
Supplementary Material

SGAM: Building a Virtual 3D World through

Simultaneous Generation and Mapping

Yuan Shen
1

Wei-Chiu Ma
2

Shenlong Wang
1

1University of Illinois at Urbana-Champaign 2Massachusetts Institute of Technology
{yshen47, shenlong}@illinois.edu

weichium@mit.edu

Abstract

In the supplementary material, we first introduce the architecture details for our
method and other baselines in Sec. 1. We then provide a detailed description
of the evaluation metrics in Sec. 2. Finally, we provide additional quantitative
and qualitative results and analysis on GoogleEarth-Infinite and Clevr-Infinite
datasets in Sec. 3. We strongly recommend the readers to check our project page at
https://yshen47.github.io/sgam/, which gives a brief introduction to our approach
and provides additional qualitative results in video sequences.

1 Experimental Details

1.1 Depth Map Representation

Following previous work (5; 2), we use the normalized inverse depth map to encode geometry in our
RGB-D image representation. We normalize the scale of the inverse depth maps to be between -1 and
1 for each dataset: d = d�dmin

dmax�dmin
· 2 � 1, where dmin, dmax is computed from the training set for

each dataset.

1.2 Mapping

To ensure a fair comparison of 3D scene generation, we augment all the existing baselines (5; 4) with
the same mapping module as SGAM. Specifically, we leverage the volumetric integration approach
described in ElasticFusion (7) as the mapping module for all competing algorithms. It is a scalable
volumetric integration implementation based on the voxel-hashing scheme. The voxel length is 0.01,
and the SDF truncation value is 0.05.

1.3 GoogleEarth-Infinite Dataset

To validate the effectiveness of SGAM on real-world data, we collect a posed real-world RGB-D
dataset, GoogleEarth-Infinite, in which we extract 3d mesh from GoogleEarth using MapsModelsIm-
porter API* and render the mesh with Blender. GoogleEarth-Infinite contains 350k RGB-D images at
a resolution of 512x512, distributed across 30 training scenes, and 3 validation scenes. The scene
meshes are sampled near residential areas around several US university campuses. For each scene,
we sample poses in a dense grid parallel to the ground plane, such that there is a small extrapolation
area if warping from nearby poses.

*Google Earth 3D mesh extraction API: https://github.com/eliemichel/MapsModelsImporter

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://yshen47.github.io/sgam

1.4 Implementation Details for SGAM

Architecture Our generative sensing model follows a similar convolutional encoder and de-
coder models as presented in VQGAN (2) with a few differences. Specifically, our encoder
contains five convolutional residual blocks and the decoder contains five residual convolu-
tional residual blocks. Each residual block consists of two stack of modules with Group-
Norm+SwishNonLinearity+Conv2d+shortcut connection. Codebook vocabulary size |Z| is 16384
for both datasets and codebook embedding dimension is 256. The total length of sequence or latent
code length for one image on CLEVR-Infinite is 256, and 512 on GoogleEarth-Infinite. The output
dimension of VQGAN and the input dimension of the discriminator, C, is 4, which corresponds to
the RGB and disparity. In total, there are 100M trainable parameters.

Training and inference details During the second-stage training, we trained 180k iterations on
CLEVR-Infinite, and 120k iterations on GoogleEarth-Infinite. During training, we random sample 1
or 2 sources poses nearby with camera center within 3 units in CLEVR-Infinite, within 0.15 units in
GoogleEarth-Infinite.

1.5 Architecture Details for GFVS-Explicit

On CLEVR-Infinite, we follow similar architecture as is used in GFVS explicit-image variant in their
codebase (5), except that we use one single RGB-D codebook to encode RGB and disparity. In total,
there are 210M training parameters. However, on GoogleEarth-Infinite, due to an increase of image
resolution to 512x512, we downscale the latent Transformer architecture such that it can fit into our
GPU. Specifically, we keep 8 Transformer layers, i.e., nlayer, and 8 attention heads. The Transformer
embedding size is 1024, and the block size is 2077. The sampling for source poses is the same as is
used in SGAM.

1.6 Architecture Details for GFVS-Implicit

On CLEVR-Infinite, we follow similar architecture as is used in GFVS implicit-depth variant in their
codebase (5) except that we use one single codebook to encode RGB-D without a separate depth
codebook. The motivation for using a single RGB-D codebook as SGAM is to exclude the effect
of codebook difference on performance comparison. In total, there are 303M training parameters.
Similarly, as GFVS-Explicit, we downscale the latent Transformer architecture such that it can fit
into our GPU. Specifically, we keep 8 Transformer layers, i.e., nlayer, and 8 attention heads. The
Transformer embedding size is 1024, and the block size is 2077. The sampling for source poses is the
same as is used in SGAM with 1 or 2 source poses during training. After average and max pooling
separately over the last feature layers of Transformer across different source views, we concatenate
the pooling results and feed them into an MLP (a linear layer from 2048 to 1024, ReLU, and a linear
layer from 1024 to 16384(vocab_size)). It takes 120 iterations on CLEVR-Infinite, and 80k iterations
until convergence on GoogleEarth-Infinite.

1.7 Architecture Details for InfiniteNature

We re-implement InfiniteNature (4) in Pytorch since the original TensorFlow implementation does
not contain training scripts. We use the same hyperparameters based on their codebase and retrain
their models. We also reproduce the render-refine-repeat perpetual view synthesis pipeline following
their Tensorflow implementation. In total, there are 240M trainable parameters for InfiniteNature.

There is one major difference in our implementation. First, we remove the geometric grounding
step since we find it harmful during inference in the CLEVR-Infinite dataset. Second, to reduce the
domain shift issue on Google Earth, we only let the model fill in the invisible region in the target pose
after forward warping pixels from the source view. Unlike other competing methods, InfiniteNature
takes only one source image. For the CLEVR-Infinite dataset, we follow the same architecture as the
original InfiniteNature codebase. With an increased resolution at 512x512 on GoogleEarth-Infinite,
we add two additional convolution layers in the encoder; the channel sizes for the eight convolution
output dimensions are [64, 128, 256, 512, 1024, 2048, 2048, 2048].

2

2 Evaluation Metrics

Image-level metrics: we use scikit-learn implementation for PSNR and SSIM † . For LPIPS, we
use the official implementation ‡. For FID, we use the official Pytorch implementation §.

Scene-level measures: For the scene-level metric, we first sample two sets of point cloud blocks
separately from the generated scenes, denoted as Sg and ground-truth scenes, denoted as Sr. We
divided the generated large-scale scenes into smaller blocks for all the competing methods and the
ground-truth reference data to evaluate scene-level metrics. In total, we sample 1100 blocks from
each set for evaluation. Following prior work (1; 6), we use Jensen-Shannon Divergence (JSD),
Minimum Distance (MinDst), 1-nearest neighbor accuracy (1-NNA), and Coverage (Cov). We follow
notations and equations used in PointFlow (6). In addition, we also report the Maximum Mean
Discrepancy (MMD) (3), a non-parametric distance between two distributions.

Kernel and distance functions: All the metrics above are based on computing either a pairwise
distance function or a kernel function between two point clouds. To measure the distance/similarity
robustly and efficiently, we convert each scattered point cloud block into a normalized volume-based
3D histogram (at the resolution of 103, 153, 203). We then use the cosine similarity SC as the kernel
function during kernel-based metric evaluation, such as MMD and JSD:

K(X,Y) =
X ·Y

||X|| ||Y|| ,

where X and Y are normalized 3D histograms.

We also use cosine distance DC for distance-based metrics, such as MinDist and 1-NNA:

D(X,Y) = 1�K(X,Y) = 1� X ·Y
||X|| ||Y||

Next, we will describe each metric in detail.

Jensen-Shannon Divergence (JSD) operates on discretized Euclidean 3D space, which measures
the divergence between the marginal distribution of the generated and reference point clouds. Mathe-
matically

JSD(Pg, Pr) =
1

2
DKL(Pr||M) +

1

2
DKL(Pg||M),

where Pr and Pg are empirical distributions computed in the form of 3D histograms; M = 1
2 (Pr+Pg);

DKL is the KL divergence. However, JSD can be misleading in cases when the model always outputs
an average shape point cloud that is close to M .

Coverage (COV) quantifies how many reference point clouds can be matched to at least one generated
point cloud. COV can be used to detect mode collapse, even though it does not dig into the quality of
generated point clouds. Mathematically,

COV(Sg,Sr) =
|{arg minY2Sr

D(X,Y)|X 2 Sg}|
|Sr|

Minimum matching distance (MinDst) measures the distance of each generated point cloud to its
nearest neighbour in the reference dataset:

MinDst(Sg,Sr) =
1

|Sr|
X

Y2Sr

min
X2Sg

D(X,Y)

MinDst serves to measure the quality of generated point cloud, but cannot reflect well low-quality
point clouds in Sg , since only the point cloud with minimum distance to the reference is considered
in this metric.

†https://scikit-image.org/docs/stable/api/skimage.metrics.html
‡LPIPS: https://github.com/richzhang/PerceptualSimilarity
§FID: https://github.com/mseitzer/pytorch-fid

3

Model 3D Hist. Res. JSD (10�2) # MMD (10�5) # MinDist # 1-NNA # Cov "
GFVS-implicit (5)

103

0.600 13.11 0.138 0.700 0.427
GFVS-explicit (5) 8.838 372.900 0.150 0.874 0.170

Ours 0.280 9.890 0.143 0.615 0.533

GFVS-implicit (5)
153

0.775 4.510 0.205 0.675 0.376
GFVS-explicit (5) 10.870 211.500 0.215 0.825 0.122

Ours 0.656 4.441 0.221 0.585 0.454

GFVS-implicit (5)
203

0.994 2.776 0.269 0.695 0.303
GFVS-explicit (5) 11.660 66.610 0.270 0.775 0.116

Ours 1.26 2.967 0.294 0.566 0.360

Table 1: Scene-level comparison study on generated 30x30 scenes with prior arts on CLEVR-Infinite.
Compared with Table 2 in the main paper, we provide results on two other resolutions.

Maximum Mean Discrepancy (MMD) estimates two distributions by comparing the mean squared
differences of the statistics from two sample sets. Mathematically,

MMD(Sg,Sr) =
1

|Sr|2
X

X2Sr

X

X02Sr

K(X,X0)� 2

|Sr||Sg|
X

X2Sr

X

Y2Sg

K(X,Y)+
1

|Sg|2
X

Y2Sg

X

Y2Sg

K(Y,Y0)

Leveraging the kernel tricks, MMD can measure the distribution similarity from all the moments.

1-nearest neighbor accuracy (1-NNA) aims to decide if two samples of point clouds are from the
same distribution. It achieves this purpose by classification with a 1-NN classifier. If the 1-NN
classifier has high accuracy, then two samples are easy to tell apart and thus are from different
distributions, and vice versa. Mathematically,

1-NNA(Sg,Sr) =

P
X2Sg

[NX 2 Sg] +
P

Y2Sr
[NY 2 Sr]

|Sg|+ |Sr|
,

where NX is the nearest neighbor of X among the union of Sr and Sg excluding X, and NY is
defined in a similar formulation.

3 Additional Results

3.1 CLEVR-Infinite Scene-level Metrics at Different Resolutions

We provide scene-level evaluation with 3D histogram resolution at 103, 153, and 203 in Table 1. Ours
is consistently the best for 1-NNA and Cov at different resolutions, which suggests our prediction
matches with the scene-level distribution of the ground-truth distribution. At coarser resolution, we
achieve the best for JSD and MMD, but achieve the second-best at the lowest resolution. Finally, for
MinDist, we notice that it does not reflect the scene generation performance well. As is shown in
Figure 3 of the main paper, despite a worse quality of GFVS-explicit at scene-level, GFVS-explicit
achieves a higher score than ours at lower resolutions, indicating the lower quality generated point
clouds are not captured by MinDist.

3.2 Diversity

Effects of temperature sampling In Figure 2, we provide qualitative uncertainty on temperature
sampling. We visualize both uncertainties in latent code space and the color space. For uncertainty
quantification in latent code space, we visualize the entropy of each latent code. To quantify the
image-level uncertainty, we sample 100 images using temperature sampling and visualize the standard
deviation for all the RGB samples at the pixel level. This figure shows that outpainting regions
and geometry boundaries tend to have higher color-space uncertainty. Nevertheless, uncertainty in
latent code is not coupled with appearance uncertainty. We conjecture that our codebook has certain
redundancies.

4

Effects of the number of source views We also compare different image-based rendering strategies
in Fig. 1. As shown in the figure, the generated scene’s diversity increases if fewer source views are
used during the image-based rendering stage. Nevertheless, the appearance consistency across time
decreases if we leverage fewer source images for inverse warping. This result suggests that finding
a good trade-off between consistency and diversity is crucial for high-quality scene generation in
SGAM.

3.3 Failure cases on GoogleEarth-Infinite

We collect several typical failure cases of SGAM in Figure 3. Despite producing realistic footage
and 3D scene in most cases, SGAM tends to expand the building footprints to an unrealistic scale
during the recursive sampling (row 1 and row 2). Additionally, SGAM outpaints better along the
vertical direction than moving horizontally on the GoogleEarth dataset (row 3) since the same camera
moving step results in a larger outpainting gap if moving horizontally than moving forward. We
anticipate this could be resolved through a minor relative motion step. Finally, compared with natural
objects, e.g., trees, SGAM is likely to struggle to generate complex structures (row 4). Training a
stronger-capacity codebook might alleviate this issue.

5

#s
rc

=
1

#s
rc

=
1

#s
rc

=
10

#s
rc

=
10

#s
rc

=
1

#s
rc

=
1

#s
rc

=
10

#s
rc

=
10

Figure 1: Effect of the source view number on diversity. The rows in odd numbers consist of
birds-eye view in the form of color point clouds and RGB-D integrated global meshes. Each sequence
unrolls for 70 steps with the same relative movements between frames

6

Input Hlatent �rgb Sample 1 Sample 2 Sample 3

T=
1

T=
10

T=
1

T=
10

Figure 2: Diversity samples using different temperature. Hlatent denotes the entropy of latent code
distribution. �rgb is the per-pixel standard deviation based on 100 samples from temperature sampling.
T is the temperature parameter.

Figure 3: Failure Cases of SGAM on GoogleEarth-Infinite

7

References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and
generative models for 3d point clouds. In ICML, 2018.

[2] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image synthesis.
In CVPR, 2021.

[3] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In International
conference on machine learning, pages 1718–1727. PMLR, 2015.

[4] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Makadia, Noah Snavely, and Angjoo Kanazawa.
Infinite nature: Perpetual view generation of natural scenes from a single image. In ICCV, 2021.

[5] Robin Rombach, Patrick Esser, and Björn Ommer. Geometry-free view synthesis: Transformers and no 3d
priors. In ICCV, 2021.

[6] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan. Pointflow:
3d point cloud generation with continuous normalizing flows. In ICCV, 2019.

[7] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data processing.
arXiv:1801.09847, 2018.

8

	Experimental Details
	Depth Map Representation
	Mapping
	GoogleEarth-Infinite Dataset
	Implementation Details for SGAM
	Architecture Details for GFVS-Explicit
	Architecture Details for GFVS-Implicit
	Architecture Details for InfiniteNature

	Evaluation Metrics
	Additional Results
	CLEVR-Infinite Scene-level Metrics at Different Resolutions
	Diversity
	Failure cases on GoogleEarth-Infinite

