
SGAM: Building a Virtual 3D World through

Simultaneous Generation and Mapping

Yuan Shen
1

Wei-Chiu Ma
2

Shenlong Wang
1

1University of Illinois at Urbana-Champaign 2Massachusetts Institute of Technology
{yshen47, shenlong}@illinois.edu

weichium@mit.edu

Abstract

We present simultaneous generation and mapping (SGAM), a novel 3D scene
generation algorithm. Our goal is to produce a realistic, globally consistent 3D
world on a large scale. Achieving this goal is challenging and goes beyond the
capacities of existing 3D generation or video generation approaches, which fail to
scale up to create large, globally consistent 3D scene structures. Towards tackling
the challenges, we take a hybrid approach that integrates generative sensor model-
ing with 3D reconstruction. Our proposed approach is an autoregressive generative
framework that simultaneously generates sensor data at novel viewpoints and builds
a 3D map at each timestamp. Given an arbitrary camera trajectory, our method
repeatedly applies this generation-and-mapping process for thousands of steps,
allowing us to create a gigantic virtual world. Our model can be trained from
RGB-D sequences without having access to the complete 3D scene structure. The
generated scenes are readily compatible with various interactive environments and
rendering engines. Experiments on CLEVER and GoogleEarth datasets demon-
strates ours can generate consistent, realistic, and geometrically-plausible scenes
that compare favorably to existing view synthesis methods. Our project page is
available at https://yshen47.github.io/sgam/.

1 Introduction

Human perception goes way beyond simple recognition and reconstruction. Our extraordinary
abilities not only allow us to make sense of what we see, but also enable us to imagine what we do not
(e.g., reason what the scene looks like outside the image). With a simple glance, we can effortlessly
re-build a mental world, that may not be exactly like the original, but is perceived by our brain to be
the same. In fact, it is such a profound ability drawing us apart from existing AI systems.

The goal of this paper is to equip computational machines with similar capabilities. We aim to
develop a program that can create an arbitrarily large, realistic, and consistent 3D world from a
single snapshot of the scene. The task is of paramount interest to many applications in computer
vision (60; 40; 74), computer graphics (65; 65), geography (5), and robotics (13; 44), since it unlocks
numerous potentials. For instance, it may allow us to build an interactive virtual environment without
any costly and laborious 3D modeling pipeline (12).

Indeed, there has been a consistent pursuit within the computer vision and graphics community in the
past few decades (17; 16; 85; 65; 9; 68; 72), where people attempt to design algorithms and models
that are capable of extrapolating and hallucinating the world from a single input image. Unfortunately,
a large body of efforts have been focusing on modeling in the 2D image space (17; 16; 85; 18; 37; 9),
or require external 3D assets and manually specified rules for restricted 3D generation (10). Recently,
with the advent of deep generative models (36; 76; 40; 61; 60), researchers have made great strides
in unconstrained 3D syntheses. However, due to the highly complex structure of the task, these
approaches mostly focus on object-centric scenarios, or generating small-scale environments.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://yshen47.github.io/sgam


Figure 1: A large-scale virtual world created after 2000 SGAM steps. SGAM is an auto-regressive
generative framework that simultaneously generates sensor data at novel views and builds a 3D map.

With these problems in mind, we present Simultaneous Generation and Mapping (SGAM), a novel
3D scene generation algorithm. SGAM builds upon insights from state-space representation in
SLAM (48; 23) as well as recent generative models (73; 18; 66). At its core lies two key modules: (i)
a generative sensor module that takes a scene representation and a novel query viewpoint as input
and renders a photo-realistic RGB-D image of a 3D scene; and (ii) a mapping module that exploits
the newly generated RGB-D observation at a given camera pose and updates the scene representation.
Given an arbitrary camera trajectory, our method iteratively applies this procedure to construct the
3D scene. By grounding scene generation with “a map”, we can produce a realistic and spatially
consistent 3D world at a significantly larger scale than any previous 3D generation effort without
drifting or collapsing. Additionally, our generated scenes can be represented explicitly as textured
3D models, making them readily compatible with various interactive environments and rendering
engines. We note that we are not the first to tackle the task of scene synthesis under large viewpoint
differences (56; 60; 40). Several recent efforts have demonstrated promising results in this direction,
from which our method is inspired. Nonetheless, these works do not produce a consistent 3D scene
representation of the infinite world and potentially suffer from mode collapse (60; 40).

We validate the efficacy of SGAM on two large-scale 3D scene datasets, Clevr-infinite and
GoogleEarth. Both benchmarks produce substantially larger 3D scenes than existing datasets. This
allows us to benchmark large-scale 3D scene generation. We evaluate the standard metrics for
perceptual image quality, such as PSNR, SSIM (75), LPIPS (82), IS (63), and FID (27). We further
benchmark the realism of the generated 3D scenes in terms of Jensen-Shannon divergence and
maximum-mean discrepancy (22). Experimental results suggest that 1) our method produces more
realistic results than existing single-image novel view synthesis methods; 2) our approach generates a
more meaningful 3D world than the prior perpetual view generation algorithms.

2 Related Work

Image generation: How to synthesize an image realistically has been a long-standing problem
in computer vision. The task dates back to 60s (32; 4) where researchers attempted to generate
textures by matching statistics (42; 26). Through parametric sampling (85) or non-parametric
matching (17; 16), they were able to synthesize an infinite amount of high-fidelity texture images.
Unfortunately, these approaches fall short when applied to natural images, since the images have much
higher complexity. Recently, with the help of deep generative models (21; 35; 55; 28; 66), researchers
have demonstrated promising results on generating photo-realistic images (30; 33; 34). With proper
design and inductive biases (73; 18; 11), they are even able to scale the output to mega-pixel level
(70; 9). In this paper, we build our generation module on top of VQ-GAN (18). However, instead
of treating scene generation as a pure 2D task as in the past, we explicitly consider the relationship
between appearance and geometry — both at the input level and the output level. By encoding both
information into the quantized codebook, we are able to “grow” the 3D scene from an initial seed
image and generate a boundless world, which is not exactly like the original, but will be perceived by
humans to be the same region.

3D Generation: 3D modeling and synthesis have been an active yet challenging research problem
for decades (8; 6; 68). Recently, with the development of image generation techniques (21; 35; 57),
the field has experienced a rapid growth (78; 49; 69). Drawing inspiration from its corresponding
2D analogue, researchers have been able to generate high quality point clouds (38; 79; 7), voxels
(19; 77), meshes (24; 20), etc. Unfortunately, since 3D solution space is much more intricate than that
of 2D, these approaches are typically object-centric; also, they mostly focus on generating common

2



Generative Sensing

…

Mapping

Input observation Graphics compatible 
3D scene

…

SGAM: Simultaneous Generation and Mapping

Figure 2: Overview of our approach. Our method consists two steps. 1) a generative sensing step
p✓(xt|Mt�1, ⇠t) which renders a realistic and complete sensor observation xt given an (incomplete)
scene representation Mt and a query viewpoint ⇠t; 2) a mapping module p✓(Mt|Mt�1,xt, ⇠t),
which integrates the new sensory observation to update the scene. Given an initial snapshot and a
camera trajectory, we repeatedly run this generation-mapping process to create the virtual 3D world.

objects in our daily lives (25; 39; 14; 15). To enable scene-level synthesis, researchers have sought to
incorporate more structures into the generation pipeline (47; 54; 51; 53), such as reducing the output
space from full 3D to predefined, compact representation (52; 46; 67). While these strategies greatly
alleviate the issue, the generated scene scale is still rather limited (e.g., an indoor environment). In
this work, we push the boundary of 3D generation systems and present a model that is capable of
generating coherent 3D scene structure over thousands of meters. The produced high-quality 3D
world not only allows us to build a large-scale map, but also provides geometric grounding for visual
appearance synthesis.

Generative sensor models: Generative sensor models serve critical roles in graphics/robotics
simulation systems (44; 10). Their goal is to faithfully simulate the sensor measurement in real
world. Depending on the sensor modalities (e.g., rgb/depth cameras, LiDAR scanner), the output
can be either photometric or geometric quantities. These methods usually assume an underlying
(proxy) 3D geometry is given (80; 59) and then perform conditional generation (43). The geometry
can take various forms (e.g., point clouds (2), surfels (80; 44), meshes (58), etc), as long as it can
effectively ground the system. Our full model is a combination of a generative sensor module and a
mapping module. The former takes as input RGBD images and simulates both the appearances and
the geometry of the scene.

Single image novel view synthesis (NVS): Our work is also related to single image NVS ap-
proaches (62; 71; 76; 29), whose goal is to simulate novel views of a scene using only visual cues
from one input image. These methods typically rely on neural networks to learn statistical priors
from data. Together with carefully designed scene representations (e.g., radiance fields (81; 74),
multi-plane images (71), layered depth images (72; 64), etc), they are able to synthesize scene appear-
ance with mild viewpoint change. To push the frontier even further, more recently, researchers have
proposed to go beyond local view synthesis, and instead simulate the scene under larger viewpoint
change (60; 40; 36; 61; 56). For instance, generate one room from the other. The task is extremely
challenging as it requires the model to learn not only the underlying scene representations, but also
the long-range dependencies. Without proper state/map representations, the generated output will
easily drift away and the constructed world will no longer be coherent (40; 61). To address this issue,
in this work, we develop a model that simultaneously generates novel views and builds a map. By
integrating synthesized results into the map, we are able to query relevant information whenever we
re-visit a spot and then decode, allowing us to produce realistic and consistent video footage.

3 SGAM: Simultaneous Generation and Mapping

In this paper, we seek to devise a method that can generate an arbitrarily large, realistic, and consistent
3D world from a single snapshot of the scene. Based on the observation that current 3D scene
generation approaches are prone to drifting and often produce inconsistent 3D worlds, we present

3



GT GFVS-Explicit (61) GFVS-Implicit (61) Ours
Figure 3: Randomly sampled scenes from CleverInfinite dataset.

Frame 1 Frame 2 Frame 450 Frame 900 Frame 1 Frame 2 Frame 450 Frame 900

G
FV

S
Ex

pl
ic

it

G
FV

S
Im

pl
ic

it

In
fin

ite
N

at
ur

e

O
ur

s

Figure 4: Unrolling results on CLVER-Infinite.

a novel framework, dubbed as SGAM, that simultaneously generates novel scenes and constructs
world maps. By grounding the generation and the mapping process in a tightly coupled fashion, we
are able to produce a 3D world at a significantly larger scale than any previous 3D generation effort.

We unfold this section by formulating our task in a probabilistic framework. Then we describe
how each module can be implemented with a neural network and how we conduct inference to
construct the virtual 3D world. Finally, we discuss the learning procedure, our design choices, and
the relationships to existing methods.

3.1 Problem Formulation

Given a camera trajectory {⇠t 2 SE(3)} over discrete time steps {t} and an initial RGB-D sensor
observation x0 2 RW⇥H⇥4, SGAM aims to compute an estimate of the sensor observation xt 2
RW⇥H⇥4 and a perceived map of the environment Mt as a set of 3D surface points and associated
colors {pi 2 R3

, ci 2 R3}1...Nt . Due to the inherent randomness, we consider all the quantities to
be random variables, so the objective is to model:

p(M1...t,x1...t|⇠1...t) (1)

Using Bayes rule and Markov property, SGAM factors the joint probability into a product of
conditional probability over all steps and concerns the following auto-regressive model at each step t:

p(Mt,xt|Mt�1, ⇠t) = p(xt|Mt�1, ⇠t)p(Mt|Mt�1,xt, ⇠t) (2)

At each step SGAM needs to estimate two conditional probabilities: 1) a generative sensor module
p✓(xt|Mt�1, ⇠t) rendering a realistic and complete sensor observation xt given an (incomplete)
scene Mt and a query viewpoint ⇠t; 2) a mapping module p✓(Mt|Mt�1,xt, ⇠t), which integrates
the new observation to update the scene. Next we will describe each module in detail.

4



Renderer PSNR" SSIM" LPIPS# ref-FID# FID# Runtime #
GFVS-implicit (61) 23.06 0.872 0.138 10.47 22.85 ±1.66 33.65
GFVS-explicit (61) 18.53 0.812 0.256 15.66 23.90 ±1.02 10.86
InfiniteNature (40) 20.48 0.876 0.247 21.09 33.05 ±1.81 0.15

Ours 24.65 0.901 0.111 7.80 21.91 ±1.28 0.26
Table 1: Comparison study of ours and baseline methods on the CLEVR-Infinite validation set. The
unit for runtime is average second per image. FID is computed over 2500 samples for each method.

3.2 Generative Sensing

We first describe our generative sensing module p(xt|Mt�1, ⇠t), which samples a new RGBD
observation xt given a query viewpoint ⇠t and the current scene Mt�1. Three desired properties are
1) consistency the generated sensor is consistent with existing 3D scene; 2) realism: the resulting
images look realistic, regardless of how many auto-regressive steps we run; 3) completeness: the
sensing module should produce complete observation over both explored and unexplored areas,
allowing our scene to expand as camera moves. Towards these goals, we propose a two-step process
including neural rendering and conditional generative refinement as shown in Figure 2.

Scene rendering: We firstly create a guidance image at the target pose by rendering the current
scene x0

t
= ⇡(Mt�1, ⇠t), where ⇡ is an image-based rendering procedure. Given a triangular mesh

extracted from the scene representation Mt�1, the image-based rendering pipeline first produces a
dense depth map at the target pose ⇠t through rasterization. The rendered depth map is then used
for inverse warping, producing an RGB image by transferring color appearance from existing sensor
observations to the target image. A geometry consistency check will be conducted between each pixel
at the rendered target depth and source depth, ensuring the color comes from the same point in 3D.
The image-based rendering step gives us an incomplete RGBD observation, where the missing pixels
are due to the incompleteness of the current scene representation. Nevertheless, this step promotes
the consistency between the generated sensory data and our current knowledge about the scene, built
upon the past generated sensory data.

Generative refinement: Next, we generate the final complete virtual sensor observation xt based
on the incomplete rendering x0

t
. First, the incomplete image x0

t
is fed into an encoder network, fenc

which outputs a continuous-valued latent feature map ẑ. Then, we quantize z with a pre-trained
codebook D, by sampling the closest quantized feature zq:

zq = q(ẑ,D) :=

✓
argmin
zk2D

kẑij � zkk
◆

2 Rh⇥w⇥nz , where ẑ = fenc(x
0
t
) (3)

where, h and w is the height and width of latent feature map, and nz is the embedding dimension.

Alternatively for q(ẑ,D), to encourage diversity, we could also sample each quantized embedding
from the following distribution of its corresponding latent code ẑij by measuring the soft-max simi-
larity to each code word embedding zk in the pre-trained codebook D. We provide qualitative results
of temperature sampling on CLEVR-Infinite dataset in our supplementary material. Mathematically,

q(k = r|x0
t
) =

exp(�dr/T )P
j
exp(�dj/T )

, dk = kzk � ẑijk22

where q(k = r|x0
t
) is the probability of r-th latent code following a K-dimensional categorical

distribution; K is the size of the codebook; T is a temperature parameter; and dk is the quantization
error between the feature vector and the codebook element.

Finally, we send zq to a decoder network fdec to get complete observation xt. Our generative sensing
model is efficient due to our one-shot denoising procedure during the sampling stage, as opposed to
the computationally-expensive sequential decoding in other VQGAN-based methods (18; 61).

3.3 Mapping

Representation Maintaining an efficient and flexible scene representation is crucial for high fidelity
3D world generation at a large scale. Inspired by its success in depth-based SLAM (48) and 3D

5



Image metrics Scene metrics

Model FID # IS # JSD (10�2) # MMD (10�5) # MinDist # 1-NNA # Cov "
GFVS-implicit (61) 16.14 1.56 ±0.05 0.775 4.510 0.205 0.675 0.376
GFVS-explicit (61) 82.82 3.11 ±0.18 10.870 211.500 0.215 0.825 0.122

Ours 26.60 1.55 ±0.08 0.656 4.441 0.221 0.585 0.454

Table 2: Scene-level comparison study on unrolling 30x30 scenes with prior arts on CLEVR-Infinite.
For scene-level metrics, we use 3D hist on 153 resolution with Cosine distance.

Figure 5: Generated 3D map on GoogleEarth-Infinite dataset. Each sequence unrolls for 70 steps
with the same relative movements between frames. The top right is the initial RGB image.

reconstruction (83), we leverage hashing based volumetric representation (50) for Mt. Each voxel
p in the space maintains a signed distance value Mt(p) : R3 ! R, where the magnitude encodes
the distance to the surface boundary, and the sign represents whether it is interior or exterior. Such
representation is flexible, allowing us to update online at each step when new sensory data is generated.
Additionally, voxel-hashing enables sparse storage, allowing the map to scale to huge scenes.

Integration At each time t, given a new observation xt, we update our map Mt following
KinectFusion (48). Specifically, a weighted sum update is conducted for points along the camera ray:

Mt(p) =
wt�1(p)Mt�1(p) +O(xt,p)

wt�1(p) + 1
;wt(p) = wt�1(p) + 1

where O(xt,p) is the observed signed distance function at p, calculated by the new sensor observation
xt; wt is a counter that summarizes how many steps that p has been updated. After each integration
step, we will also conduct marching cube (41) to extract triangular mesh, allowing us to render images
from a new viewpoint during the generative sensing process.

3.4 Learning

SGAM adopts a two-stage training pipeline. In the first stage, inspired by VQGAN (18), we first
pre-trained a discrete-latent encoder, decoder, and codebook on the clean RGB-D image dataset
in an auto-encoding fashion. During training, we perform online re-initialization of the codebook
embedding by performing k-means clustering over a past feature cache on the unquantized feature
embedding space, whenever the active codeword hit rate within a fixed time interval drops below a
pre-defined threshold. Following the practice in GFVS (61), we use L1 reconstruction loss, perceptual
loss (82), patch-gan-based discriminator loss (30) and commitment loss (18).

Our second stage aims to train the encoder so that it learns to complete the latent code space.
Specifically, we fine-tune the encoder with incomplete/complete image pairs. The incomplete RGB-D
images are simulated through inverse warping from neighboring viewpoints. We use perceptual
loss (82) and patch-gan-based discriminator loss (30) at this stage. In this stage, we freeze the
codebook and decoder parameters. We find this mechanism helps maintain the output images realistic
even after many unrolling steps during inference.

We use Adam to train our entire network. Learning through a non-differentiable quantization step is
hard. To stabilize training, we first train the encoder-decoder network without quantization for the
first 30k iterations and then add it back and train the entire network for another 60k iterations using
the straight-through gradient estimator trick (3) to back-propagate gradient.

4 Experiments

We first evaluate the effectiveness of SGAM on a large-scale synthetic dataset. Next, we comprehen-
sively study the characteristics of our method. Finally we showcase how SGAM can be applied in
real-world scenarios to generate high-quality 3D worlds.

6



Ground-truth InfiniteNature (40) GFVS-Explicit (61) GFVS-Implicit (61) Ours
Figure 6: Qualitative result of one-step predictions on CLEVR-Infinite. Shaded areas are visible
regions in source views based on forward warping.

ZigZag Row Major Column Major Greedy Spiral Ring

Figure 7: Diversity samples of the 3D scene using different virtual camera trajectories.

4.1 Setup

Dataset: Existing static, large-scale 3D datasets, such as ACID (40) and RealEstate10K (84), do
not provide accurate 3D world for evaluation. We thus exploit Blender and the assets from CLEVR
(31) to render an extremely large-scale synthetic benchmark, which we called CLEVR-Infinite.
CLEVR-Infinite contains 72 training scenes and 8 test scenes. For each scene, we sampled a fixed
number of objects from the asset bank and randomly placed them on the ground plane. The asset
bank consists of four primitive shapes with random scales, materials and colors. The cameras are
distributed uniformly among the 50⇥ 50 grid plane right above and parallel to the ground. We set
the pitch (i.e., the angle between the look-at vector and the plane) of the cameras to be 80�. In total,
the dataset contains 200k RGB-D images at the resolution of 256⇥ 256.

Metrics: We evaluate the generated 3D world both locally at the image level and globally at the
scene level. The former measures to what degree the synthetic scene reproduces the local details,
while the latter quantifies how well the virtual world matches the statistics of the original counterpart.

Following previous work (45; 81), we first use Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM), and LPIPS (82) to measure the image level similarity with respect to the GT.
However, since our model is generative, we might synthesize scenes that are plausible yet different
from the original one. We thus further employ Fréchet inception distance (FID) (27) to measure the
generative quality. Specifically, two FID score are reported: (i) ref-FID, which we compare against
the GT; and (ii) FID, which we compare against a separate set of images from test set.

As for scene-level evaluation, we follow prior art in 3D generative models (1; 79) to gauge the
overall geometry quality with a diverse set of metrics: Jensen-Shannon divergence (JSD), maximum
mean discrepancy (MMD), coverage (COV), minimum matching distance (MinDist), and 1-nearest
neighbor accuracy (1-NNA). Specifically, we first divide the whole scene into non-overlapping
regions. Each region is then discretized into 153 voxels. Finally, we compute the 3D histogram within
each local grid and employ cosine distance to compute the metrics. To evaluate the realism, we also
compute the Inception Score (IS) and FID against random sampled scenes from the test set.

We report the runtime of a single prediction step, benchmarked on Nvidia Quadro 8000.

Baselines: We compare SGAM against state-of-the-art approaches in long range scene generation:
GFVS (61) and InfiniteNature (40). For GFVS, we consider both the explicit-image and implicit-
depth variants with the following modifications: first, we use a single codebook to encode RGB-D
rather than two, which better combines texture and geometry during scene expansion; second, to
support multi-image input, we conduct average pooling over the features of source images before
passing it to an MLP to infer the target code. For InfiniteNature, since the authors did not release

7



Frame 1 Frame 2 Frame 5 Frame 20 Frame 1 Frame 2 Frame 5 Frame 20

G
FV

S
Ex

pl
ic

it

G
FV

S
Im

pl
ic

it

In
fin

ite
N

at
ur

e

O
ur

s

Figure 8: Unrolling results on Google-Earth.

Frame 1 Frame 20 Frame 40 Frame 60 Frame 80 Frame 1 Frame 20 Frame 40 Frame 60 Frame 80

�
/3

�
/2

Figure 9: Diversity samples of the 3D scene using different step size.

their training scripts, we re-implement their method in Pytorch. We remove the geometric grounding
step since we find it harmful when we unroll the scene in CLEVR-Infinite.

Implementation details: During full scene evaluation, we generate the scene in a zig-zag fashion
on a 30 ⇥ 30 grid. We start from coordinate (0, 0) and unroll for 900 steps. The above procedure
is repeated for 10 times with different seed images. For a fair comparison, GFVS-implicit, GFVS-
explicit and SGAM share the same codebook embedding and the same weights for decoder. We set
the vocabulary size to 16384. We implement SGAM in PyTorch, and train with a batch size of 8
on 2 Nvidia A40 GPU until convergence. For other baselines, we maximize batch size to fit GPU
memory, and train until convergence. During the first-stage codebook training, we follow the exact
training config as GFVS first-stage training in the official codebase. GFVS-implicit, GFVS-explicit
and SGAM share the same learning rate at 0.0625 for the second-stage trainig.

4.2 Experimental results

As shown in Tab. 1, SGAM achieves superior or comparable performance across all image level
metrics. Comparing to the second best approach, GFVS-Implicit, we are much more efficient. We
use less CPU and GPU memory and our runtime is 150 times faster. Fig. 6 shows a few one step
prediction results. SGAM is able to faithfully reconstruct the color and the shape of the assets within
the visible area, and generate the invisible region in a coherent, harmonic fashion. When unrolling
multiple steps (see. Fig. 4 and Tab. 2), baselines such as InfiniteNature and GFVS-explicit suffer from
error accumulation, and collapse catastrophically. GFVS-implicit generates objects that resemble the
GT data, yet it sacrifices the speed and fails to enforce consistency across frames (see Fig. 6). Our
approach, in contrast, is able to produce consistent and realistic results in an efficient manner.

4.3 Analysis

Importance of two-stage training: Two-stage training is critical. Removing either stage degrades
our performance. Without the first-stage codebook training, the generative sensing module will have
to learn the codebook from warped inputs, which could inevitably encode missing holes into the
codebook. On the other hand, by finetuning the encoder from a converged first-stage checkpoint,
we consistently improve the performance of our model across all image level metrics. We refer the
readers to the supp. materials for detailed numbers.

Real-world scene: We apply SGAM and the baselines to real-world images that we scraped from
Google Earth (see Fig. 8), with global mapping visualized in Fig. 5. While our results produce less
realistic results than InfiniteNature in one-step prediction (Tab. 4), InfiniteNature cannot estimate the
geometry well in invisible regions, and thus compounding error occurs during unrolling as shown
in Tab. 3. GFVS-explicit suffers from severe domain shift. Since the images contain more diverse
and complicated scene structures, GFVS-implicit fails to capture the viewpoint shift precisely during
unrolling. In contrast, SGAM can produce consistent and realistic results.

8



Frame 1 Frame 100 Frame 200Frame 10 Frame 30 Frame 50 Frame 300

Figure 10: Ablation Study on the effect of RGBD-integration to SGAM on GoogleEarth-infinite
dataset. Top: no RGBD-integration. Bottom: with RGBD-integration.

Renderer FID#
InfiniteNature (40) 182.6
GFVS-implicit (61) 160.40
GFVS-explicit (61) 133.12

Ours 79.26

Table 3: Comparison study on scene generation between ours and baseline methods on the
GoogleEarth-Infinite validation set. FID is computed based on the generated sequences unrolled for
60 steps against randomly sampled frames from the GoogleEarth-Infinite validation set.

Renderer PSNR" SSIM" LPIPS# Ldisp. (vis) # Ldisp. (invis) # Ldisp. # ref-FID# FID#
InfiniteNature (40) 24.78 0.880 0.172 0.017 0.041 0.020 12.61 37.92 ±0.20

GFVS-implicit (61) 19.77 0.473 0.398 - - - 23.61 38.70 ± 0.28
GFVS-explicit (61) 20.09 0.494 0.398 - - - 35.88 44.51 ± 0.26

Ours 23.07 0.609 0.304 0.017 0.022 0.018 22.88 42.29 ± 0.16

Table 4: Comparison study on one-step prediction between ours and baseline methods on the
GoogleEarth-Infinite validation set. Ldisp. (vis) denotes the disparity L1 loss in the visible region at
the target pose. Ldisp. (invis) denotes the disparity L1 loss in the invisible region at the target pose.
The disparity is scaled between 0 and 1. We highlight best, and second best scores.

Diversity: SGAM allows us to create diverse 3D world by varying camera trajectories and by
varying the step size. As shown in Fig. 7 and Fig. 9, both of which are very effective. Greedy samples
the next target pose based on the L1 distance of the visible region of the warped views.

Global mapping: The explicit 3D mapping ensures global consistency during generation steps.
Without global mapping, direct depth-based image warping (40) hurdles inference quality at the
generative refinement stage. Importantly, it cannot ensure global consistency when having a loop as
shown in Fig. 4. We demonstrate in Fig. 10 that RGBD-integration denoised mapping can achieve
much more diverse scenarios than the one without, which scene degrades to large empty airport
ground around 200 steps of unrolling becomes it unable to fit latent code to fit noisy features.

Societal impact: Realistic 3D generation technology has many applications, such as visual content
creation and simulation. Unfortunately, it may also be used to spread misinformation.

5 Conclusion

In this paper, we present a novel 3D scene generation algorithm, SGAM, which create a consistent,
realistic, and large-scale 3D virtual world through simultaneous generation and mapping. Our result
demonstrates we can achieve similar (in synthetic data) or even more realistic (in real-world data)
sensor observation than methods with Transformer-based latent code sampler during unrolling.

Acknowledgements: The authors thank Derek Hoiem and David Forsyth for their early feedback.
We thank Vlas Zyrianov for proofreading the paper. The project is partially funded by the Amazon
Research Award and Illinois Smart Transportation Initiative STII-21-07. We also thank Nvidia for
the Academic Hardware Grant.

9



References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and
generative models for 3d point clouds. In ICML, 2018.

[2] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempitsky. Neural
point-based graphics. 2020.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[4] James R Bergen and Edward H Adelson. Early vision and texture perception. Nature, 1988.
[5] Filip Biljecki, Jantien Stoter, Hugo Ledoux, Sisi Zlatanova, and Arzu Çöltekin. Applications of 3d city

models: State of the art review. ISPRS International Journal of Geo-Information, 4(4):2842–2889, 2015.
[6] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces. In SIGGRAPH, 1999.
[7] Lucas Caccia, Herke Van Hoof, Aaron Courville, and Joelle Pineau. Deep generative modeling of lidar

data. In IROS, 2019.
[8] Wayne E Carlson. An algorithm and data structure for 3d object synthesis using surface patch intersections.

In SIGGRAPH, 1982.
[9] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image

transformer. arXiv, 2022.
[10] Yun Chen, Frieda Rong, Shivam Duggal, Shenlong Wang, Xinchen Yan, Sivabalan Manivasagam, Shangjie

Xue, Ersin Yumer, and Raquel Urtasun. Geosim: Realistic video simulation via geometry-aware composi-
tion for self-driving. In CVPR, 2021.

[11] Yen-Chi Cheng, Chieh Hubert Lin, Hsin-Ying Lee, Jian Ren, Sergey Tulyakov, and Ming-Hsuan Yang.
In&out: Diverse image outpainting via gan inversion. arXiv, 2021.

[12] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018.

[13] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA: An
open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages
1–16, 2017.

[14] Shivam Duggal and Deepak Pathak. Topologically-aware deformation fields for single-view 3d reconstruc-
tion. CVPR, 2022.

[15] Shivam Duggal, Zihao Wang, Wei-Chiu Ma, Sivabalan Manivasagam, Justin Liang, Shenlong Wang, and
Raquel Urtasun. Mending neural implicit modeling for 3d vehicle reconstruction in the wild. In WACV,
2022.

[16] Alexei A Efros and William T Freeman. Image quilting for texture synthesis and transfer. In Proceedings
of the 28th annual conference on Computer graphics and interactive techniques, 2001.

[17] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric sampling. In ICCV, 1999.
[18] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image synthesis.

In CVPR, 2021.
[19] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a predictable and

generative vector representation for objects. In ECCV, 2016.
[20] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh r-cnn. In ICCV, 2019.
[21] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio. Generative adversarial networks, 2014.
[22] Arthur Gretton, Karsten Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander J Smola. A kernel

method for the two-sample problem. arXiv preprint arXiv:0805.2368, 2008.
[23] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard. A tutorial on graph-based

slam. IEEE Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.
[24] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A papier-mâché

approach to learning 3d surface generation. In CVPR, 2018.
[25] Jiayuan Gu, Wei-Chiu Ma, Sivabalan Manivasagam, Wenyuan Zeng, Zihao Wang, Yuwen Xiong, Hao Su,

and Raquel Urtasun. Weakly-supervised 3d shape completion in the wild. In ECCV, 2020.
[26] David J Heeger and James R Bergen. Pyramid-based texture analysis/synthesis. In Proceedings of the

22nd annual conference on Computer graphics and interactive techniques, 1995.
[27] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans

trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 2017.
[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.
[29] Ronghang Hu, Nikhila Ravi, Alex Berg, and Deepak Pathak. Worldsheet: Wrapping the world in a 3d

sheet for view synthesis from a single image. ICCV, 2021.
[30] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional

adversarial networks. In CVPR, 2017.
[31] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross

Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In
CVPR, 2017.

[32] B. Julesz. Visual pattern discrimination. IRE Transactions on Information Theory, 1962.
[33] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved

quality, stability, and variation. arXiv, 2017.
[34] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial

networks. In CVPR, 2019.

10



[35] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv, 2013.
[36] Jing Yu Koh, Honglak Lee, Yinfei Yang, Jason Baldridge, and Peter Anderson. Pathdreamer: A world

model for indoor navigation. 2021.
[37] Chieh Hubert Lin, Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, and Ming-Hsuan Yang. InfinityGAN:

Towards infinite-pixel image synthesis. In ICLR, 2022.
[38] Chen-Hsuan Lin, Chen Kong, and Simon Lucey. Learning efficient point cloud generation for dense 3d

object reconstruction. In AAAI, 2018.
[39] Chen-Hsuan Lin, Chaoyang Wang, and Simon Lucey. Sdf-srn: Learning signed distance 3d object

reconstruction from static images. NeurIPS, 2020.
[40] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Makadia, Noah Snavely, and Angjoo Kanazawa.

Infinite nature: Perpetual view generation of natural scenes from a single image. In ICCV, 2021.
[41] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construction al-

gorithm. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’87, page 163–169, New York, NY, USA, 1987. Association for Computing Machinery.

[42] Jitendra Malik and Pietro Perona. Preattentive texture discrimination with early vision mechanisms. (5),
1990.

[43] Arun Mallya, Ting-Chun Wang, Karan Sapra, and Ming-Yu Liu. World-consistent video-to-video synthesis.
In ECCV, 2020.

[44] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong, Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan,
Bin Yang, Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic lidar simulation by leveraging the real
world. In CVPR, 2020.

[45] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[46] Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg Mori, and Yasutaka Furukawa. House-gan:
Relational generative adversarial networks for graph-constrained house layout generation. In ECCV, 2020.

[47] Nelson Nauata, Sepidehsadat Hosseini, Kai-Hung Chang, Hang Chu, Chin-Yi Cheng, and Yasutaka
Furukawa. House-gan++: Generative adversarial layout refinement networks. arXiv, 2021.

[48] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J. Davison,
Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinectfusion: Real-time dense
surface mapping and tracking. In 2011 10th IEEE International Symposium on Mixed and Augmented
Reality, pages 127–136, 2011.

[49] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang. Hologan: Unsuper-
vised learning of 3d representations from natural images. In ICCV, 2019.

[50] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. Real-time 3d reconstruction
at scale using voxel hashing. ACM Transactions on Graphics (ToG), 32(6):1–11, 2013.

[51] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and Sanja Fidler.
Atiss: Autoregressive transformers for indoor scene synthesis. In NeurIPS, 2021.

[52] Chi-Han Peng, Yong-Liang Yang, and Peter Wonka. Computing layouts with deformable templates. TOG,
2014.

[53] Shengyi Qian, Alexander Kirillov, Nikhila Ravi, Devendra Singh Chaplot, Justin Johnson, David F Fouhey,
and Georgia Gkioxari. Recognizing scenes from novel viewpoints. arXiv, 2021.

[54] Yiming Qian, Hao Zhang, and Yasutaka Furukawa. Roof-gan: learning to generate roof geometry and
relations for residential houses. In CVPR, 2021.

[55] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv, 2015.

[56] Xuanchi Ren and Xiaolong Wang. Look outside the room: Synthesizing a consistent long-term 3d scene
video from a single image. In CVPR, 2022.

[57] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In ICML, 2015.
[58] Gernot Riegler and Vladlen Koltun. Free view synthesis. In European Conference on Computer Vision,

2020.
[59] Gernot Riegler and Vladlen Koltun. Stable view synthesis. In CVPR, 2021.
[60] Chris Rockwell, David F. Fouhey, and Justin Johnson. Pixelsynth: Generating a 3d-consistent experience

from a single image. In ICCV, 2021.
[61] Robin Rombach, Patrick Esser, and Björn Ommer. Geometry-free view synthesis: Transformers and no 3d

priors. In ICCV, 2021.
[62] Bryan C. Russell and Antonio Torralba. Building a database of 3d scenes from user annotations. In CVPR,

2009.
[63] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved

techniques for training gans. Advances in neural information processing systems, 29, 2016.
[64] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 3d photography using context-aware

layered depth inpainting. In CVPR, 2020.
[65] Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. A survey on procedural modelling for

virtual worlds. In Computer Graphics Forum, volume 33, pages 31–50. Wiley Online Library, 2014.
[66] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.

Score-based generative modeling through stochastic differential equations. arXiv, 2020.
[67] Shuhan Tan, Kelvin Wong, Shenlong Wang, Sivabalan Manivasagam, Mengye Ren, and Raquel Urtasun.

Scenegen: Learning to generate realistic traffic scenes. In CVPR, 2021.

11



[68] Johan WH Tangelder and Remco C Veltkamp. A survey of content based 3d shape retrieval methods.
Multimedia tools and applications, 2008.

[69] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen Li, Vladlen Koltun, and Thomas Brox.
What do single-view 3d reconstruction networks learn? In CVPR, 2019.

[70] Piotr Teterwak, Aaron Sarna, Dilip Krishnan, Aaron Maschinot, David Belanger, Ce Liu, and William T
Freeman. Boundless: Generative adversarial networks for image extension. In ICCV, 2019.

[71] Richard Tucker and Noah Snavely. Single-view view synthesis with multiplane images. In CVPR, 2020.
[72] Shubham Tulsiani, Richard Tucker, and Noah Snavely. Layer-structured 3d scene inference via view

synthesis. In ECCV, 2018.
[73] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. NeurIPS, 2017.
[74] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T Barron,

Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-view image-based
rendering. In CVPE, 2021.

[75] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

[76] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. Synsin: End-to-end view synthesis
from a single image. In CVPR, 2020.

[77] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, and Josh Tenenbaum. Marrnet: 3d
shape reconstruction via 2.5 d sketches. NeurIPS, 2017.

[78] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling. NeurIPS, 2016.

[79] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan. Pointflow:
3d point cloud generation with continuous normalizing flows. In ICCV, 2019.

[80] Zhenpei Yang, Yuning Chai, Dragomir Anguelov, Yin Zhou, Pei Sun, Dumitru Erhan, Sean Rafferty, and
Henrik Kretzschmar. Surfelgan: Synthesizing realistic sensor data for autonomous driving. In CVPR,
2020.

[81] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelNeRF: Neural radiance fields from one
or few images. In CVPR, 2021.

[82] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[83] Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. Elastic fragments for dense scene reconstruction. In
Proceedings of the IEEE International Conference on Computer Vision, pages 473–480, 2013.

[84] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
Learning view synthesis using multiplane images. arXiv, 2018.

[85] Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random fields and maximum entropy (frame):
Towards a unified theory for texture modeling. International Journal of Computer Vision, 1998.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please see

supp. material for the discussion.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] We plan to
release the code after acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Our SGAM is built on top of VQGAN codebase. We re-use the
hyperparameters among all baselines.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? We randomly generate multiple scene with different seed
images, i.e., initiall sensor observation to capture overall model performance. [N/A]

12



(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We plan to release our dataset upon acceptance.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13


	Introduction
	Related Work
	SGAM: Simultaneous Generation and Mapping
	Problem Formulation
	Generative Sensing
	Mapping
	Learning

	Experiments
	Setup
	Experimental results
	Analysis

	Conclusion

