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Abstract

Learning latent vector representations via embedding models has been shown
promising in machine learning. However, most of the embedding models are still
limited to a single type of observed data. We propose a Gaussian copula embedding
model to learn latent vectorial representations of items in a heterogeneous-data
setting. The proposed model can effectively incorporate different types of observed
data and, at the same time, yield robust embeddings. We demonstrate that the
proposed model can effectively learn in many different scenarios, outperforming
competing models in modeling quality and task performance.

1 Introduction

Representation learning is a prominent machine learning approach for working with originally non-
vectorial data. Embedding models learn latent vectorial representations for data items that appear
together with a context, through modeling the interactions between each center item and its context
items. The approach was first introduced as a language model [14] which learns word representations
through modeling the probability of the appearance of a central word given surrounding context
words. The word appearance is modeled as an observation from a multinomial word distribution.
Building on this notion, exponential family embeddings were proposed [19] which further generalized
the original model to a class of models suitable for many observed data types, which have been shown
promising in different domains. However, the ability of such models to incorporate heterogeneous
data is still limited.

Data in many modern domains is heterogeneous, involving simultaneous observation of different data
types such as categorical values, integers and real-valued numbers, and having varied distributions
within each data type, hence it is difficult to model them together as observations in vectorial
embedding; naive unified solutions that ignore the difference of the data types would not yield
good models. In particular, the different data types are often distributed over varied scales and with
various distributional shapes: naive normalization coupled to modeling with a single distributional
assumption would not suffice to yield robust embedding models, and would leave them vulnerable to
extreme values and distributional shapes not corresponding to the assumed ones. An equally pressing
problem is how to flexibly model relationships (dependencies) between the several observed variables
with their differing distributions: naive modeling strategies ignoring the variable dependencies would
again yield poor embedding models.

We solve the mentioned challenges by introducing a novel Gaussian copula based latent representation
learning model. The model learns vectorial embedding representations for items leveraging the center-
context item interactions, but unlike previous embedding models the proposed model is able to learn
embeddings in a setting with multivariate data having heterogeneous data types and distributions.

For computational efficiency, we introduce a set of variational auto-encoder based inference algo-
rithms. In experiments on five different scenarios, the proposed model is shown to be effective,
outperforming competitive methods in task-based evaluations and yielding insights in a social media
analysis task.

Our contributions are:
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• We introduce a general-purpose representation learning framework which incorporates
multiple, heterogeneous data. Our work allows embedding models to include multiple
data types and distributional assumptions in well-founded probabilistic joint modeling
through the Gaussian copula; other approaches such as exponential family embeddings have
generalised to different data types but still treat them individually.

• To our knowledge, ours is the first work which brings the advantages of Gaussian copula to
learning representation vectors from heterogeneous data. The Gaussian copula is intuitive
and has proven effective in machine learning research, thus it is an attractive solution which
was neglected in representation learning. We close this gap, and the result shows it handles
heterogeneous data well.

• We develop an efficient inference procedure based on semiparametric estimation and varia-
tional autoencoder. Previous works have used MCMC for inference and in many such works,
lack of scalability has limited their application to larger amounts of data.

• We demonstrate the effectiveness of our model on five different scenarios, each with a
real-world data set and corresponding quantitative and qualitative evaluation.

This paper is organized as follows. Section 2 introduces the necessary background notions of
embedding models and copula models. Section 3 introduces the Gaussian copula model and Section 4
develops the inference algorithms. Five different scenarios of using the proposed model are provided
5, each evaluated with an experiment on a real-world data set. Section 6 draws the conclusions.

2 Background

2.1 Embedding models

Learning latent representations based on the interactions between the observed item and its contexts
has been an imperative topic in machine learning. It was first introduced as a language model to model
relations between words [14]. The framework has been later generalized to model other different
co-appearance patterns such as in community embedding [23].

In brief, let the item i and its context j be two items (such as two words, or two communities). The
probability of them appearing (D = 1) in the same context (such as in the same sliding window) can
be modeled as

P (D = 1|i, j) =
(

1

1− e−ρi
⊤ρj

)
(1)

where ρi and ρj are the embedding vectors of the items. Note that instead of using the same kinds
of vectors for both roles, the context items can have their own context vectors α, thus the above
probability becomes

P (D = 1|i, j) =
(

1

1− e−ρi
⊤αj

)
. (2)

Exponential Family Embeddings [19] is an extension which has further generalized the model to
data beyond text. Let x(i)

n be the value of the item i at the location n, which has its context cn. In
exponential family embedding, the value of xn depends on its context cn and is generated from an
exponential family distribution

x(i)
n |cn ∼ ExpFam

(
ηn (xcn) , t (xn)

)
(3)

where ηn (xcn) is the natural parameter, and t
(
xn,v

)
denotes the sufficient statistics. The natural

parameter is modeled as a function of an inner product of the embedding vector ρ and the context
vector α so that

ηn (xcn) = g

ρ⊤
i

1

|cn|
∑
n′∈cn

x
(i′)
n′ αi′

 . (4)

As the exponential family can model different observation distributions, the embedding models are
no longer limited to modeling co-appearance (binary) observations. It has been applied to different
domains such as grouped data [18] and graph data [1].
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Negative sampling or sub-sampling is a common practice when training embedding models. The
notion is to consider only a randomly generated subset of the items that do not occur at the location
n. That is, if an item i does not occur at a location, the probability of that negative occurrence

P (D = 0|i, j) =

(
1

1−e−ρi
⊤αj

)
is integrated into the objective function. In exponential family

embeddings, if the item i is generated as a negative sample, the corresponding pseudo observed value
is encoded as x(i)

n = 0.

2.2 Gaussian copula

A J-dimensional copula C is a probability distribution on [0, 1]J where each of its univariate marginal
distributions is a uniform distribution on [0, 1]. That is, given a set of uniform distributed random
variables U1, . . . , UJ , a copula is the joint cumulative distribution

C(u1, . . . , uJ) = P (U1 ≤ u1, . . . , UJ ≤ uJ) . (5)

The key idea of copula modeling is to use the copula to model the dependencies between several
variables having arbitary types and marginal distributions. Let x be a random vector of length J , and
let j ∈ 1 . . . J index the elements (random variables) in x. According to Sklars’ theorem [21], the
cumulative distributions (CDFs) of the variables in x can be modeled by a copula

F (x1, . . . xJ) = C
(
F1(x1), . . . , FJ(xJ)

)
(6)

where F is the joint CDF and Fj(x) = P (Xj ≤ x) is the j-th marginal CDF. Since each marginal
CDF value is in [0, 1], the right-hand side is a copula regardless of what distributions the individual
marginal CDFs have. If every Fj is continuous, then the C is unique. In this way, the copula encodes
the structure of variable dependencies, while allowing each of the variables x1 . . . xJ to be of a
different type and to have differing kinds of marginal CDFs.

In this paper, we consider a Gaussian copula, which is one of the widely used copula models; we
introduce the model to the representation learning task. A Gaussian copula is defined as

C(u1, . . . uJ) = ΦJ

(
Φ−1(u1), . . . ,Φ

−1(uJ)|C
)

(7)

where ΦJ is a J-dimensional Gaussian CDF with a correlation matrix C, and Φ−1 is the inverse
function of the standard univariate Gaussian CDF. With the Gaussian copula, the joint CDF of
observed data can be modeled as

F (x1, . . . xJ) = C(F1(x1), . . . FJ(xJ)) = ΦJ

(
Φ−1(F1(x1)), . . . ,Φ

−1(FJ(xJ))|C
)

. (8)

The Gaussian copula can also be expressed in terms of a latent Gaussian variable representation. First,
a latent vector z is generated from a Gaussian distribution

z ∼N(0,Ω) (9)

wih covariance matrix Ω which corresponds to the correlation matrix C in equation (7). Then for each
j, the observed data value xj is obtained from the inverse of the univariate marginal F−1

j according
to the generated latent variable zj so that

xj = F−1
j

(
Φ

(
zj√
ωjj

))
(10)

where ωjj is the j-th diagonal element of Ω. In principle, equations (9) and (10) could be used to
derive an equation for the likelihood of the data values xj at each observation, in order to use such
likelihoods for parameter fitting. However, instead the practical approach in Gaussian copula research
is to derive an extended likelihood, and we will do that for the vectorial embedding task.

3 Gaussian Copula Embeddings

We now introduce Gaussian Copula Embeddings (GCE), which perform representation learning for
data with heterogeneous-type observations of items in contexts. Let {x1 . . .xN} be the observations.
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Each observation xn is of a particular item, occurring in a context; moreover, each occurrence of the
item is observed with multiple feature values (variables). Let xn = x

(i)
n denote that the item i occurs

at location n and is observed carrying J variables x(i)
n = [x

(i)
n,1, . . . , x

(i)
n,J ]

⊤, where the location n
comes with a context cn which contains a collection of context item indices.

The principle of the GCE model is that the multiple heterogeneous observations will be generated
based on the relationship of the central item i to its context, characterized by several embedding
vectors, and the dependencies between the observations will be characterized by a Gaussian copula.
For each central item i there is an underlying embedding vector ρi ∈ RK×1. In addition to occurring
as a central item, each item may also occur as part of a context. The context cn of the location n will
contain several items i′. The roles of the items in the context will be characterized by context vectors:
unlike a traditional embedding model that generates only one type of observation, here each context
item i′ has a set of variable specific context vectors {αi′,j |j ∈ 1, . . . J}.
We develop the GCE model based on the latent representation equations (9) - (10). For each item i
the underlying embedding vector ρi ∈ RK×1 is generated from a multivariate normal distribution

ρi ∼N(0, I) . (11)

Following the latent variable representation of Gaussian copula, all J observations of an item at a
location will be generated based from a latent vector. The latent variable vector zn is generated as

z(i)
n ∼N(0, I+RnRn

⊤)⇐⇒ z(i)
n ∼N(Rnρi, I) (12)

where the matrix Rn ∈ RK×J is constructed based on the embedding vectors of the items in the
context cn for all observation variables. For each observation variable j, the corresponding column
rn,j of the matrix Rn is constructed as

rn,j =
1

|cn|
∑
i′∈cn

αi′,j (13)

where i′ are the items in the context of the location n, cn. Here, for simplicity, we set the prior of α
to be a multivariate normal distribution

αi′,j ∼ N(0, λ−1
α I) (14)

with a diagonal covariance matrix where the constant λα is a precision parameter which controls the
constraints on α. Using the exchangeability in equation (12), the above generating process can be
also written as

z(i)
n ∼N(µ(i)

n , I), where µ(i)
n = [µ

(i)
n,1, . . . , µ

(i)
n,J ] and µ

(i)
n,j = ρi

⊤ 1

|cn|
∑
i′∈cn

αi′,j . (15)

The observations are then obtained from the latent variables according to the Gaussian copula
equations. The jth observed value x

(i)
n,j is obtained as

x
(i)
n,j = F−1

j

(
Φ

(
z
(i)
n,j√

1 +
∑K

k=1 r
2
n,j,k

))
(16)

where z
(i)
n,j is the jth element of the latent vector z(i)

n and rn,j,k is the kth dimension of the context
representation column rn,j , and F−1

j is the inverse CDF of the marginal distribution of variable j.
Inference of the embedding parameters based on the observations will be done with an extended
likelihood approach introduced in the next section.

The major difference between our approach and other embedding models is that the GCE can take
heterogenous, multivariate observed data into account. Another difference is that GCE further
specializes the roles of embedding vectors ρ and context vectors α: in traditional exponential family
embeddings their roles can be seen as ambiguous, having the same form and a very similar place
in the generative equations. In contrast, here the roles are made distinct: the ρ are used to model a
general representation of each item as a central item, and the variable-specific context vectors αj

govern the role of each item as a context item for the multiple variables, telling how the different
variables interact with the central item as well as controlling the dependencies between the variables.
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4 Inference

The task of the inference is to fit the embedding parameters ρ and αj of all items to the observations.
We will use a variational inference approach; a key aspect of it is to replace direct evaluation of the
likelihood by an extended likelihood approach described next.

4.1 Extended Likelihood

As pointed out by [7], the naive inverse of equation (16) during the inference is only recommended
when the observed data is continuous and follows an easy-to-invert parametric distribution. Moreover,
directly inverting the CDF for discrete variables can lead to pushing the latent variables to extremes
and affect the validity of the inference. Therefore, an extended rank likelihood has been proposed for
the inference of Gaussian copula.

Consider all observations xn,j of variable j at all locations n = 1, . . . , N , and the corresponding
latent variables zn,j where for brevity we drop the item indices i; each observation may arise from a
different item. Denote the latent variables together by a vector zj and observed variables together by
vector xj . Since each zn,j is related to the corresponding observed xn,j by two monotonic functions
(a gaussian CDF and an inverse CDF), the rank order of the zn,j is the same as that of the xn,j . The
vector zj is one of a set D(xj) of vectors having that rank order:

zj ∈ D(xj) = {zj ∈ RN : xn,j < xn′,j ⇒ zn,j < zn′,j} . (17)

The D(xj) is the set of possible zj = (z1,j , . . . , zn,j) which preserve the ordering of the observed
data [20]. Let D = {Z ∈ RJ×N : zj ∈ D(xj) ∀1 ≤ j ≤ J} be the set of possible latent variable
combinations, such that the rank order is satisfied for each observed variable j. Note that ties may
happen in the rank orders, for example when discrete variables yield the same value at multiple
observations.

In the Gaussian copula model the observed variables are directly obtained as unique transformations
of the latent variables. Because the possible latent variables must satisfy the rank orders of the
observations, the rank perservation can be inserted into the full likelihood which can then be factorized
as

P (X|C, F1, . . . , FJ) = P (X,Z ∈ D|C, F1, . . . , FJ)

= P (Z ∈ D|C)× P (X|Z ∈ D,C, F1, . . . , FJ) . (18)

The P (Z ∈ D|C) is then taken as the alternative likelihood. It has been proved [8] that it shares
the same information bound as using estimator of the full data. Ranks also bring an advantage of
robustness as they are unaffected by precise value and thus are less prone to outliers. Using an
extended likelihood based on the rank of observed data is the current state of the art practice for
Gaussian copula inference [15, 3].

4.2 Amortized variational autoencoder

Most of the previous works taking the extended likelihood use Gibbs sampling for inference [15, 3].
Despite some recent improvement such as [9], the sampling process inevitably must update the latent
variables for every location n, which makes the computation inefficient when the volume of data
grows large. To avoid this inefficiency, we develop a stochastic variational inference procedure
exploiting the idea of amortized inference [4] and a variational autoencoder [11].

Since the essence of the estimator using P (Z ∈ D|C) is to keep the ranking of zj corresponding to
the ranking of xj , we then employ the Plackett-Luce model with ties [24] as an alternative likelihood.
Let r(xn,j) denote the rank of xn,j and r(xj) denote the vector of rankings corresponding to xj . We
then have

p(r(xj)|zj) =
∏
q

(
ezn,j∑

n′∈Cq
ezn′,j

) 1
|Aq|

(19)

where q in the product goes over the rank positions, Aq = {n : r(xn,j) = q} denotes the items
ranked at position q (there may be more than one due to ties), and Cq = {n : r(xn,j) ≥ q} are
items ranked at q or higher. Note that if there are no ties, equation (19) reduces to the standard
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Plackett-Luce distribution. The ties are considered in order to handle discrete data. The likelihood for
all variables j is then simply

∏
j log p(r(xj)|zj). Moreover, the likelihood can be optimized using a

stochastic procedure with a random subset of each xj .

Let us consider again the J latent variables per location, denoted z
(i)
n . To avoid exhaustively updating

every z
(i)
n , we follow the framework proposed by [11]. According to the “reparameterization trick”,

equations (15) can be rewritten as

z(i)n = µ(i)
n + ϵ(i)n , ϵ(i)n ∼ N(0, I) . (20)

Therefore, during the stochastic inference, the latent variables z̃ can be simulated based on the other
parameters and the random noise. This will save computation and memory because the z̃ only need
to be simulated at the subset of positions samples in the ongoing mini-batch of optimization. The
noise is first sampled from a standard normal distribution and a pseudo variable z̃ is then generated as

z̃(i)n = µ̂(i)
n + ϵ(i)n , ϵ(i)n ∼ N(0, I) (21)

where µ̂(i)
n = ρ̂⊤

i
1

|cn|
∑

i′∈cn
α̂i′,j , and ρ̂ and α̂ are point estimates of the embedding vectors which

we are optimizing. The log-likelihood function becomes L̃(ρ,α;x) =
∑

j log p(r(xj)|z̃j) and the
objective function is computed as

F = L̃(ρ,α;x) +
∑
i

log p(ρi) +
∑
i′

∑
j

log p(αi′,j) . (22)

In each iteration, the gradients of the log-likelihood with respect to ρ̂ and α̂ can be simply obtained
with z̃ by chain rule via ▽ρL̃ =

∑
j

∂ log p(xj |z̃j)
∂z̃j

∂z̃j

∂ρ , and ▽αj
L̃ =

∂ log p(xj |z̃j)
∂z̃j

∂z̃j

∂αj
. The p(ρi) and

p(αi′,j) are set to N(0, I) and N(0, λ−1
α I) according to equations (11) and (14). The gradients of

the log-priors are
∑

i
∂ log p(ρ)

∂ρi
and

∑
i′
∑

j
∂ log p(α)
∂αi′,j

respectively. The gradient to update ρ̂ or α̂
with respect to F is then the sum of the corresponding log-likelihood and log-prior gradients.

The complete stochastic inference procedure is given in Algorithm 1. We optimize the embedding
vectors iteratively over epochs. In each epoch data is partitioned randomly into mini-batches, and
negative samples are generated for each batch in addition to its positive samples: a negative sample
has the same location n and context as a positive sample but a randomly chosen different item i, and
its observed variable values are all set to zero since the item did not occur at that location. The items
for the negative samples are chosen from a distribution proportional to a power of the overall item
distribution, as is done in word embedding [14]. In experiments we use M = 1000 mini-batches and
5 negative samples for each positive sample. Due to the stochastic partitions, for each epoch the latent
variables only need to be simulated at the positions in the mini-batch. The optimization then updates
the embedding vectors in each epoch by gradient steps with step sizes chosen by the Adam optimizer.

5 Empirical Case Studies

In this section we describe 5 different scenarios of using GCE to model the observed data. The
precision parameter λα is set to 0 corresponding to a very wide prior for α. We have also tried
another setting with a constrained prior, they yield similar results (see supplementary materials).

5.1 Product rating data

Data. The Anime rating data1 is a set of user ratings on anime movies and series collected from
myanimelist.net. It contains 17562 different anime rated by 325770 different users. Unlike typical
product rating data sets, the data set provides how many episodes (integer) the user had watched
when rating the anime (discrete), thus there are multivariate heterogeneous observed variables.

Modeling. We evaluate GCE by comparing with two other models on their capability to predict
held-out ratings. Compared models are exponential family embeddings (Poisson distribution, p-emb)
and Poisson matrix factorization model ([2], Pois-MF). The p-emb is selected as a comparison method

1From Kaggle, https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database
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Algorithm 1: Inference Algorithm
input :Observations {x1 . . .xN}, Context {c1 . . . cN}, initial learning rate ξ
output :Point estimates of embedding vectors ρ̂

and context vectors α̂
foreach epoch do

Divide input data into M random partitions.
Generate negative samples.
for m← 1 to M do

Use the m-th batch of the data
Simulate z̃n with (15) for every n in the mini-batch
Compute gradients ▽ρF =

∑
j

∂ log p(xj |z̃j)
∂z̃j

∂z̃j

∂ρ +
∑

i
∂ log p(ρ)

∂ρi
,

▽αjF =
∂ log p(xj |z̃j)

∂z̃j

∂z̃j

∂αj
+
∑

i′
∑

j
∂ log p(α)
∂αi′,j

Update ρ and α with ρ = ρ− ξ ∗ ▽ρF , and α = α− ξ ∗ ▽αF
ξ is set with Adam[10]

end
end

Table 1: Left: Held-out MAE for Anime rating. Right: Held-out MAE for Match Records.

Kills Deaths

Model K = 50 K = 100 Model K = 50 K = 100 K = 50 K = 100

Pois-MF 7.4866 7.4872 n-emb 30.0125 31.3224 29.4128 30.6495
p-emb 3.0857 3.0691 p-emb 32.5609 32.5409 32.5620 32.5433
GCE 1.2170 1.2207 GCE 14.0867 14.0766 13.5245 13.5106

since our model can been seen as an extension of exponential family embeddings; the Pois-MF is
a model for the user-rating scenario and it was also a compared method to p-emb in [19]. For all
methods, when training the model, we hold out 10% of the data as the testing data set, and the trained
models are used to predict the ratings in the test data. For each anime rated by a specific user, other
anime rated by the same user are its context. We train GCE with two variables, anime rating and
number watched episodes, whereas p-emb and Pois-MF which can only model one variable are
trained to model the anime ratings.

To compute the predictive ratings we use (16) with z
(i)
n,j set to the means µ(i)

n,j computed from the
optimized embedding vectors and with F−1

j computed as the inverse of the empirical CDF in the
training data. The held-out mean absolute error (MAE) is used as the performance metric. The results
are shown in the Table 1 (Left): our model strongly outperforms p-emb and Pois-MF.

5.2 Player modeling in online games

Data. The HLTV match record data is collected from HLTV.org and records professional match
histories of a multiplayer first-person shooter game Counter-Strike: Global Offensive [22]. We used
a web crawler to gather the histories of 34900 matches of 4751 professional players from the website.
For each match, we collect the match ID, player ID, and records of each player in the match including
number of kills and deaths, again yielding multivariate heterogeneous observations.

Modeling. We train GCE to learn representation vectors for each player. The context for the player in
each match is the set of other players in the same match. Observed data are the numbers of kills and
deaths. We again compare our model to two exponential family embeddings (normal and Poisson)
because they are the methodologically closest approaches. We train GCA incorporating the two
variables at the same time whereas the exponential family embeddings train the model for each
variable separately. The predictions for the variables are done as in Section 5.1. We measure MAE
for both variables separately. The results are shown in Table 1 (Right): we strongly outperform the
comparison methods.
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Table 2: Results for Darknet Traffic Classification

Model Precision Recall F1 Accuracy

DeepImage [6] 0.86 0.86 0.86 0.86
Random forest (original features) 0.8374 0.7963 0.8117 0.8917
GCE (K = 20) + Random forest 0.8955 0.8789 0.8846 0.9347
GCE (K = 30) + Random forest 0.8945 0.8803 0.8851 0.9355
GCE (K = 40) + Random forest 0.8952 0.8786 0.8844 0.9346

Figure 1: Importance of top-20 variables in the random forest classifiers, x-axis is the mean decrease
of Gini impurity, the higher the more important the variable. Left: Variable importances in the random
forest for original input variables. Right: The random forest model trained with additional 30 learned
features. Learned features V28, V19, and other 7 features are in the 20 most important variables.

5.3 Internet traffic classification

Data. The CIC Dark-net traffic data set [6] contains 141532 records of darknet traffic. Each record
is categorized into a traffic category (Audio-Stream, Browsing, Chat, Email, P2P, Transfer, Video-
Stream, and VOIP, 8 categories in total) and contains the source IP, destination IP, and communication
observations such as forward and backward bytes, flows, duration, subflow and so on.

Model. We use GCE to learn the latent representation for each source IP. In each traffic record,
the destination IP is the context of the source IP. The observed data used to train the GCE model
are IP co-appearance (Boolean), TCP Flag counts (SYN, RST, PSH, and ACK; integer), and three
subflow related measurements (continuous value). We first train the embedding model with different
vector dimensions. After training GCE, we incorporate the learned representation vector of each
source IP as additional features to the original input variables and train a random forest classifier to
predict the traffic category. We compare our model to DeepImage, which is a convolutional neural
network based, end-to-end solution proposed in [6]. The results in Table 2 show that the learned
additional features not only improve performance of the random forest classifier, but also outperform
DeepImage, the state-of-the-art deep learning based classifier. Figure 1 further demonstrates that the
learned features play important roles in the classification task.

5.4 Graph embedding with node meta-data

Data. Spanish Twitch gamers is a subgraph of the Twitch gamers graph data [17]; each node is a
Twitch gamer; an edge denotes mutual friendship. The data has 5538 nodes and 85893 edges.

Model. We train the embedding vectors incorporating the node-level observations including number
of views and life duration. Following the customary graph embedding procedure, we first generate
random walks on the graph to simulate a node sequence as input data: 80 walks per node with length 10
steps. Conventionally, limited by the capability of embedding models, most graph embedding models
only take appearance of nodes into account. With GCE, we incorporate not only the appearance of
nodes but also the views and lifetime of the nodes into the model.

To evaluate our model, we take on link prediction, a classical task for graph embedding models. We
hold out 50% of edges randomly into a test set while keeping the remaining training graph connected.
In both training and test sets, randomly sampled negative edges are added in equal amount to the
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Table 3: Results for Link Prediction: area under the curve (AUC) of the link classification

Model Deepwalk Node2vec EFGE-bern EFGE-pois EFGE-norm GCE

K = 50 0.7151 0.7143 0.5795 0.5934 0.6063 0.7853
K = 100 0.7063 0.6612 0.5887 0.6004 0.6291 0.7832

Table 4: Example GCE model output with the subreddit hyperlink network data. We show the top 4
closest subreddits in terms of the embedding vectors ρ and three different context vectors. The α1

corresponds to the fraction of the characters, α2 corresponds to the fraction of the digits, and α7

corresponds to the semantics.

Top 4 closest subreddits

Embedding r/environment

ρ r/cornbreadliberals r/basicincome r/energy r/northcarolina
α1 r/climate r/green r/oil r/water
α2 r/conservation r/climate r/likeus r/tdcs
α7 r/invasivespecies r/lockcarbon r/metageopolitics r/earthdisaster

r/cryptocurrency

ρ r/litecoin r/noblecoin r/siacoin r/bitcoinserious
α1 r/altcoin r/blackcoin r/ripple r/karmacoin
α2 r/cannabis r/xdp r/flappycoin r/litecoin
α7 r/dogenews r/ethtrader r/ethdev r/vos

positive edges. A logistic regression classifier is trained based on the reduced training graph and
the training negative edges, using Hadamard product of embeddings of the edge endpoint nodes
as input features; the classifier is used to classify the held-out test-set edges. We compare our
model to state-of-the-art, random walk based solutions including Deepwalk [16], Node2vec [5] and
Exponential Family Graph Embeddings (EFGE; [1]). The results in the Table 3 show our model
outperforms the other competitive models.

5.5 Social media community interactions

Data.The Reddit Hyperlink Network [12] is a data set of 858488 hyperlinks between 55863 subreddits.
For each hyperlink, the data set records the source and destination subreddit, and the description of
the hypertext including, e.g., number of words, sentiments, fractions of 5 different character types
(i.e., alphabetical, digits, uppercase characters, special characters, white space) and so on.

Model. We train the model based on the pairs of source and destination subreddits. The source
subreddit in each hyperlink is the context for the destination subreddit. The 5 fractions of different
character types, the number of words, and the sentiment are taken as the observed variables. We train
a GCE model with K = 100.

We demonstrate the closest subreddits based on embedding vectors, and three context vectors.
Each reflects a different aspect: take the r/environment for example, when it comes to fraction of
alphabetical characters, closest subreddits are related to resources such as r/climate, r/green, and r/oil,
and r/water. However, when it comes to sentiment, the closest subreddits for r/environment become
r/invasivespecies, r/lockcarbon, r/metageopolitics, and r/earthdisaster.

6 Discussions and Conclusions

We introduced Gaussian copula embeddings (GCE), a representation learning model that can in-
corporate observed data of different data types. A stochastic variational inference algorithm based
on semi-parametric estimation for efficient computation is introduced. The empirical case studies
demonstrate that our model is effective in many domains outperforming competitive comparison
methods, and can provide analytical insights. Moreover, our model can extend the representation
learning task to more complex settings and thus bring more opportunities to the research community.
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Figure 2: t-SNE visualization of embedding vectors ρ. The green area contains the subreddits related
to basketball and green area contains subreddits related to music. The learned representation from
GCE are semantically meaningful.

In this paper we used a streightforward parametric construction of context and its combination with
embedding vectors; however, the GCE framework can be flexibly adapted to other parameterizations,
such as integrating it as a layer within deep learning architectures, and integrating context selection
mechanisms such as [13]. Our method brings a new way of analyzing data through vectorial embed-
ding which has the potential to bring greater understanding of several phenomena; as usual such tools
must be used responsibly to avoid negative societal impact.
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