as a vector in RXA
≥0 ,

whose (xh, ah)-th entry is equal to its sequence form µ1:h(xh, ah). Let ∥Π∥1 := maxµ∈Π ∥µ∥1,
which admits bound ∥Π∥1 ≤ X but can in addition be smaller (cf. Appendix B.3).

Expected loss function Given any policy µt at round t, the total expected loss received at round t
(which equals to H minus the total rewards within round t) is given by

⟨µt, ℓt⟩ :=
∑

h,xh,ah
µt
1:h(xh, ah)ℓ

t
h(xh, ah),

where the loss function for the t-th round is given by ℓt = {ℓth(xh, ah)}h,xh,ah
∈ RXA

≥0 :

ℓth(xh, ah) := pt0(x1)
∏h−1

h′=1 p
t
h′(xh′+1|xh′ , ah′)[1−R

t

h(xh, ah)], (4)

where (x1, a1, . . . , xh−1, ah−1) is the unique history that leads to xh. In the full feedback setting, the
learner is further capable of observing the full loss vector ℓt ∈ RXA

≥0 at the end of each round t.

4



Subtree and subtree policies For any g ≤ h, xg ∈ Xg, xh ∈ Xh, and any action ag, ah ∈ A,
we say xh or (xh, ah) is in the subtree rooted at xg, written as xh ⪰ xg or (xh, ah) ⪰ xg, if xg is
either equal to xh or is a part of the unique preceding history (x1, a1, . . . , xh−1, ah−1) which leads
to xh. Similarly, we say xh or (xh, ah) is in the subtree of (xg, ag), written as xh ≻ (xg, ag) or
(xh, ah) ⪰ (xg, ag), if (xg, ag) is either equal to (xh, ah) (only in the latter case), or is a part of the
unique preceding history (x1, a1, . . . , xh−1, ah−1) which leads to xh.

For any g ∈ [H], and any infoset xg ∈ Xg, we use µxg = {µxg

h (·|xh) ∈ ∆A : xh ⪰ xg} to denote
a subtree policy rooted at xg. We use Πxg and Vxg to denote the set of all subtree policies and the
set of all deterministic subtree policies rooted at xg . We denote the sequence form representation of
µxg ∈ Πxg by:

µ
xg

g:h(xh, ah) =

{∏h
h′=g µ

xg

h′ (ah′ |xh′) if (xh, ah) ⪰ xg,

0 otherwise.

Similarly, we can also identify any subtree policy µxg ∈ Πxg as a vector in RXA
≥0 , whose (xh, ah)-th

entry is equal to its sequence form µ
xg

g:h(xh, ah) (which is non-zero only on the subtree rooted at xg).

Extensive-form trigger regret The notion of trigger regret is introduced in [27, 13, 23]. An
(extensive-form) trigger modification ϕxgag→mxg is a policy modification that modifies any policy
µ ∈ Π as follows: When xg is visited and ag is about to be taken (by µ), we say xgag is triggered, in
which case the subtree policy rooted at xg is then replaced by mxg ∈ Πxg . One can verify that the
trigger modification ϕxgag→mxg can be written as a linear transformation that maps from Π to Π:

ϕxgag→mxg := (I − E⪰xgag
) +mxge⊤xgag

∈ RXA×XA.

Here, E⪰xgag
is a diagonal matrix with diagonal entry 1 at all (xh, ah) satisfying (xh, ah) ⪰ (xg, ag),

and zero otherwise, and exgag ∈ RXA is an indicator vector whose only non-zero entry is 1 at (xg, ag).
We say ϕxgag→vxg is a deterministic trigger modification if vxg ∈ Vxg is a deterministic subtree
policy. We denote the set of all deterministic trigger modifications and its convex hull as ΦTr

0 and ΦTr

respectively, where

ΦTr
0 :=

⋃
g,xg,ag

⋃
vxg∈Vxg

{
ϕxgag→vxg

}
, ΦTr = conv

{
ΦTr

0

}
. (5)

The (extensive-form) trigger regret is then defined as the difference in the total loss when comparing
against the best extensive-form trigger modification in hindsight. We note that the trigger regret is a
special case of Φ-regret (1) with Φ = ΦTr.
Definition 1 (Extensive-Form Trigger Regret). For any algorithm that plays policies µt ∈ Π at round
t ∈ [T ], the extensive-form trigger regret (also the EFCE-regret) is defined as

RegTr(T ) := maxϕ∈ΦTr

∑T
t=1 ⟨µt − ϕµt, ℓt⟩ . (6)

From trigger regret to Extensive-Form Correlated Equilibrium (EFCE) The importance of
extensive-form trigger regret is in its connection to computing EFCE: By standard online-to-batch
conversion [13, 23], if all players have low trigger regret (with RegTri (T ) for the ith player), then
the average joint policy π is an ε-EFCE, where ε = maxi∈[m] Reg

Tr
i (T )/T (cf. Appendix B.2).

We remark in passing by taking Φ = Φext, low Φ-regret implies learning (Normal-Form) Coarse
Correlated Equilibria in EFGs, as well as Nash Equilibria in the two-player zero-sum setting [6].

3 Efficient Φ-Hedge for Extensive-Form Trigger Regret Minimization

In this section, we study the Φ-Hedge algorithm (Algorithm 1) for minimizing the trigger regret.
Naively, Algorithm 1 requires maintaining and updating pt ∈ ∆Φ0 (cf. Line 6), whose computational
cost is linear in |ΦTr

0 | which can be exponential in X in the worst case1. We begin by deriving an
efficient implementation of the iterate ϕt ∈ Φ (of Line 3) directly by exploiting the structure of ΦTr

0 .

1|ΦTr
0 | is at least the number of deterministic policies of the game, which could be AO(X) in the worst case.
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3.1 Efficient implementation of ΦTr-Hedge algorithm

We first use a standard trick to convert the computation of ϕt (Line 3 & 6, Algorithm 1) in Φ-Hedge
to evaluating the gradient of a suitable log-partition function. This is stated in the lemma below (for
any generic Φ0), whose proof can be found in Appendix C.2.
Lemma 2 (Conversion to log-partition function). Define the log-partition function FΦ0 : Rd×d → R

FΦ0(M) := log
∑

ϕ∈Φ0
exp{− ⟨ϕ,M⟩}. (7)

Then Line 3 of Φ-Hedge (Algorithm 1) has a closed-form update for all t ≥ 1:

ϕt = −∇FΦ0

(
η
∑t−1

s=1 M
s
)
= −

∑
ϕ∈Φ0

exp
{
−η⟨ϕ,∑t−1

s=1 Ms⟩
}
ϕ∑

ϕ∈Φ0
exp
{
−η⟨ϕ,∑t−1

s=1 Ms⟩
} , M t := ℓt(µt)⊤. (8)

Eq. (8) suggests a strategy for evaluating ϕt = −∇FΦ0(η
∑t−1

s=1 M
s)—So long as the vertex set Φ0

has some structure that allows efficient evaluation of the sum of exponentials on the numerators and
denominators (i.e. faster than naive sum), ϕt may be computed directly in sublinear in |Φ0| time, and
there is no need to maintain the underlying distribution pt ∈ ∆Φ0

.

The following lemma enables such an efficient computation for the log-partition function FTr := FΦTr

(and its gradient) associated with the trigger modification set Φ = ΦTr. This lemma (proof deferred to
Appendix C.3) is a consequence of the specific structure of Φ0 (cf. (5)), whose elements are indexed
by a sequence xgag and a deterministic subtree policy vxg ∈ Vxg .

Lemma 3 (Recursive expression of FTr and ∇FTr). For any loss matrix M ∈ RXA×XA, the EFCE
log-partition function can be written as

FTr(M) = log
∑

g,xg,ag
exp

{
−
〈
I − E⪰xgag

,M
〉
+ Fxgag,xg

(M)
}
, (9)

where for any xh ⪰ xg ,

Fxgag,xh
(M) := log

∑
ah

exp
{
−Mxhah,xgag

+
∑

xh+1∈C(xh,ah)
Fxgag,xh+1

(M)
}
. (10)

Furthermore, define λ = (λxgag
)xgag∈X×A ∈ ∆XA and m = (mxgag

)xgag∈X×A with mxgag
∈

Πxg (and also identified as a vector in RXA) as

λxgag ∝xgag exp
{
−
〈
I − E⪰xgag ,M

〉
+ Fxgag,xg (M)

}
, (11)

mxgag,h(ah|xh) ∝ah
exp

{
−Mxhah,xgag +

∑
xh+1∈C(xh,ah)

Fxgag,xh+1
(M)

}
, (12)

then we have

−∇FTr(M) = ϕ(λ,m) :=
∑

g,xg,ag
λxgag

(I − E⪰xgag
+mxgag

e⊤xgag
). (13)

Above, λ = (λxgag
)xgag∈X×A ∈ ∆XA is a probability distribution over X × A, and m =

(mxgag
)xgag∈X×A ∈ M ≡

∏
g,xgag

Πxgag is a collection of subtree policies mxgag
, where each

mxgag
∈ Πxg is a subtree policy that specifies an action distribution mxgag,h(ah|xh) for every

xh ⪰ xg , and can be identified with a vector in RXA (c.f. Section 2.2).

The recursive structure in Lemma 3 offers a roadmap for evaluating (λ,m) and thus ∇FTr(M) in
O(X2A2) time (formal statement in Appendix C.4). Applying Lemma 3 with M = η

∑t−1
s=1 M

s

gives an efficient implementation of (8), i.e. the Φ-Hedge algorithm with Φ = ΦTr. For clarity, we
summarize this in Algorithm 2. We remark that the parameters (λt,mt) therein can also be expressed
in terms of (λt−1,mt−1) and M t−1, which we present in Algorithm 4 (the equivalent “OMD” form)
in Appendix C.1. We also note that the fixed point equation ϕtµ = µ in Line 5 can be solved in
O(X2A2) time [23, Corollary 4.15].

3.2 Equivalence to FTRL and OMD

We now show that Algorithm 2 is equivalent to FTRL and OMD with suitable dilated entropies and
divergences (hence the name EFCE-OMD). We define the trigger dilated entropy function and trigger
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Algorithm 2 EFCE-OMD (FTRL form; equivalent OMD form in Algorithm 4)
Require: Learning rate η > 0.

1: for t = 1, 2, . . . , T do
2: For each xgag ∈ X ×A, from the reverse order of xh, compute mt

xgag,h
(ah|xh) and F t

xgag,xh

mt
xgag,h

(ah|xh) ∝ah
exp

{
− η

∑t−1
s=1 M

s
xhah,xgag

+
∑

xh+1∈C(xh,ah)
F t
xgag,xh+1

}
, (14)

F t
xgag,xh

= log
∑

ah
exp

{
− η

∑t−1
s=1 M

s
xhah,xgag

+
∑

xh+1∈C(xh,ah)
F t
xgag,xh+1

}
, (15)

3: Compute λt
xgag

as

λt
xgag

∝xgag exp
{
− η

〈
I − E⪰xgag ,

∑t−1
s=1 M

s
〉
+ F t

xgag,xg

}
. (16)

4: Compute ϕt = ϕ(λt,mt) where ϕ is in Eq. (13).
5: Compute the policy µt, which is a solution of the fixed point equation ϕtµt = µt.
6: Receive loss ℓt = {ℓth(xh, ah)}(xh,ah)∈X×A ∈ RXA

≥0 .
7: Compute matrix loss M t = ℓt(µt)⊤ ∈ RXA×XA

≥0 .

dilated KL divergence function over (λ,m) ∈ ∆XA ×M as

HTr(λ,m) := H(λ) +
∑

g,xg,ag
λxgag

Hxg
(mxgag

),

DTr(λ,m∥λ′,m′) := DKL(λ∥λ′) +
∑

g,xg,ag
λxgag

Dxg
(mxgag

∥m′
xgag

),

where H(·) and DKL(·∥·) are the (negative) Shannon entropy and KL divergence; and for any xg,
Hxg (·) is the dilated entropy, and Dxg (·∥·) is the dilated KL divergence [30], both for the subtree
rooted at xg (detailed definitions in Appendix C.5).

Lemma 4 (Equivalent formulations of ΦTr-hedge). For any sequence of loss functions {M t}t≥1, the
iterates (λt,mt) in Algorithm 2 (i.e. (14)-(16)) are equivalent to (i.e. satisfy) the following FTRL
update on HTr and OMD update on DTr:

(λt,mt) = argminλ,m

[
η
〈
ϕ(λ,m),

∑t−1
s=1 M

s
〉
+HTr(λ,m)

]
, (17)

(λt,mt) = argminλ,m

[
η
〈
ϕ(λ,m),M t−1

〉
+DTr(λ,m∥λt−1,mt−1)

]
. (18)

The proof of Lemma 4 follows directly by the concrete forms of (λt,mt) in (14)-(16), and can be
found in Appendix C.6.

3.3 Regret bound under full feedback and bandit feedback

We now present the regret bounds of Algorithm 2. We emphasize that these regret bounds are simple
consequence of the generic bound for Φ-Hedge in (2), and their proofs do not depend on the actual
implementation of Algorithm 2 developed in the preceding two subsections. We first consider the full
feedback setting, where the full expected loss vector ℓt ∈ RXA

≥0 is received after each episode.

Theorem 5 (Regret bound of EFCE-OMD under full feedback). Running Algorithm 2 with η =

O(
√
∥Π∥1ι/(H2T )) achieves the following trigger regret bound

RegTr(T ) ≤ O
(√

H2∥Π∥1ιT
)
,

where ι := log(XA) is a log factor.

The proof of Theorem 5 is simply by applying (2) and observing that log(ΦTr
0 ) ≤ ∥Π∥1 logA +

log(XA) (see Appendix D.1). This theorem shows that the ΦTr-Hedge algorithm gives Õ(
√
XT )

trigger regret bound, which matches the information-theoretic lower bound Ω(
√
XT ) [48, Theorem 2]

up to a Õ(poly(H)) factor, and is slightly better than the Õ(
√
XAT ) upper bound of [42, Corollary

F.3] though their definition of EFCE-regret is slightly stricter (thus higher) than ours.
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Algorithm 3 Balanced EFCE-OMD (FTRL form; equivalent OMD form in Algorithm 5)
Require: Learning rate η, balanced exploration policy {µ⋆,h}h∈[H].

1: for t = 1, 2, . . . , T do
2: For each xgag ∈ X ×A, from the reverse order of xh, compute mt

xgag,h
(ah|xh) and F ⋆,t

xgag,xh

mt
xgag,h(ah|xh) ∝ah

exp
{
µ⋆,h
g:h(xh, ah)

(
− η

t−1∑
s=1

M̃s
xhah,xgag

+
∑

xh+1∈C(xh,ah)

F ⋆,t
xgag,xh+1

)}
,

F ⋆,t
xgag,xh

:=
1

µ⋆,h
g:h(xh, ah)

log
∑
ah∈A

exp
{
µ⋆,h
g:h(xh, ah)

×
[
− η

t∑
s=1

M̃s
xhah,xgag

+
∑

xh+1∈C(xhah)

F ⋆,t
xgag,xh+1

]}
.

3: Compute λt+1
xgag

as

λt
xgag

∝xgag exp
{ 1

XA

(
− η⟨I − E⪰xgag ,

t−1∑
s=1

M̃s⟩+ F ⋆,t
xgag,xg

)}
. (20)

4: Compute ϕt = ϕ(λt,mt), where ϕ is as defined in Eq. (13).
5: Find a µt to be a solution of the fixed point equation µt = ϕtµt.
6: Play policy µt, observe trajectory (xt

h, a
t
h, r

t
h)h∈[H].

7: Form vector loss estimator ℓ̃t,xgag = {ℓ̃t,xgag

h (xh, ah)}xhah
for each (g, xgag) as in Eq. (23).

8: Compute matrix loss estimator M̃ t =
∑

g,xg,ag
µt
xgag

ℓ̃t,xgage⊤xgag
.

In the bandit feedback setting, the learner only observes her own rewards and infosets. In this case
we replace ℓt in Algorithm 2 with the following loss estimator (with IX bonus γ) proposed in [34]:

ℓ̃th(xh, ah) := 1 {(xt
h, a

t
h) = (xh, ah)} (1− rth)/(µ

t
1:h(xh, ah) + γ). (19)

We show that EFCE-OMD achieves the following guarantee in the bandit feedback setting (proof
in Appendix D.2). The proof follows by plugging the loss estimator ℓ̃t into (2) and additionally
bounding concentrations (which we remark is a better strategy than using a naive bandit-based loss
estimator in the corresponding NFG space).
Theorem 6 (Regret bound of EFCE-OMD under bandit feedback). Run Algorithm 2 with loss
estimator {ℓ̃t}Tt=1 (19), η =

√
∥Π∥1 logA/(HXAT ), and γ =

√
∥Π∥1 ι/(XAT ). Then we have

the following trigger regret bound with probability at least 1− δ:

RegTr(T ) ≤ O
(√

HXA∥Π∥1ι · T
)
,

where ι = log(3XA/δ) is a log term.

To our best knowledge, Theorem 6 gives the first trigger regret bound against adversarial opponents
and bandit feedback. This Õ(

√
XA ∥Π∥1 T ) rate is

√
XA worse than Theorem 5 (ignoring H and

log factors), and is at most Õ(
√
X2AT ) using ∥Π∥1 ≤ X .

4 Balanced EFCE-OMD for bandit feedback

We now build upon the EFCE-OMD algorithm (Algorithm 2) to develop a new algorithm, Balanced
EFCE-OMD (Algorithm 3), and show that it achieves near-optimal extensive-form trigger regret
guarantee under bandit feedback. Here we discuss the two key modifications in the algorithm design.

Key modification I: “Rebalancing” the log-partition function Building on the balancing tech-
nique of [6], we start from Eq. (9) and (10) of the log partition function, and rescale the inner
functions Fxgag,xh

using balanced exploration policies {µ⋆,h
g:h(xh, ah)}g,xh,ah

(see Definition E.1
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for the formal definition), and rescale the outer function FTr by XA. Concretely, for any matrix
M ∈ RXA×XA, we define the balanced EFCE log-partition function as

FTr
bal(M) := XA log

∑
g,xg,ag

exp
{

1
XA

[
−
〈
I − E⪰xgag ,M

〉
+ F ⋆

xgag,xg
(M)

]}
, (21)

where for any xh ⪰ xg (using µ⋆,h
g:h := µ⋆,h

g:h(xh, ah) as shorthand, which depends on xh but not ah),

F ⋆
xgag,xh

(M) :=
1

µ⋆,h
g:h

log
∑
ah

exp
{
µ⋆,h
g:h

[
−Mxhah,xgag +

∑
xh+1∈C(xhah)

F ⋆
xgag,xh+1

(M)
]}

. (22)

Key modification II: New loss estimator under bandit feedback We use an adaptive family of
bandit-based loss estimators {ℓ̃t,xgag}xgag

⊂ RXA
≥0 , one for each (xg, ag) ∈ X ×A, defined as

ℓ̃
t,xgag

h (xh, ah) :=
1{(xt

h,a
t
h)=(xh,ah)}(1−rth)

µt
1:h(xh,ah)+γ(µ⋆,h

1:h (xh,ah)+µt
xgag

mt
xgag,g:h(xh,ah)1{xh⪰xg})

, (23)

where µt
xgag

:= µt
1:g(xg, ag) for shorthand. The main difference of (23) over (19) is in the adaptive

IX bonus term on the denominator that scales with γ but is different for each xgag. We then place
each µt

xgag
ℓ̃t,xgag into the xgag-th column of a matrix loss estimator M̃ t, or in matrix form,

M̃ t :=
∑

g,xg,ag
µt
xgag

ℓ̃t,xgage⊤xgag
.

With (21)-(23) at hand, our algorithm Balanced EFCE-OMD is defined as the negative gradient of
FTr
bal evaluated at the cumulative loss estimators:

ϕt = −∇FTr
bal

(
η
∑t−1

s=1 M̃
s
)
, ∀t ≥ 1, (24)

and µt ∈ Π solves the fixed point equation ϕtµt = µt. Similar as EFCE-OMD, (24) also admits
efficient implementations in both FTRL and OMD form (cf. Algorithm 3 & 5). The corresponding
(λt,mt) is also equivalent to running a FTRL/OMD algorithm with respect to a balanced dilated
entropy/KL-divergence over ϕ ∈ ΦTr (cf. Lemma E.4 and Appendix E.3 for details).

Main result We now present the theoretical guarantee of Algorithm 3 (proof in Appendix F).

Theorem 7. Balanced EFCE-OMD (Algorithm 3) with η =
√

XAι/H4T and γ = 2
√
XAι/H2T

achieves the following extensive-form trigger regret bound with probability at least 1− δ:

RegTr(T ) ≤ O
(√

H4XATι
)
,

where ι = log(10XA/δ) is a log term.

The Õ(
√
XAT ) trigger regret asserted in Theorem 7 improves over Theorem 6 by a factor of

√
∥Π∥1,

and matches the information-theoretic lower bound up to poly(H) and log factors2. By the online-to-
batch conversion (Appendix B.2), Theorem 7 also implies an Õ(H4XA/ε2) sample complexity for
learning EFCE under bandit feedback (assuming same game sizes for all m players). This improves
over the best known Õ(mH6XA2/ε2) sample complexity in the recent work of Song et al. [42]3.

Overview of techniques The proof of Theorem 7 is significantly more challenging than that of
Theorem 6, even though the algorithm itself is designed by appearingly simple modifications. This
happens since Algorithm 3, unlike Algorithm 2, no longer necessarily corresponds to any normal-form
algorithm. The technical crux of the proof is to bound the nonlinear part of FTr

bal (with respect to the
losses), which we do by carefully controlling a series of second-order terms utilizing the balanced
policies within FTr

bal and the new adaptive IX bonus within {ℓ̃t,xgag}xgag
(Lemma F.5-F.8).

2As the trigger regret is lower bounded by the vanilla (external) regret, [6, Theorem 6] implies an Ω(
√
XAT )

lower bound for the trigger regret as well under bandit feedback.
3We remark though that the 1-EFR algorithm of [42] actually finds an “1-EFCE” which is slightly stronger

than our EFCE defined via trigger modifications.
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5 Equivalence of OMD and Vertex MWU for external regret minimization

As another illustration of our framework, we now choose Φ = Φext = conv{Φext
0 } to be the set

of external policy modifications, which modify any policy to some deterministic policy. In this
case, the Φext-Hedge algorithm minimizes the external regret in EFGs. In this section, we show that
Φext-Hedge, same as the vertex MWU algorithm considered in Farina et al. [25], is actually equivalent
to the OMD with dilated entropy [30]. Let {ℓt}t≥1 ⊂ RXA

≥0 be an arbitrary sequence of loss vectors.

Vertex MWU We use V to denote all the deterministic sequence-form policies, which can also be
viewed as the vertex set of the policy set Π. A simple reformulation (cf. Appendix G) shows that
Φext-Hedge (Algorithm 1) gives the vertex MWU algorithm considered by Farina et al. [25]

µt =
∑

v∈V ptv · v and ptv ∝v exp
{
−η
〈
v,
∑t−1

s=1 ℓ
s
〉}

. (25)

OMD with dilated entropy Another popular algorithm for external regret minimization is the
OMD algorithm on the sequence-form policy space with the dilated entropy [30, 35]:

µt = argmin
µ∈Π

[
η
〈
µ, ℓt−1

〉
+D∅(µ∥µt−1)

]
, (26)

D∅(µ∥ν) :=
H∑

h=1

∑
xh,ah

µ1:h(xh, ah) log
µh(ah|xh)

νh(ah|xh)
. (27)

Theorem 8 (Equivalence of OMD and Vertex MWU). For any sequence of loss vectors {ℓt}t≥1,
OMD with dilated entropy is equivalent to Vertex MWU, that is, (26) and (25) give the same {µt}t≥1.

The proof of Theorem 8 can be found in Appendix G.1. Our proof also reveals that the efficient
implementation of Vertex MWU developed by Farina et al. [25] using the “kernel trick” is actually
equivalent to the standard linear-time efficient implementation of OMD with dilated entropy.

6 Conclusion

In this paper, we present an efficient implementation of the Φ-Hedge algorithm for minimizing the
extensive form trigger regret. The algorithm is equivalent to OMD with dilated regularizers, and
achieves efficient regret bounds under both full feedback and bandit feedback. We also design an
improved algorithm Balanced EFCE-OMD, which achieves a sharp trigger regret bound under bandit
feedback. We believe our work leads to many open questions, such as efficient implementations
of Φ-Hedge with more general Φ sets (e.g. the behavioral modifications considered in [38, 42]), or
accelerated polylog(T ) Φ-regret bounds under full feedback by optimistic algorithms.
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