
FiLM-Ensemble: Probabilistic Deep Learning via
Feature-wise Linear Modulation

Mehmet Ozgur Turkoglu
ETH Zurich

Alexander Becker
ETH Zurich

Hüseyin Anil Gündüz
LMU Munich

Mina Rezaei
LMU Munich

Bernd Bischl
LMU Munich

Rodrigo Caye Daudt
ETH Zurich

Stefano D’Aronco
ETH Zurich

Jan Dirk Wegner
ETH Zurich &

University of Zurich

Konrad Schindler
ETH Zurich

Abstract

The ability to estimate epistemic uncertainty is often crucial when deploying ma-
chine learning in the real world, but modern methods often produce overconfident,
uncalibrated uncertainty predictions. A common approach to quantify epistemic
uncertainty, usable across a wide class of prediction models, is to train a model
ensemble. In a naïve implementation, the ensemble approach has high compu-
tational cost and high memory demand. This challenges in particular modern
deep learning, where even a single deep network is already demanding in terms
of compute and memory, and has given rise to a number of attempts to emulate
the model ensemble without actually instantiating separate ensemble members.
We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the
concept of Feature-wise Linear Modulation (FiLM). That technique was originally
developed for multi-task learning, with the aim of decoupling different tasks. We
show that the idea can be extended to uncertainty quantification: by modulating
the network activations of a single deep network with FiLM, one obtains a model
ensemble with high diversity, and consequently well-calibrated estimates of epis-
temic uncertainty, with low computational overhead in comparison. Empirically,
FiLM-Ensemble outperforms other implicit ensemble methods, and it comes very
close to the upper bound of an explicit ensemble of networks (sometimes even
beating it), at a fraction of the memory cost.

1 Introduction

A key component for reliable and trustworthy machine learning are algorithms that output not only
accurate predictions of the target variables, but also well-calibrated estimates of their uncertainty [Gal
and Ghahramani, 2016]. The overall uncertainty of a predictor is usually decomposed into two parts
[Der Kiureghian and Ditlevsen, 2009]. Aleatoric uncertainty is inherent in the data, for instance due
to class overlap or sensor noise. On the contrary, epistemic uncertainty characterises the uncertainty
of the model weights, due to a lack of knowledge about parts of the input space that are insufficiently
represented in the training set. Uncertainty caused by distributional shifts between the training and
test data is sometimes conceived as a third source of uncertainty [Malinin and Gales, 2018], but in
practice often modelled as part of epistemic uncertainty.

Measuring epistemic uncertainty for complex models such as deep neural networks is not trivial: by
definition one cannot derive it from the training data, since it concerns the behavior of the model

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



in regions of the input space that are not represented in the training set. Different methods have
been explored [Welling and Teh, 2011, Graves, 2011, Blundell et al., 2015, Lakshminarayanan et al.,
2017a, Huang and Belongie, 2017, Gal and Ghahramani, 2016], however the de facto standard remain
deep ensemble models [Lakshminarayanan et al., 2017a]. In its basic form, such a deep ensemble is
simply a collection of independently trained networks that can be regarded as Monte Carlo samples
from the model space. To obtain ensemble members with reasonably low correlation, one can exploit
the stochastic nature of the optimisation procedure, with different (random) weight initialisation and
different (random) batches during stochastic gradient descent. The expectation is that, once trained,
the ensemble members will agree for inputs near the training samples, since the loss function favours
similar outputs at those locations. Whereas they may disagree in unseen regions of the data space.
Thus, the spread of their predictions is a measure of epistemic uncertainty. The ensemble idea is
conceptually very simple, but nevertheless yields uncertainties that are well calibrated, i.e., they are
in line with the actual prediction errors (in expectation).

The drawback of deep ensembles is their large computational cost. Both computation and memory
consumption grow directly proportionally with the number of ensemble members, during training as
well as during inference. This makes them impractical in hardware-constrained settings, and leads to
a widening gap as models continue to grow in size, while at the same time applications like mobile
robotics, augmented reality and smart sensor networks increase the need for mobile and embedded
computing.

To improve efficiency, several researchers have explored ways to mimic deep ensembles without
explicitly duplicating the underlying network. Possible strategies include the reuse and recombination
of network modules [e.g., Wen et al., 2020, Havasi et al., 2021], injection of noise at inference
time [e.g., Gal and Ghahramani, 2016], as well as hybrid variants [e.g., Durasov et al., 2021].
Empirically, these models do speed up training and/or inference, but still exhibit a significant
performance gap compared to the naïve, explicit ensemble, both w.r.t. prediction quality and w.r.t. the
calibration of the predicted (epistemic) uncertainties.

The lottery ticket hypothesis [Frankle and Carbin, 2018] and other network pruning studies, e.g., by
Han et al. [2015], Lee et al. [2019], Mallya and Lazebnik [2018], underline that neural networks
are heavily over-parameterized. Their parameters are used inefficiently, and they can be pruned
significantly without large performance drops. In lifelong learning and multi-task learning it is
essential to use the network efficiently, in order to limit computational overhead when introducing
new tasks. There are recent works that achieve good performance in these tasks by introducing
modulation (respectively, adaptation) strategies. In particular, Li et al. [2018], Takeda et al. [2021]
propose an efficient lifelong learning / domain adaptation method for multi-task learning, utilizing
single feature-wise linear modulation (FiLM).

Inspired by that line of work, we propose a new, efficient ensemble method, FiLM-Ensemble. Our
method adapts feature-wise linear modulation as an alternative way to construct an ensemble for
(epistemic) uncertainty estimation. FiLM-Ensemble greatly reduces the computational overhead
compared to the naïve ensemble approach, while performing almost on par with it, sometimes even
better. In a nutshell, FiLM-Ensemble can be described as an implicit model ensemble in which each
individual member is defined via its own set of linear modulation parameters for the activations,
whereas all other network parameters are shared among ensemble members – and therefore only need
to be stored and trained once. Thanks to this design, our method requires only a very small number
of additional parameters on top of the base network, e.g., converting a single ResNet-18 model to an
ensemble of 16 models increases the parameter count by 1.3%, compared to an increase by 1500%
when setting up a naïve ensemble, see Table 1. We further show that FiLM-Ensemble results in
more diverse ensemble members compared to other efficient ensemble methods. For instance, on
the Cifar-10 benchmark it achieves diversity scores > 6.9% and up to 9.2% (depending on ensemble
size), against 6.8% for a naive ensemble, see Fig. 1. Our contributions can be summarized as follows.

• We propose FiLM-Ensemble, a novel parameter- and time-efficient deep ensemble method.

• FiLM-Ensemble is designed in such a way that it can be readily combined with many popular
deep learning models, by simply replacing batch normalisation (batchnorm) layers with
conditional batchnorm layers.

• We show that FiLM-Ensemble provides an excellent trade-off between accuracy and calibra-
tion performance, improving over existing ensemble methods.

2



2 FiLM-Ensemble

Perez et al. [2018] achieved the linear feature modulation by varying the affine parameters of the
batch normalization layers γ and β. For each batchnorm layer n in the network, the parameters are
predicted according to some conditioning input z (for instance, different prediction tasks):

γn = gn(z) βn = hn(z) (1)

The size of γn and βn is RDn where Dn is the feature dimension at layer n. These parameters are
then used to linearly modulate the activations at the n-th layer Fn:

FiLM(Fn|γn,βn) = γn(z) ◦ Fn + βn(z) , (2)

with ◦ being the Hadamard (element-wise) product taken w.r.t. the feature dimension.

In our scenario we aim to use the affine parameters to instantiate different ensemble members, i.e.,
the conditioning variable z is simply an index m ∈ {1, ...,M} that identifies the ensemble member.
The functions gn(z) and hn(z) degenerate to look-up tables, so we can dispose of them and simply
learn M different sets of affine parameters for every batchnorm layer Fn:

FiLM(Fn|γm
n ,βm

n ) = γm
n ◦ Fn + βm

n . (3)

To achieve ensemble members with diverse parameters, we resort to Xavier initialization, i.e., all γm
n

and βm
n are sampled from a uniform distribution bounded between:

±
√
3√
Dn

ρ , (4)

where Dn is the number of features (channels) in the n-th layer, and ρ is an initialization gain factor.
In our setting ρ is a tunable hyperparameter that allows one to control the trade-off between predictive
accuracy and calibration of the model, see Section 3.5. In general, increasing ρ leads to more diverse
ensemble members and thus favours calibration. Note that as ρ → 0, all ensemble members start
from similar initial values for γm

n and βm
n and the FiLM-Ensemble gradually collapses to a single

model.

During training, we feed each input sample x to every ensemble member and obtain predictions
ym = fθ,γm,βm(x), which depend both on the member-specific parameters (βm,γm) and on the
shared parameters θ. All those parameters are optimized together to minimise the chosen loss function.
Here we focus on classification and use a standard cross-entropy (CE) loss.

At inference time the final prediction ŷ is obtained by averaging the M predictions of the ensemble:

ŷ =
1

M

M∑
m=1

ym . (5)

2.1 Implementation Details

We implemented 1-dimensional and 2-dimensional FiLM-Ensemble layers, to be used in combination
with 1-dimensional and 2-dimensional convolution operations, respectively. The forward passes
through different ensemble members can easily be parallelized by replicating both the input tensor and
the FiLM parameters γ,β along the batch dimension and applying the affine transformation Eq. 3 (the
same holds for the BatchEnsemble method). In this way all ensemble members run simultaneously
on a single device, thus optimally utilizing modern tensor computing hardware without having to load
several instances of the classification network into memory. We have implemented FiLM-Ensemble
in PyTorch and release the source code.1

For all experiments, we optimize the model parameters with standard stochastic gradient descent,
with momentum µ=0.9 and weight decay λ=0.0005 for regularization. We train for 200 epochs
with batch size 128. The learning rate is initially set to 0.1 and decays according to a cosine
annealing schedule [Loshchilov and Hutter, 2017]. The initialisation gain is set to ρ = 2 for all
experiments, except for genome sequences (see Table 3), where ρ ∈ {4, 8, 16, 32}. Please refer to
the supplementary material for additional, dataset-specific details.

1https://github.com/prs-eth/FILM-Ensemble

3

https://github.com/prs-eth/FILM-Ensemble


3 Experiments

In the following, we first empirically examine the ability of FiLM-Ensemble to learn independent
ensemble members, and compare it to deep ensembles. Then we analyze the predictive accuracy and
uncertainty calibration of our method, as well as its computational cost and memory consumption.
We compare its performance against several baseline methods and state-of-the-art alternatives on a
variety of different datasets, and using different backbone architectures. All experimental results are
averaged over three runs with different random seeds.

We evaluate our proposed method on a diverse set of classification tasks, including popular image
classification benchmarks, image-based medical diagnosis, and genome sequence analysis. CIFAR-
10 and CIFAR-100 [Krizhevsky, 2009] are widely used testbeds for image classification, and deep
learning in general. They consist of clean images of objects from 10, respectively 100, different
semantic classes. Each of the two datasets contains 60,000 images, of which 10,000 are reserved
for testing. The semantic classes are uniformly distributed in the datasets and stratified across the
train/test spit. Retina Glaucoma Detection [Diaz-Pinto et al., 2019] is a real-world clinical dataset
that includes microscopic retina images from 956 patients with the neuropathic disease Glaucoma, and
from 1401 subjects with normal (healthy) retinas. Each input sample is a single RGB image; we resize
all images to 128×128. The image augmentation applies by combination of crop, horizontal flip, and
color jitter. REFUGE 2020 [Orlando et al., 2020] was a challenge at the MICCAI-2020 conference,
aimed at retinal Glaucoma diagnosis. The dataset consists of 800 microscopic retina images with
size 1411 × 1411 pixels, collected from different clinics. We use this dataset in conjunction with
the models trained on the previous dataset [Diaz-Pinto et al., 2019], to evaluate the ability to detect
out-of-distribution samples with the help of the predicted uncertainties (Table 4). 6mA Identification
[Li et al., 2021], is a 1-dimensional sequential genome dataset. It consists of DNA sequences of rice
plants, along with binary labels that indicate whether the sequence is a N6-methyladenine (6mA)
site. 6mA is an important DNA modification associated with several biological processes, such
as regulating gene transcription, DNA replication and DNA repair [Campbell and Kleckner, 1990,
Cheng et al., 2016, Pukkila et al., 1983]. Each sequence consists of 41 nucleotides. As there are 4
different types of nucleotides, each one-hot encoded sequence is represented by a 41× 4 matrix. In
total there are 269,500 training samples and 38,500 test samples.

We compare FiLM-Ensemble against (i) a single model without any ensembling, as the elementary
baseline, (ii) a naïve deep ensemble [Lakshminarayanan et al., 2017b], and (iii) MC-Dropout [Gal
and Ghahramani, 2016]. Furthermore, we compare with other state-of-the-art methods, including:
(iv) Masksemble [Durasov et al., 2021] which can be seen as an extension of MC-Dropout, (v) MIMO
("multi-input multi-output") [Havasi et al., 2021] which defines a multi-head architecture where each
head acts as one ensemble member, and (vi) BatchEnsemble [Wen et al., 2020] which creates an
efficient ensemble by expanding the layer weights using low rank matrices. Arguably, this layer-wise
modification of an underlying, common representation is the approach that comes closest to our work.

3.1 Diversity Analysis

Diversity is the key to constructing powerful ensembles: nothing is to be gained from highly correlated
ensemble members that return similar outputs for (almost) any input [Zhang and Ma, 2012]. In order
to analyze the diversity (respectively, the degree of independence) among members, we compute two
distance metrics between the members’ predictive distributions. Let fi and fj denote two different
ensemble members for a classification task. We first measure the disagreement score D, defined as
the fraction of all s test samples for which the two members return different answers, averaged over
all possible pairs of members:

D =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

s∑
k=1

1

s

[
fi(xk) ̸= fj(xk)

]
, (6)

with [·] being the Iverson bracket. Second, we also measure the Kullback–Leibler (KL) divergence
between the two predictive distributions p(fi) and p(fj), again averaged over all pairs:

KL =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

s∑
k=1

p(fi(xk)) log
p(fi(xk))

p(fj(xk))
. (7)

4



Table 1: Memory and inference complexity comparison (CIFAR-10/100 datasets): Number of
additional trainable parameters to have 16 ensemble members for different backbones. The inference
time (mult-adds) shown corresponds to the mean GPU time (number of multiply-add operations)
required to run a forward pass for a batch of size 1 with 16 ensemble members. The bottom section
comprises methods whose forward and backward passes are implemented in parallel over ensemble
members. Measurements are done on an NVIDIA GeForce GTX 1080 Ti.

Method Parameters (↓) Inference time (ms) (↓) Mult-adds (B) (↓)

Backbone VGG-11 ResNet-18 VGG-11 ResNet-18 VGG-11 ResNet-18

MC-Dropout 0.0% 0.0% 16× 2.5 16×2.4 16×0.15 16×0.56
Deep Ensemble 1500% 1500% 16× 2.3 16× 1.8 16×0.15 16×0.56

Masksemble 0.0% 0.0% 20.8 6.6 2.45 8.89
MIMO 1.1% 0.9% 2.7 1.9 0.18 0.58

BatchEnsemble 1.4% 5.2% 2.8 5.2 2.44 8.89
FiLM-Ensemble 0.9% 1.3% 2.8 5.7 2.45 8.89

For both metrics, higher numbers correspond to higher diversity. See Fig. 1. We observe that the
average diversity increases with the number of ensemble members. In both metrics, FiLM-Ensemble
achieves higher scores than the naïve, explicit deep ensemble. Meaning that the predictions of FiLM-
Ensemble are less correlated than those of an equivalent number of networks trained independently
with different random seeds. Also, note that with the increasing number of members, improvements
in diversity metrics for the naïve explicit deep ensemble are negligible.

Figure 1: Diversity analysis: CIFAR-10/VGG-11 experiment. With increasing number of members,
FiLM-Ensemble achieves more diverse representations. See Section 3.1.

3.2 Computational Cost

We go on to measure the efficiency of our proposed method, both in terms of parameter count and in
terms of resources needed for a forward pass. Table 1 (left section) reports the numbers of additional
numbers of parameters compared to a single network (i.e., without uncertainty calibration). Due
to their design, MC-Dropout and Masksemble do not require any additional parameters. Among
the remaining methods, FiLM-Ensemble has the lowest (VGG-11) or second-lowest (Resnet-18)
overhead in terms of parameter count, while performing significantly better, as we will see below.
In terms of inference complexity (Tab. 1, center and right), FiLM-Ensemble turns out to be very
competitive. Only MIMO with a ResNet-18 backbone is significantly faster and lighter, however this
comes at a considerable price in terms of accuracy and calibration, see below.

3.3 CIFAR-10 / CIFAR-100

We perform several experiments on widely used benchmarks in computer vision, CIFAR-10 and
CIFAR-100. As performance metrics, we plot the test set accuracy and the expected calibration error

5



Table 2: Classification performance on CIFAR-100 with M = 4, using ResNet-18/34 as backbone.
Best score for each metric in bold, second-best underlined.

Backbone Resnet-18 Resnet-34

Method Acc (↑) ECE (↓) Acc (↑) ECE (↓)

Single Network 78.0 ±0.4 0.046 ±0.001 79.3 ±0.2 0.089 ±0.006
Deep Ensemble 81.6 ±0.3 0.041 ±0.002 82.0 ±0.1 0.044 ±0.002

MC-Dropout 75.5 ±0.6 0.064 ±0.003 72.2 ±0.2 0.079 ±0.004
MIMO 48.0 ±2.6 0.083 ±0.017 56.2 ±4.8 0.132 ±0.055
Masksemble 72.5 ±0.5 0.075 ±0.004 70.1 ±1.2 0.067 ±0.004
BatchEnsemble 77.7± 0.1 0.052± 0.002 78.3± 0.1 0.056± 0.002
FiLM-Ensemble 79.4 ±0.2 0.038 ±0.000 80.2 ±0.1 0.045 ±0.001

(ECE) against the ensemble size M in Fig. 2, for all compared methods. In terms of accuracy (left
subfigure), FiLM-Ensemble is outperformed only by the explicit deep ensemble, across all tested
values of M ∈ {2, 4, 8, 16}. These two surpass all other methods by a clear margin. Surprisingly,
we observe that BatchEnsemble generally exhibits a negative correlation between ensemble size
and test set accuracy, with M = 4 performing best among all settings. MIMO shows very poor
performance in this experimental setting in terms of accuracy (and also in ECE). We speculate
that its shared backbone probably has a tendency to fragment into largely independent ensemble
members of low channel depth, which lack the necessary capacity when using comparatively small
networks like VGG-11 or Resnet-18. With regard to ECE (right subfigure), we see all methods
improving with growing ensemble size M . FiLM-Ensemble achieves better calibration then the
widely used deep ensemble and MC-dropout methods, with significant margins at large ensemble
sizes. Masksemble and BatchEnsemble achieve very good calibration for sizes M ∈ [4 . . . 16], but at
the cost of significant drops in classification performance. An attractive feature of FiLM-Ensemble
is that it offers a simple mechanism for trading off accuracy against calibration, by tuning the gain
factor ρ. See Section 3.5.

In Tab. 2 we quantitatively compare all tested methods on the CIFAR-100 dataset, both with a
standard Resnet-18 backbone and with a larger Resnet-34. We observe that with both architectures,
and in terms of both predictive accuracy and calibration, FiLM-Ensemble always either ranks first, or
it ranks second behind the inefficient, explicit deep ensemble. Also, note that when the capacity of
the network is increased (Resnet-18 → Resnet-34), calibration performance improves for some of the
implicit methods, but at the cost of reduced accuracy. Overall, the experiments with both variants
of CIFAR and all three model architectures confirm that our method presents an excellent trade-off
between predictive accuracy, uncertainty calibration and computational efficiency.

Figure 2: Accuracy and ECE for CIFAR-10, with varying ensemble sizes, using VGG-11 as backbone.

6



Table 3: Classification performance for retinal Glaucoma images. Best score for each metric in bold,
second-best underlined.

Method Accuracy (%) (↑) ECE (↓)

# member (M ) 2 4 8 16 2 4 8 16

Single 84.4 0.084
Deep Ensemble 85.6± 0.2 85.7± 0.3 86.0± 0.2 86.8± 0.4 0.041± 0.002 0.078± 0.002 0.091± 0.004 0.066± 0.003

FSSD Huang et al. [2020] 85.9± 0.1 0.047± 0.002
SNGP Liu et al. [2020] 84.7± 0.2 0.064± 0.003
pNML Bibas et al. [2021] 85.6± 0.1 0.061± 0.001

MC-Dropout 67.0± 0.2 78.4± 0.5 80.0± 0.4 82.7± 0.4 0.002 ± 0.001 0.046± 0.009 0.053± 0.011 0.051± 0.018
MIMO 72.4± 1.9 69.8± 2.3 68.9± 2.4 68.3± 2.4 0.049± 0.011 0.061± 0.013 0.082± 0.017 0.041± 0.019
Masksemble 82.7± 0.5 83.0± 0.5 80.2± 0.6 81.7± 1.1 0.064± 0.004 0.049± 0.007 0.021± 0.010 0.062± 0.012
BatchEnsemble 84.5± 0.1 86.5± 0.1 86.8± 0.2 87.1± 0.2 0.035± 0.003 0.063± 0.009 0.071± 0.002 0.066± 0.002
FiLM-Ensemble 86.3± 0.1 86.8± 0.2 86.9± 0.1 87.8 ± 0.1 0.062± 0.001 0.074± 0.000 0.068± 0.002 0.055± 0.001

3.4 Retinal Glaucoma Detection

Glaucoma is currently the leading reason of irreversible blindness in the world. Detection of
glaucomatous structural damages and changes is a challenging task in the field of ophthalmology.
We evaluate our proposed FiLM-Ensemble, as well as the baselines described above, on the ask of
diagnosing Glaucoma and quantifying the uncertainty associated with the prediction, see Table 3.
The proposed FiLM-Ensemble achieves the best classification result across all ensemble sizes, and
also the best overall result, with M=16. Whereas there is no clear trend with respect to uncertainty
calibration.

3.5 6mA Identification

With the 6mA identification task we show that FiLM-Ensemble can also be readily combined with
existing models for 1-dimensional sequential genome data. We use the 6mA-rice-Lv dataset and
a 1D-CNN architecture whose hyper-parameters have already been optimized for this dataset [Li
et al., 2021]. FiLM-Ensemble improves the accuracy and the calibration of that model, see Fig.3.
Our method performs on par with the explicit deep ensemble and better than a single instance of the
model tuned for the specific task. More importantly, one can reach a significantly better calibration
(lower ECE) by increasing the gain ρ, with only a minimal accuracy drop by < 0.25 percent points.
Please refer to the Section ?? for more results.

Figure 3: Performance of FiLM-Ensemble with varying gain ρ, c.f. Section 3.5.

3.6 Out-of-Distribution Detection

Domain shift often occurs in medical datasets; thus, detecting out-of-distribution (OOD) samples
is an important task in clinical diagnosis. Model uncertainty can be used for OOD detection. For
our experiment, we regard the retinal Glaucoma dataset [Diaz-Pinto et al., 2019] as the within-
distribution samples and perform OOD detection with the REFUGE dataset [Orlando et al., 2020]. As
performance metric, we report AUROC (Area Under the Receiver Operating Characteristic) scores,
Table 4. FiLM-Ensemble can detect OOD test samples with significantly higher accuracy than other

7



Table 4: OOD detection for retinal Glaucoma images. Best score in bold, second-best underlined.

Method AUROC (%) (↑)

# member 2 4 8 16

Single 68.42
Deep Ensemble 76.89± 0.1 77.91± 0.2 78.22± 0.1 78.06± 0.1

FSSD Huang et al. [2020] 76.42± 0.2
SNGP Liu et al. [2020] 71.25± 0.6
pNML Bibas et al. [2021] 76.68± 0.3

MC-Dropout 68.03± 0.3 69.79± 0.2 77.94± 0.6 72.22± 0.2
MIMO 57.33± 1.4 59.49± 1.2 61.74± 2.1 60.52± 3.1
Masksemble 71.22± 0.5 70.83± 0.8 72.04± 1.1 70.95± 1.4
BatchEnsemble 74.38± 0.1 72.61± 0.3 75.44± 0.2 75.04± 1
FiLM-Ensemble 77.02± 0.1 77.92± 0.2 79.43± 0.1 79.85 ± 0.2

efficient ensemble methods, standard state-of-the-art OOD detection methods, and even the explicit
deep ensemble. This suggests that for challenging test samples, which are not adequately represented
in the training data, the uncertainties estimated with FiLM-Ensemble are better calibrated.

4 Related Work

4.1 Epistemic Uncertainty Quantification

A large corpus of related work addresses the estimation of epistemic (model) uncertainty in neural
networks. At the heart of such modeling is often the concept of marginalization instead of optimiza-
tion, i.e., integrating out a (possibly uncountably infinite) set of models weighted by their posterior
probability, instead of committing to a point estimate of that distribution. A multitude of methods
have been proposed to implement approximate Bayesian inference w.r.t. the model weights, given the
training data and an appropriate prior, a process that is not analytically tractable in general [Kendall
and Gal, 2017].

For instance, methods based on variational inference [Graves, 2011, Ranganath et al., 2014, Blundell
et al., 2015] seek to learn an approximate posterior distribution which is a member of a simpler family
of variational distributions. This variational distribution can often be learned using backpropagation
[Blundell et al., 2015] and can then be sampled from, or sometimes even used for exact inference.
Markov chain Monte Carlo sampling (MCMC) approaches [Neal, 1996, Welling and Teh, 2011, Chen
et al., 2014] construct a Markov chain which has the exact posterior distribution as its stationary
distribution, that can then be employed for sampling. However, in practise, these approaches often
fail to sufficiently explore high-dimensional, multi-modal loss landscapes as they are common in
deep learning [Gustafsson et al., 2020].

4.2 Ensembles and Sub-networks

In a method referred to as deep ensembles [Lakshminarayanan et al., 2017a], a set of M neural
network models are randomly and independently initialized, and are subjected to stochastic mini-batch
sampling during SGD training. The models generally converge to different minima in the parameter
space, and can be considered samples from an approximate posterior [Wilson and Izmailov, 2020,
Gustafsson et al., 2020, Izmailov et al., 2021]. Deep ensembles often achieve the best calibration
and predictive accuracy [Ovadia et al., 2019, Gustafsson et al., 2020, Ashukha et al., 2020], but
suffer from high computational complexity as they require training, storing, and running inference on
several full instances of the network.

Many alternative methods have recently been proposed in an attempt to reduce either the computa-
tional cost or the storage cost of deep ensembles. Monte Carlo (MC) Dropout [Gal and Ghahramani,
2016] runs multiple forward passes on the dropout layers in order to obtain multiple predictions
and obtain an uncertainty estimate. Although the method requires fewer computations compared
to deep ensembles, it also leads to less accurate uncertainty estimates. Snapshot ensembles [Huang

8



et al., 2017] use a cyclic learning rate schedule in order to find multiple local minima, they then store
multiple copies of the network to create the ensemble. While this approach reduces the computation
cost during training it does not alleviate the storage cost.

BatchEnsembles [Wen et al., 2020] employ multiple low rank matrices, which can be stored efficiently,
in order to modulate the parameters of a neural network and thus mimic an ensemble of network
models. Masksembles [Durasov et al., 2021] aim to improve the performance of MC Dropout by
carefully selecting the dropout masks, used to drop certain features, such that they lead to better
uncertainty quantification. Another approach that uses multiple sub-networks is proposed in Havasi
et al. [2021]. In this case additional, independent layers are added at the beginning and at the end of
the network, in order to obtain multiple prediction with an single backbone model. Although such
method seems to reduce the computational resources required at training and inference time, the gain
is limited to larger backbones, such as Wide-ResNet (e.g., ResNet28-10), whereas for widely used
standard architectures like VGG (e.g., -16), or ResNet (e.g., -34), the approach is not very effective,
as shown in our experiments.

Although many methods have been proposed that aim at reducing the computational cost of deep
ensembles, none of them appears to clearly outperform most others. In summary, the question how to
effectively model uncertainty still remains open.

4.3 Feature-wise Linear Modulation

The idea of controlling the batch normalization parameters to modulate a network’s function has been
explored by many different authors to accomplish different tasks. Conditional batch normalization
(CBN) was proposed by de Vries et al., who achieved good performance in VQA experiments by
using an MLP to estimate residuals for normalization parameters used in a pre-trained ResNet [De
Vries et al., 2017b]. Perez et al. [2018] proposed FiLM also for solving VQA tasks. Strub et al.
[2018] modify FiLM to produce normalization parameters in several stages instead of all at once.
This formulation is better able to handle longer conditioning information, such as dialogues instead
of questions, and achieved excellent results on the GuessWhat?! visual dialogue task [De Vries et al.,
2017a].

Such modulation operations have also been used for image style transfer. It has been observed that the
statistics of a feature map, which are associated with and can be controlled by the parameters produced
by FiLM, are directly related to the style of an image [Huang and Belongie, 2017]. Dumoulin et al.
[2017] succeeded in capturing the styles of artistic paintings, as well as combining extracted styles to
create new ones, by using conditional instance normalization, which can be seen as a variation of
FiLM. Ghiasi et al. [2017] expand on this work by jointly training a style prediction network and
a style transfer network, which also operate based on conditional instance normalization. Finally,
Brock et al. [2018] used FiLM for natural image synthesis using generative adversarial networks
(GANs). They report that this allowed for a reduction in computation and memory costs, as well as a
37% increase in training speed.

Yang et al. [2018] have used FiLM to modulate the layers of a segmentation network to perform
video object segmentation. This made it possible to avoid the fine-tuning process that was used by
competing methods, which resulted in a 70× speed-up while achieving similar accuracy. Feature
modulation has also been applied for various other tasks. Oreshkin et al. [2018] used FiLM for task-
dependent metric scaling, which allowed them to achieve excellent results in few-shot classification.
Vuorio et al. [2019] use FiLM for meta-learning via task-aware modulation. The authors note that
FiLM outperforms attention-based modulation in this context, and is more stable. Finally, Vinyals
et al. [2019] used FiLM in their AlphaStar neural architecture for multi-agent reinforcement learning.
To our knowledge, FiLM has so far not been used for (implicit) model ensembling or uncertainty
quantification.

5 Limitations & Future Work

The work presented in this paper gives rise to several questions that can be explored in future
work. Using pre-trained models is standard procedure in deep learning applications. It would be
useful to explore how FiLM-Ensemble performs when used in conjunction with pre-trained models.
This may not be straightforward since FiLM-Ensemble (and also other implicit ensemble methods,

9



e.g., BatchEnsemble, MIMO) is based on variations between ensemble members, which may be
reduced if all members are similarly initialized. Furthermore, self-attention-based models, e.g.,
Transformers [Vaswani et al., 2017] and Vision Transformers [ViTs, Dosovitskiy et al., 2021] have
recently become very popular; therefore it is natural to adapt FilM-Ensemble to work with such
models. Note that layer normalization is standard in Transformers instead of batch normalization,
which prevents the straightforward application of the presented method in this case. Also, a number
of measures designed to enhance implicit ensembles are orthogonal to our approach and could
potentially be combined with FiLM-Ensemble to further improve its performance and uncertainty
calibration, while minimally increasing the computational costs. It appears straight-forward to add
the selection of independent examples for each member during training [as in MIMO, Havasi et al.,
2021], temperature scaling [Guo et al., 2017] or data augmentation strategies [such as, e.g., Ramé
et al., 2021].

6 Conclusion

In this paper we present FiLM-Ensemble, a novel implicit deep ensembling method. We achieve high
efficiency using a simple yet effective idea – feature-wise linear modulation – which has been shown
to be effective in different domains, such as image style transfer, model-agnostic meta-learning, or
multi-task learning. Our extensive evaluation shows that FiLM-Ensemble outperforms, or is on par
with, state-of-the-art ensemble methods in many different experimental settings.

Broader Impact

Machine learning has recently witnessed a steep increase in model sizes and associated computational
costs, and as a consequence a rapid growth in energy consumption. For instance, training state-of-the-
art language models like GPT-3 would amount to at least 1400 MWh, or 4.6 million $. Therefore,
recently the term Green AI has been introduced, referring to AI research that yields novel results
while taking into account the computational cost, encouraging a reduction in resources spent. To
this extent, we believe that the presented method can foster more efficient ensemble methods and be
helpful towards a greener AI.

Acknowledgements We would like to thank Liyuan Zhu for his invaluable contributions to experi-
ments. H.A.G. received funding from German Federal Ministry of Education and Research (BMBF,
Grant “GenomeNet” 031L0199B). B. B. and M. R. were supported by the Bavarian Ministry of
Economic Affairs, Regional Development and Energy through the Center for Analytics - Data -
Applications (ADACenter) within the framework of BAYERN DIGITAL II (20-3410-2-9-8) and the
German Federal Ministry of Education and Research and the Bavarian State Ministry for Science and
the Arts.

References
A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov. Pitfalls of in-domain uncertainty estimation and

ensembling in deep learning. In International Conference on Learning Representations, 2020.

K. Bibas, M. Feder, and T. Hassner. Single layer predictive normalized maximum likelihood for out-of-
distribution detection. Advances in Neural Information Processing Systems, 34:1179–1191, 2021.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural network. In
International Conference on Machine Learning, volume 37, 2015.

A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image synthesis. In
International Conference on Learning Representations, 2018.

J. L. Campbell and N. Kleckner. E. coli oric and the dnaa gene promoter are sequestered from dam methyltrans-
ferase following the passage of the chromosomal replication fork. Cell, 62(5):967–979, 1990.

T. Chen, E. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In International Conference on
Machine Learning, volume 32, 2014.

L. Cheng, J. Sun, W. Xu, L. Dong, Y. Hu, and M. Zhou. Oahg: an integrated resource for annotating human
genes with multi-level ontologies. Scientific reports, 6(1):1–9, 2016.

10



H. De Vries, F. Strub, S. Chandar, O. Pietquin, H. Larochelle, and A. Courville. Guesswhat?! visual object
discovery through multi-modal dialogue. In IEEE Conference on Computer Vision and Pattern Recognition,
2017a.

H. De Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A. C. Courville. Modulating early visual
processing by language. In Advances in Neural Information Processing Systems, volume 30, 2017b.

A. Der Kiureghian and O. Ditlevsen. Aleatory or epistemic? does it matter? Structural Safety, 31(2):105–112,
2009.

A. Diaz-Pinto, A. Colomer, V. Naranjo, S. Morales, Y. Xu, and A. F. Frangi. Retinal image synthesis and semi-
supervised learning for glaucoma assessment. IEEE Transactions on Medical Imaging, 38(9):2211–2218,
2019.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In
ICLR, 2021.

V. Dumoulin, J. Shlens, and M. Kudlur. A learned representation for artistic style. ICLR, 2017.

N. Durasov, T. Bagautdinov, P. Baque, and P. Fua. Masksembles for uncertainty estimation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13539–13548, 2021.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep
learning. In International Conference on Machine Learning, 2016.

G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens. Exploring the structure of a real-time, arbitrary neural
artistic stylization network. arXiv preprint arXiv:1705.06830, 2017.

A. Graves. Practical variational inference for neural networks. In Advances in Neural Information Processing
Systems, volume 24, 2011.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks. In International
Conference on Machine Learning, 2017.

F. K. Gustafsson, M. Danelljan, and T. B. Schon. Evaluating scalable bayesian deep learning methods for robust
computer vision. In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural network.
Advances in neural information processing systems, 28, 2015.

M. Havasi, R. Jenatton, S. Fort, J. Z. Liu, J. Snoek, B. Lakshminarayanan, A. M. Dai, and D. Tran. Training
independent subnetworks for robust prediction. In ICLR, 2021.

G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger. Snapshot ensembles: Train 1, get m for
free. In International Conference on Learning Representations, 2017.

H. Huang, Z. Li, L. Wang, S. Chen, B. Dong, and X. Zhou. Feature space singularity for out-of-distribution
detection. arXiv preprint arXiv:2011.14654, 2020.

X. Huang and S. Belongie. Arbitrary style transfer in real-time with adaptive instance normalization. In IEEE
International Conference on Computer Vision, 2017.

P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. G. Wilson. What are bayesian neural network posteriors
really like? In International Conference on Machine Learning, volume 139, 2021.

A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for computer vision? In
Advances in Neural Information Processing Systems, 2017.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto,
2009.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estimation using
deep ensembles. In Advances in Neural Information Processing Systems, volume 30, 2017a.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estimation using
deep ensembles. Advances in neural information processing systems, 30, 2017b.

11



N. Lee, T. Ajanthan, and P. H. Torr. Snip: Single-shot network pruning based on connection sensitivity. ICLR,
2019.

Y. Li, N. Wang, J. Shi, X. Hou, and J. Liu. Adaptive batch normalization for practical domain adaptation. Pattern
Recognition, 80:109–117, 2018.

Z. Li, H. Jiang, L. Kong, Y. Chen, K. Lang, X. Fan, L. Zhang, and C. Pian. Deep6ma: A deep learning framework
for exploring similar patterns in dna n6-methyladenine sites across different species. PLoS computational
biology, 17(2):e1008767, 2021.

J. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax Weiss, and B. Lakshminarayanan. Simple and principled uncer-
tainty estimation with deterministic deep learning via distance awareness. Advances in Neural Information
Processing Systems, 33:7498–7512, 2020.

I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with warm restarts. In International Conference
on Learning Representations, 2017.

A. Malinin and M. Gales. Predictive uncertainty estimation via prior networks. In Advances in Neural
Information Processing Systems, volume 31, 2018.

A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 7765–7773, 2018.

R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg, 1996.

B. Oreshkin, P. Rodríguez López, and A. Lacoste. Tadam: Task dependent adaptive metric for improved few-shot
learning. Advances in Neural Information Processing Systems, 31, 2018.

J. I. Orlando, H. Fu, J. B. Breda, K. van Keer, D. R. Bathula, A. Diaz-Pinto, R. Fang, P.-A. Heng, J. Kim, J. Lee,
et al. Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment
from fundus photographs. Medical Image Analysis, 59:101570, 2020.

Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Lakshminarayanan, and J. Snoek.
Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift. In Advances in
Neural Information Processing Systems, volume 32, 2019.

E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. FiLM: Visual reasoning with a general
conditioning layer. In AAAI Conference on Artificial Intelligence, volume 32, 2018.

P. J. Pukkila, J. Peterson, G. Herman, P. Modrich, and M. Meselson. Effects of high levels of dna adenine
methylation on methyl-directed mismatch repair in escherichia coli. Genetics, 104(4):571–582, 1983.

A. Ramé, R. Sun, and M. Cord. Mixmo: Mixing multiple inputs for multiple outputs via deep subnetworks. In
IEEE/CVF International Conference on Computer Vision, 2021.

R. Ranganath, S. Gerrish, and D. Blei. Black box variational inference. In International Conference on Artificial
Intelligence and Statistics, 2014.

F. Strub, M. Seurin, E. Perez, H. De Vries, J. Mary, P. Preux, and A. C. Pietquin. Visual reasoning with multi-hop
feature modulation. In European Conference on Computer Vision, 2018.

M. Takeda, G. Benitez, and K. Yanai. Training of multiple and mixed tasks with a single network using feature
modulation. In International Conference on Pattern Recognition, pages 719–735. Springer, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30, 2017.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds,
P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

R. Vuorio, S.-H. Sun, H. Hu, and J. J. Lim. Multimodal model-agnostic meta-learning via task-aware modulation.
In Advances in Neural Information Processing Systems, volume 32, 2019.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In International
Conference on Machine Learning, 2011.

Y. Wen, D. Tran, and J. Ba. Batchensemble: an alternative approach to efficient ensemble and lifelong learning.
In International Conference on Learning Representations, 2020.

12



A. G. Wilson and P. Izmailov. Bayesian deep learning and a probabilistic perspective of generalization. In
Advances in Neural Information Processing Systems, volume 33, 2020.

L. Yang, Y. Wang, X. Xiong, J. Yang, and A. K. Katsaggelos. Efficient video object segmentation via network
modulation. In IEEE Conference on Computer Vision and Pattern Recognition, 2018.

C. Zhang and Y. Ma. Ensemble machine learning: methods and applications. Springer, 2012.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] Purely

methodological contribution that, when added to a learning system, does not alter
its potential societal impacts. If anything, better uncertainty calibration reduces
the risk of negative effects caused by undetected prediction errors.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] license information for the used

datasets is public.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


	Introduction
	FiLM-Ensemble
	Implementation Details

	Experiments
	Diversity Analysis
	Computational Cost
	CIFAR-10 / CIFAR-100
	Retinal Glaucoma Detection
	6mA Identification
	Out-of-Distribution Detection

	Related Work
	Epistemic Uncertainty Quantification
	Ensembles and Sub-networks
	Feature-wise Linear Modulation

	Limitations & Future Work
	Conclusion

