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A Table of variables and parameters used in the models and simulations

We provide a table stating the dimensionality and values taken by the variables and parameters used
throughout the paper.

Table 1: Variable and parameter names

Variable name Description Value/Size

np Number of features encoded by the network 2− 128
nn Number of neurons in the network 2− 2560
ni Dimensionality of the input signal usually np
θ Features inferred by the network np × 1
Γ Readout weights np × nn
Ψ Covariance of structured Gaussian posterior np × np
V Membrane voltage nn × 1
T Spiking thresholds (for each neuron) nn × 1
Ω Recurrent weights nn × nn
τm Membrane time constant scalar; ∼ 20 ms
∆ Discretization timestep scalar
η Discrete-time decay constant; η = ∆/τm scalar
α Elastic net ℓ1 penalty scalar
λ Elastic net ℓ2 penalty scalar
µ Mean of target Gaussian distribution np × 1
Σ Covariance of target Gaussian distribution np × np
ρ Cross-correlation of equicorrelated Gaussian [0-0.99]
x Input signal ni
A Input weights np × ni
W Standard Brownian motion usually np × 1

B Approximate Metropolis-Hastings sampling using probabilistic spiking
rules

In this Appendix, we provide a step-by-step construction of the spiking sampler introduced in §2 of
the main text. Our goal is to use

zt = Γrt (B.1)

to sample a Gaussian distribution P (z) with mean θ and covariance Ψ, where

rt = (1− η)rt−1 + ot (B.2)

is the filtered spike history for a decay constant 0 ≤ η ≤ 1 (note that ot ∈ {0, 1}nn). In §B.1, we
construct a circuit that samples a Gaussian distribution using a discrete-time perfect integrator of
the spike train (i.e., η = 0). In §B.2, we relax this assumption, yielding an approximate sampler
using leaky integration in discrete-time, and discuss the behavior of this model in the continuum limit.
In general, the proposal distribution could be computed using a stochastic gradient step followed
by an accept/reject step, yielding Metropolis-adjusted Langevin dynamics [1, 2]. In this case, the
accept/reject step allows the algorithm to compensate for some of the sampling error introduced by
discretization at the expense of needing to compute a likelihood ratio, which can be expensive for
high-dimensional distributions.
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B.1 A simple sampler assuming perfect integration and balance

We first construct a sampling circuit under the assumptions that we have access to a perfect integrator
of the spike train, i.e. that η = 0, and that the readout matrix is of the form

Γ = [+M −M] (B.3)

for some matrix M ∈ Rnp×nn/2.

At the t-th timestep, we choose one neuron j uniformly at random, and let the spike proposal be
o′ = ej , where ej is the j-th standard Euclidean basis vector (i.e., (ej)k = δjk). This yields a
candidate readout

z′ = Γ(rt−1 + ej) = zt−1 + Γej . (B.4)

Under the symmetry assumption on Γ, the acceptance ratio is given by

A = min

{
1,

P (z′)

P (zt−1)

}
, (B.5)

as the proposal distribution is exactly symmetric in z′ and zt. Then, we accept the proposed spike
with probability A. Concretely, for u ∼ U [0, 1], we take

ot =

{
ej if u ≤ A

0 if u > A
. (B.6)

For P (z) a Gaussian distribution with mean θ and covariance Ψ, we have

log
P (z′)

P (zt−1)
= −1

2
(Γrt−1 + Γej − θ)⊤Ψ−1(Γrt−1 + Γej − θ)

+
1

2
(Γrt−1 − θ)⊤Ψ−1(Γrt−1 − θ) (B.7)

= −e⊤j Γ
⊤Ψ−1(Γrt−1 − θ)− 1

2
e⊤j Γ

⊤Ψ−1Γej . (B.8)

Defining the matrix

Ω ≡ Γ⊤Ψ−1Γ, (B.9)

we interpret the first term in the log-odds ratio as a membrane potential,

Vt−1 = −Ωrt−1 + Γ⊤Ψ−1θ, (B.10)

and the second as a threshold

Tj =
1

2
Ωjj , (B.11)

such that the acceptance ratio is

A = min {1, exp (Vt−1,j − Tj)} . (B.12)

With this definition, the membrane voltage simply integrates the spike train:

Vt −Vt−1 = −Ωot. (B.13)

We now observe that, if nn > np, it is possible that a spike may not contribute to the parameter
estimate. Concretely, we say that a spike, or the corresponding neuron, is irrelevant if it is annihilated
by Γ, i.e., if Γej = 0. Irrelevant spike proposals are always accepted with probability one, as we
have z′ = zt−1. Moreover, the membrane voltage is not changed by the emission of irrelevant spikes.
For these reasons, we are free to re-define the population rate rt to exclude such spikes. Therefore, a
timestep with an irrelevant spike is equivalent to not updating the network at all, and we could choose
to re-define the network such that only relevant neurons are included. However, though there will
exist some non-trivial set of vectors that are annihilated by Γ if nn > np, the situation in which this
null space is axis-aligned (thus implying the existence of irrelevant neurons) is not generic.
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We note that appropriate initialization of the membrane potential (for the desired mean) is important,
as otherwise some bias will be introduced. Thus, as written, this model cannot easily accommodate a
time-varying mean signal θt. This shortcoming could obviously be addressed by taking

Vt = −Ωrt + Γ⊤Ψ−1θt, (B.14)
which yields voltage dynamics

Vt −Vt−1 = −Ωot + Γ⊤Ψ−1(θt − θt−1). (B.15)
Alternatively, one could also take

Vt = −Ωrt (B.16)
and re-define the threshold for the j-th neuron to be time-varying:

(Γ⊤Ψ−1θt)j −
1

2
Ωjj . (B.17)

The former of these approaches is reasonable from a biological perspective, as the new term
Γ⊤Ψ−1(θt − θt−1) in the voltage dynamics has the interpretation of a signal θt − θt−1 fed through
an input weight matrix Γ⊤Ψ−1. For this sampling procedure to work, the mean should be slowly-
varying.

B.2 Relaxing the assumption of perfect integration

We now relax the assumption of the perfect integration, and assume only that η ≪ 1. With the same
proposal distribution as before, we take the acceptance ratio of the accept-reject step to be

A = min

{
1,
P [(1− η)Γrt−1 + Γej ]

P [(1− η)Γrt−1]

}
. (B.18)

As noted in the main text, this choice implements a sort of look-ahead step. Moreover, if we took the
acceptance ratio to depend on the likelihood of the proposed state with decay, P [(1−η)Γrt−1+Γej ],
relative to the likelihood P [Γrt−1] of the current state (rather than the next state with decay but
without the proposed spike), the resulting log-odds ratio would include terms of order η that are
quadratic in the rate rt.

With the choices above, the log-odds ratio is

log
P [(1− η)Γrt−1 + Γej ]

P [(1− η)Γrt−1]
= −e⊤j Γ

⊤Ψ−1[(1− η)Γrt−1 − θ]− 1

2
e⊤j Γ

⊤Ψ−1Γej (B.19)

which, like in the perfect integrator model, is linear in the rate. As in the perfect integrator model, we
define the recurrent weight matrix

Ω ≡ Γ⊤Ψ−1Γ, (B.20)
and interpret the first term in the log-odds ratio as a membrane potential,

Vt−1 = −(1− η)Ωrt−1 + Γ⊤Ψ−1θ, (B.21)
and the second as a threshold

Tj =
1

2
Ωjj , (B.22)

such that the acceptance ratio is
A = min {1, exp (Vt−1,j − Tj)} . (B.23)

With this definition, the membrane voltage evolves as
Vt − (1− η)Vt−1 = −(1− η)Ωot + ηΓ⊤Ψ−1θ. (B.24)

Therefore, this model differs from the perfect integrator model of §B.1 only in the voltage dynamics;
the perfect integrator is recovered exactly if we set η = 0. As in the perfect integrator model, the
natural generalization of these leaky dynamics to time-varying mean signal θt is to take

Vt = −(1− η)Ωrt + Γ⊤Ψ−1θt, (B.25)
which leads to the dynamics

Vt − (1− η)Vt−1 = −(1− η)Ωot + Γ⊤Ψ−1[θt − (1− η)θt−1]. (B.26)
This will, of course, not be an exact sampler unless the mean is constant. If the mean is slowly-varying,
however, it should be a good approximate sampler. We remark that we can re-write the membrane
voltage as

Vt = Γ⊤Ψ−1[θt − (1− η)zt]. (B.27)
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B.3 Adding an elastic net prior on the rates

We now consider the effect of adding an elastic net prior on the rates, as was considered in the original
work of Boerlin et al. [3]:

Pe-net(r) ∝ exp

(
−α∥r∥1 −

1

2
λ∥r∥22

)
. (B.28)

Without loss of generality, we consider the case in which a decay term is included, as we can then
recover the perfect integrator by setting η = 0. Again defining the acceptance ratio in terms of a
comparison against the rate with decay but without the proposed spike, the addition of the prior adds

log
Pe-net[(1− η)rt−1 + ej ]

Pe-net[(1− η)rt−1]
= −α∥(1− η)rt−1 + ej∥1 −

1

2
λ∥(1− η)rt−1 + ej∥22

−
(
−α∥(1− η)rt−1∥1 −

1

2
λ∥(1− η)rt−1∥22

)
(B.29)

= −α− λ(1− η)e⊤j rt−1 −
1

2
λ (B.30)

to the log-odds ratio. This yields a modified recurrent weight matrix

Ω ≡ Γ⊤Ψ−1Γ+ λInn
(B.31)

and a modified threshold

Tj =
1

2
Ωjj + α, (B.32)

but the expression for the membrane voltage in terms of these parameters is identical in functional
form:

Vt = −(1− η)Ωrt + Γ⊤Ψ−1θt. (B.33)

Therefore, adding the elastic net prior changes the definitions of the weight matrix that maps rates to
voltages and of the threshold, but not the overall form of the result, hence it does not introduce any
new conceptual difficulties. We remark that we could include the constant factor α in the membrane
voltage as we do in our implementation of EBNs (see Appendix C) rather than in the threshold, which
would give it a somewhat different biological interpretation but would have no algorithmic effect.

B.4 The continuous-time limit

In this subsection, we consider the continuous-time limit of the models introduced above. This limit
corresponds to taking the limit in which spike proposals are made infinitely often, and regarding the
dynamics written down previously as a forward Euler discretization of an underlying continuous-time
system. For clarity, we write the discrete timesteps, denoted in previous sections simply by t, as td
here, and reserve the unsubscripted symbol t for the continuum variable. For a timestep ∆, we let
t = ∆td, and let the discrete-time decay rate be η = ∆/τm for a ‘membrane’ time constant τm. We
may then write the discretized rate dynamics (B.2) as

τm
r(∆td)− r(∆td −∆)

∆
+ r(∆td −∆) = τm

1

∆
otd (B.34)

which, taking ∆ ↓ 0, of course yields the familiar continuous-time dynamics

τm
dr(t)

dt
+ r(t) = τmo(t). (B.35)

In continuous time, the spike train o(t) is now composed of Dirac delta functions, as the discretized
spikes are rectangular pulses of width ∆ in time and height 1/∆. We next consider the voltage
dynamics of the leaky integrator for a varying mean signal (B.26), which may similarly be re-written
as

τm
V(∆td)−V(∆td −∆)

∆
+V(∆td −∆)

= −Ω

(
τm

1

∆
otd − otd

)
+ Γ⊤Ψ−1

(
τm

θ(∆td)− θ(∆td −∆)

∆
+ θ(∆td −∆)

)
. (B.36)
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In the continuum limit, we retain only the contribution of the first of the two terms involving the
discrete-time spike train, as the other yields pulses of width ∆ and height unity, which yield a
negligible contribution to the integral. Thus, we have the dynamics

τm
dV(t)

dt
+V(t) = −τmΩo(t) + Γ⊤Ψ−1

(
τm

dθ(t)

dt
+ θ(t)

)
. (B.37)

From these dynamics, one could then recover the continuum limit of the perfect integrator dynamics
by taking τm → ∞. In this limit, the rate will decay by only a infinitesimal amount between a
rejected spike proposal and the next proposal, meaning that the error incurred by neglecting the
asymmetry in the proposal distribution due to the decay should be negligible.

B.5 Analyzing the strongly-correlated limit of sampling from an equicorrelated Gaussian

Here, we consider how these models behave when sampling from an equicorrelated Gaussian
distribution, i.e., a distribution with covariance matrix

Ψ = (1− ρ)Inp
+ ρ1np

1⊤
np

(B.38)

for correlation coefficient ρ ∈ (−1,+1). We are particularly interested in the strongly-correlated limit
ρ ↑ 1. As we will consider the case in which the marginal variance does not scale with the correlation,
our choice of unit marginal variance is made without loss of generality. For this covariance matrix,
the Sherman-Morrison formula yields [4]

Ψ−1 =
1

1− ρ

(
Inp

− ρ

1 + (np − 1)ρ
1np

1⊤
np

)
. (B.39)

We first consider the case in which the mean signal θ is identically equal to zero. We argue that, for
choices of Γ that are in some sense sufficiently naïve, the probability that relevant spikes are emitted
should tend to zero as ρ ↑ 1. This corresponds to showing that Vt,j − Tj → −∞ as ρ ↑ 1 for all
indices j corresponding to relevant neurons. For θ = 0, we have

Vt,j − Tj = −e⊤j Γ
⊤Ψ−1Γ

(
(1− η)rt +

1

2
ej

)
. (B.40)

Consider the first timestep, with r0 = 0, for which we have

V0,j − Tj = −1

2
e⊤j Γ

⊤Ψ−1Γej (B.41)

= − 1

2(1− ρ)

(
(Γ⊤Γ)jj −

ρ

1 + (np − 1)ρ
(1⊤

np
Γej)

2

)
. (B.42)

Near ρ = 1, we then have the expansion

V0,j − Tj = − 1

2(1− ρ)

(
(Γ⊤Γ)jj −

1

np
(1⊤

np
Γej)

2

)
+O(1), (B.43)

under the assumption that Γ is an O(1) function of ρ in this region, and thus cannot introduce
additional possible divergences. For relevant spikes, we have the strict inequality (Γ⊤Γ)jj > 0.
Moreover, by the Cauchy-Schwarz inequality, we have (1⊤

np
Γej)

2 ≤ np(Γ
⊤Γ)jj , with equality if

and only if Γej ∝ 1np
. If Γej ∝ 1np

, then spikes in neuron j affect the readout precisely only along
the common mode, and V0,j − Tj does not diverge as ρ ↑ 1. However, this case is quite fine-tuned.
For generic Γ not satisfying this alignment condition, we have the strict inequality

(Γ⊤Γ)jj −
1

np
(1⊤

np
Γej)

2 > 0 (B.44)

for all relevant neurons. Then, if (Γ⊤Γ)jj vanishes no more rapidly than 1 − ρ as ρ ↑ 1—i.e., if
(Γ⊤Γ)jj/(1− ρ) → ∞ as ρ ↑ 1—we have that V0,j − Tj → −∞ as ρ ↑ 1. This holds, for instance,
if (Γ⊤Γ)jj is a constant function of ρ. Thus, under these conditions, the probability that a relevant
spike is emitted at the first timestep vanishes as ρ ↑ 1. Heuristically, this in turn implies that the
(relevant component of the) rate at the second timestep will be zero with probability one. Therefore,
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we may iterate this argument forward in time, showing that the probability of emission of relevant
spikes should vanish in the limit ρ ↑ 1. This argument will not be affected by the addition of an
elastic net penalty unless the coefficients α and λ are taken to diverge as ρ is taken to unity, as the
coefficients are strictly non-positive.

The situation is somewhat more complicated if the mean signal is not identically zero, in which case
we have

Vt,j − Tj = −(1− η)e⊤j Γ
⊤Ψ−1Γrt −

1

2
(Γ⊤Ψ−1Γ)jj + Γ⊤Ψ−1θt. (B.45)

Following our previous analysis, at the first timestep we have

V0,j − Tj = −1

2
ejΓ

⊤Ψ−1Γej + e⊤j Γ
⊤Ψ−1θt. (B.46)

= − 1

2(1− ρ)

(
(Γ⊤Γ)jj −

1

np
(1⊤

np
Γej)

2

)
+

1

1− ρ

(
e⊤j Γ

⊤θt −
1

np
(1⊤

np
Γej)(1

⊤
np
θt)

)
+O(1) (B.47)

near ρ = 1. There are now two possible divergent terms, which can compete to change the sign of
V0,j − Tj as ρ ↑ 1. One case of interest is when θt ∝ 1np . Then,

e⊤j Γ
⊤θt −

1

np
(1⊤

np
Γej)(1

⊤
np
θt) = 0 (B.48)

and we have

V0,j − Tj = − 1

2(1− ρ)

(
(Γ⊤Γ)jj −

1

np
(1⊤

np
Γej)

2

)
+O(1), (B.49)

as in the case when θ was strictly zero, implying that V0,j − Tj → −∞ under the abovementioned
conditions on Γ. Another illustrative case is θt = Γej . With this fine-tuning,

V0,j − Tj =
1

2(1− ρ)

(
(Γ⊤Γ)jj −

1

np
(1⊤

np
Γej)

2

)
+O(1), (B.50)

hence we expect V0,j − Tj → +∞ as ρ ↑ 1 under the abovementioned constraints on Γ. Thus, in
this case, the spike probability should tend to one, showing that complications can arise in the case of
a non-uniform mean signal.

B.6 Analyzing the small- and large-variance limits

We now consider how these models behave in the limits in which the variance of the target distribution
is small or large, or, nearly equivalently, the limits in which the scale of the readout matrix is
large or small, respectively. In §2.3 of the main text, we argued that the EBN is recovered in the
limit in which the variance of the target distribution tends to zero. Concretely, we let Ψ = ψΨ̃
for some fixed matrix Ψ̃, and take the zero-variance limit ψ ↓ 0. In terms of the renormalized
voltage Ṽ ≡ ψV, weight matrix Ω̃ = ψΩ, and threshold T̃ = ψT, the spike acceptance ratio is
A = min{1, exp[(Ṽj(t) − T̃j)/ψ]}. This tends to A = Θ(Ṽj(t) − T̃j) as ψ ↓ 0 assuming that the
re-scaled variables remain order one, recovering the greedy spiking rule used in the EBN. If we
instead take the large-variance limit ψ ↑ ∞, the acceptance ratio tends to 1 under the assumption
that Ṽj(t) − T̃j remains O(1). Then, each spike proposal is accepted with probability one, and
the total firing rate of the population is 1/∆ spikes per second for a timestep ∆, meaning that the
population-averaged rate is 1/(nn∆) spikes per second.

Re-scaling the readout matrix Γ differs from re-scaling the target covariance matrix Ψ because the
target mean and recurrent spikes appear with the same power of Ψ (in particular, Ψ−1) but different
powers of Γ in the voltage dynamics, scaling as O(Γ) and O(Γ2), respectively. Thus, in the large-Γ
limit in discrete time, the contribution of the target mean should be negligible relative to that of the
recurrent spiking input, while the opposite should hold in the small-Γ limit. However, these different
scalings should not affect the limiting behavior of the acceptance ratio. In Figure B.1, we probe how
sweeping the scale of Γ over five orders of magnitude affects sampling from a Gaussian distribution
of fixed variance. We show that the population-averaged spike rate tends to 1/(nn∆) spikes per
second in the small-Γ limit, while the spike rate tends to zero in the large-Γ limit.
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Figure B.1: Sensitivity of the Metropolis-Hastings sampler to the scale of the readout matrix. a.
Sampling performance of a network of nn = 100 neurons sampling from a np = 10-dimensional
equicorrelated Gaussian with ρ = 0.75 depends on the variance of the elements of the random
readout matrix Γ. The stimulus setup is as in Figure 3. a.i. At large variance, spiking is suppressed
in networks with naïve or natural geometry. At small variance, spikes are accepted with probability
one, and the population-averaged firing rate tends to 1/(nn∆), as indicated by the red dashed line.
a.ii. Dimension-averaged estimate of the mean signal over the entire stimulus interval. a.iii. As in ii,
but for the variance. a.iv. As in ii, but for the 2-Wasserstein distance. b. As in a, but for a network
of nn = 320 neurons sampling from an np = 32-dimensional Gaussian. Shaded error patches
show 95% confidence intervals computed via bootstrapping over 100 realizations in all panels; see
Appendix E for further details.

B.7 Alternative spike proposal distributions and membrane voltage bounds

In this appendix, we have considered the simplest possible spike proposal distribution: at each
timestep, we choose one neuron uniformly at random as a candidate. With this choice, obviously,
only one neuron can spike at each timestep, which parallels the spiking rule used in the EBN: only the
neuron with the maximum membrane voltage among the entire population is allowed to spike [3, 5].
With a discretization timestep ∆, the maximum total spike rate is then 1/∆. In the EBN literature,
previous analysis has shown that this constraint is vital to avoid pathological spiking patterns [3, 5–8],
and introduced alternatives such as Poisson spiking rules [8] or hand-tuned refractory periods [9].
We remark that, in these models, the membrane voltage is always strictly bounded from above, which
does not hold in our setting. As reset is achieved only through spike emission, and is strictly speaking
a decrement of the voltage rather than a true reset, a neuron can exceed the threshold voltage if it is
not chosen as a candidate to spike.

B.8 Sampling from non-Gaussian exponential families

Though our main focus is on Gaussian target distributions, in this appendix we briefly discuss the
possibility of constructing a probabilistic spiking sampler for other exponential families. For a
distribution with density

P (z) = exp[−U(z)] (B.51)

for an energy function U , the acceptance ratio (B.18) becomes

A = min

{
1, exp

(
U [(1− η)Γrt−1]− U [(1− η)Γrt−1 + Γej ]

)}
. (B.52)

In analogy to the Gaussian case, one could then define the difference of energies to be the difference
of the membrane voltage and the threshold. However, the resulting membrane voltage would be a
nonlinear function of the firing rate, and would in general evolve according to non-linear dynamics.
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Most directly, assuming ∥Γej∥ to be small and U to be not too quickly varying, one could make the
second-order approximation

U [(1− η)Γrt−1]− U [(1− η)Γrt−1 + Γej ] ≈ −∇U [(1− η)Γrt−1]
⊤Γej

− 1

2
e⊤j Γ

⊤∇2U [(1− η)Γrt−1]Γej , (B.53)

and define the membrane voltage and threshold as

Vt−1 = −Γ⊤∇U [(1− η)Γrt−1] (B.54)

and

Tj,t−1 =
1

2
(Γ⊤∇2U [(1− η)Γrt−1]Γ)jj , (B.55)

respectively. With this choice, the threshold would be state-dependent, but one could incorporate its
state-dependence into a re-defined voltage.

C Sampling in efficient balanced networks

C.1 Encoding a dynamical system in efficient balanced networks

In this section, we provide a pedagogical derivation of the efficient balanced network [3, 5] using
the notation we use throughout the paper. The goal of the network is to encode an estimate z(t) of a
signal θ (a vector of size np × 1 in a population of nn spiking neurons. The estimate is obtained by
reading out a low pass version of the population spiking activity:

z(t) = Γr(t) (C.1)

where Γ is the np × nn readout matrix and r(t) is the low-pass filter spike history:

dri(t)

dt
= − 1

τm
ri(t) + oi(t) (C.2)

where τm is the time constant of the readout neurons and oi is the spike train of neuron i, oi = 1 if
the neuron spiked at t and oi = 0 otherwise.

The goal of the network is to minimize the squared error between the signal and the estimate with
an elastic net prior on the firing rate in order to find a good solution while keeping the population
spiking activity relatively low:

L = (θ − z)⊤(θ − z) + 2αr+ λr⊤r (C.3)

In the standard implementation of efficient balanced networks, neurons use a greedy spiking rule. A
neuron should fire if emitting a spike will lower the loss function, i.e., if

L(oti = 0) > L(oti = 1). (C.4)

Using the loss function and the definition of the estimate (z(t) = Γr(t)), we can rewrite the spiking
rule for neuron i as:

(θ − z)⊤(θ − z) + 2α
∑
j

rj + λ
∑
j

r2j

> (θ − z− Γi)
⊤(θ − z− Γi) + 2α(1 +

∑
j

rj) + λ((1 + ri)
2 +

∑
j ̸=i

r2j ). (C.5)

Removing terms that appear on both sides, we get

0 > (θ − z)⊤(−Γi) + Γ⊤
i (θ − z− Γi) + 2α+ 2λri + λ, (C.6)

which we can further simplify to

Γ⊤
i (θ − z)− α− λri >

1

2
(Γ⊤

i Γ+ λ). (C.7)
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The term on the left hand can be interpreted as the voltage potential of neuron i:

Vi = Γ⊤
i (θ − z)− α− λri, (C.8)

while the term on the right hand size can be interpreted as the firing threshold3:

Ti =
1

2
(λ+ Γ⊤

i Γi). (C.9)

If the voltage potential exceeds this threshold, then the neuron will fire and lower its voltage potential
back below threshold. Using (C.8) we can express the dynamics of the voltage potential as a function
of the dynamics of θ and its estimate z:

dVi(t)

dt
= Γ⊤

i

(
dθ

dt
− dz

dt

)
− λ

dri
dt
. (C.10)

We can rewrite this equation to obtain an expression for the membrane dynamics as a function of the
signal, the firing rates, and the spike trains of the neurons. By adding and subtracting 1

τm
Γ⊤
i θ− 1

τm
α

and noting that Γ⊤
i Γr + λri − Γ⊤

i θ + α = −Vi, we further simplify the expression to obtain
membrane dynamics as a function of the membrane potential, the effect of a new spike on the circuit
and the encoded dynamical system:

dVi
dt

= Γ⊤
i

[
dθ

dt
− Γ

(
− 1

τm
r+ o

)]
+

1

τm
λri − λoi (C.11)

= −(Γ⊤
i Γi + λ)oi + Γ⊤

i

dθ

dt
+

1

τm
Γ⊤
i Γr+

1

τm
λri

− 1

τm
Γ⊤
i θ +

1

τm
α+

1

τm
Γ⊤
i θ − 1

τm
α (C.12)

= − 1

τm
Vi −

1

τm
α− (Γ⊤

i Γi + λ)oi + Γ⊤
i

(
dθ

dt
+

1

τm
θ

)
. (C.13)

We therefore obtain the membrane dynamics for the efficient balanced spiking network proposed in
[3, 5]. We can rewrite the dynamics in vector form:

dV

dt
= − 1

τm
V − 1

τm
α−Ωo+ Γ⊤

(
dθ

dt
+

1

τm
θ

)
, with Ω = (Γ⊤Γ+ λInn). (C.14)

Using this scheme one can encode of variety of dynamical systems, including Langevin dynamics
[5–7].

C.2 Sampling in efficient balanced networks using naïve Langevin dynamics

Using the scheme presented in §C.1 above, Savin and Denève [5] proposed to implement a dynamical
system corresponding to the naïve Langevin dynamics of a multivariate normal distribution. We
use a linear Gaussian model similarly to several studies of neuroscience inspired sampling-based
networks [5, 10]. These networks estimate the posterior probability of hidden sources (θ) given
sensory inputs x corrupted by Gaussian noise, p(x|θ) = N (x;Aθ, σ2

nI), and prior expectations
on the values of the hidden sources p(θ) = N (θ; 0,C). The mean µ and covariance Σ of the
posterior probability of the features given the input, p(θ|x) ∝ p(x|θ)p(θ), are µ = 1

σ2
n
ΣA⊤x and

Σ =
(
C + 1

σ2
n
A⊤A

)−1

respectively. Up to an irrelevant constant offset, the corresponding energy

function is U(θ) = 1
2 (θ − µ)⊤Σ−1(θ − µ), and its gradient is ∇U(θ) = Σ−1(θ − µ). We define

τs as the timescale of the inference process and we set ϵt = 1
τs

. Then, we can write down the naïve
Langevin dynamics

dθ(t) =

(
− 1

τs
Σ−1θ +

1

τs
A⊤x

)
dt+

√
2

τs
dW(t) (C.15)

3Here, we chose to include the regularizing term α as a fixed offset in the voltage potential but it can
equivalently be included as an offset in the spiking threshold Ti, as discussed in Appendix B.3.
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These dynamics can be approximated by an efficient balanced network by replacing in (C.14) θ by z.
As discussed in [5], this approximation will introduce an acceptable error in most practical situations:

dV
dt

= − 1

τm
V − 1

τm
α−Ωo + Γ⊤

(
dz

dt
+

1

τm
z

)
, (C.16)

and we therefore obtain the membrane dynamics for the efficient balanced network proposed by
Savin and Denève [5]:

dV(t) =

[
− 1

τm
V − 1

τm
α−Ωo +

1

τs
Γ⊤(A⊤x−Σ−1Γr) +

1

τm
Γ⊤Γr

]
dt+ Γ⊤

√
2

τs
dW(t)

(C.17)
Note here that we have two timescales: the timescale of neuronal representations τm ∼ 20 ms,
controlled by the biophysical properties of the neurons, and the timescale τs of the Langevin diffusion
encoded by the network.

C.3 Sampling in efficient balanced networks using the complete recipe for stochastic gradient
MCMC

The model proposed by Savin and Denève [5] implements naïve Langevin dynamics, which are
known to be slow in high dimensions. Instead, we can use the “complete recipe” for stochastic
gradient MCMC [11] to write another sampler with the same equilibrium distribution but more
favorable convergence properties. For any positive semi-definite matrix D and skew-symmetric
matrix S, the following dynamics will converge to N (µ,Σ) as their stationary distribution:

dθ(t) =

[
− 1

τs
(D+ S)(Σ−1θ −A⊤x)

]
dt+B

√
2

τs
dW(t) (C.18)

with BB⊤ = D.

We can use (C.14) to encode this more general formulation into an efficient balanced network,
yielding the following membrane dynamics:

dV =
1

τm

[
−V − α− τmΩo+ Γ⊤

(
Inp − τm

τs
(D+ S)Σ−1

)
Γr+

τm
τs

Γ⊤(D+ S)A⊤x

]
dt

+ Γ⊤B

√
2

τs
dW. (C.19)

Any choice of positive semi-definite matrix D leads to a valid sampler, but extensive work inspired
by Amari’s seminal work on natural gradient descent [12, 13] has shown that a principled choice is to
take D to be the inverse of the Fisher information matrix G [11, 14]. For the multivariate Gaussian
distribution, the Fisher information matrix is given by:

Gij = −E
[

∂2

∂θi∂θj
logP (θ)

]
(C.20)

= E
[

∂2

∂θi∂θj

1

2
(θ − µ)⊤Σ−1(θ − µ)

]
(C.21)

= Σ−1
ij (C.22)

We should therefore choose D = G−1 = Σ. Note that for the multivariate Gaussian distribution, the
Fisher information matrix is identical to the Hessian and is location independent - it does not depend
on the value of θ. For more complex distributions, the Fisher information matrix might be difficult to
compute and an approximation can be used as long as it is valid (positive semi-definite) within the
complete recipe framework [11, 15, 16] and state dependent matrices can be corrected for using the
term Φ from the complete recipe in eq. (12) of the main text [11].

In this work, we have considered only hand-tuned or random choices for the matrices controlling the
geometry. Previous work by Hennequin et al. [10], when framed within the complete recipe, proposes
methods to find a skew-symmetric matrix S which accelerates the dynamics. Non-reversibility is
indeed known to accelerate learning, but analysing networks with such dynamics is notoriously
difficult [17, 18]. In contrast, approximations for the inverse Fisher information matrix are readily
computable, even in non-Gaussian settings [15, 16].
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C.4 Sampling from non-Gaussian exponential families using efficient balanced networks

To sample from a non-Gaussian exponential family distribution with energy U(θ) using an EBN, we
can simulate the “complete recipe” for a general exponential-family as stated in eq. (12) of the main
text, which we reproduce below:

dz(t) = − 1

τs
{[D(z) + S(z)]∇U(z) +Φ(z)} dt+B

√
2

τs
dW(t), (C.23)

where BB⊤ = D [19]. Here, we have introduced an auxiliary time constant τs, as in our previous
discussion of the Gaussian case. Then, the EBN voltage dynamics (C.14) become

dV(t) =

[
− 1

τm
V − 1

τm
α−Ωo+ Γ⊤

(
− 1

τs
{[D(z) + S(z)]∇U(z) +Φ(z)}+ 1

τm
z

)]
dt

+ Γ⊤B

√
2

τs
dW(t) (C.24)

where we have again made the approximation of the Langevin sampling trajectory by the approximate
sampling trajectory z =. It is easy to see that these dynamics will in general involve non-linear
dependence on the population firing rate r through the readout z = Γr.

D Natural gradient enables fast sampling in linear rate networks

In this section, we analyze how natural gradients enable fast sampling in rate networks designed to
sample from zero-mean Gaussian distributions. Our starting point is the complete recipe for sampling
from a zero-mean Gaussian distribution with covariance Σ :

dz(t) = −(D+ S)Σ−1z dt+
√
2D dW(t) (D.1)

where D is a symmetric positive-semidefinite matrix and S is skew-symmetric. In previous work,
Hennequin et al. [10] showed how these dynamics can be interpreted as a linear rate network, and
demonstrated that careful choice of S can accelerate sample autocorrelation timescales in networks
with D = Inp

. Here, our objective is to show how the geometry of inference, set by D, can accelerate
sampling in these rate networks.

Our analysis is a straightforward application of the classic theory of Ornstein-Uhlenbeck processes
[20–22]. Assuming for simplicity a deterministic initial condition z(0) = 0, the solution to this
stochastic differential equation is given by the Itô integral

z(t) =
√
2

∫ t

0

e−(D+S)Σ−1(t−s)B dW(s), (D.2)

which has ensemble mean zero and ensemble covariance

C(t, t′) ≡ Ez(t)z(t′)⊤ = 2

∫ min(t,t′)

0

ds e−(D+S)Σ−1(t−s)De−Σ−1(D−S)(t′−s) (D.3)

The ensemble distribution of z(t) is of course Gaussian, with mean zero and covariance given by the
equal-time covariance function C(t) ≡ C(t, t).

We assume that (D+ S)Σ−1 is a non-defective matrix with all eigenvalues having positive real part,
such that the process has a well-defined stationary state. By construction, the covariance matrix of
the stationary state is precisely the target covariance matrix Σ. In the stationary state, we have a
simplified two-point function

Cs(t− t′) ≡ Esz(t)z(t
′)⊤ =

{
e−(D+S)Σ−1(t−t′)Σ, t > t′

e−(D−S)Σ−1(t′−t)Σ t < t′.
(D.4)

where we have observed that

Σe−Σ−1(D−S)(t′−t) =

∞∑
j=0

(t− t′)j

j!
Σ[Σ−1(D− S)]j (D.5)

=

∞∑
j=0

(t− t′)j

j!
[(D− S)Σ−1]jΣ (D.6)

= e−(D−S)Σ−1(t′−t)Σ (D.7)
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One standard case in which the integral defining the non-stationary covariance function can be
evaluated explicitly is if A = (D+ S)Σ−1 is a normal matrix (i.e., if AA⊤ = A⊤A) [20]. Then,
there exists a unitary matrix U such that UU† = Inp

and

UAU† = UA⊤U† = diag(λ1, λ2, . . . , λnp
), (D.8)

which, for all t ≥ t′, yields

C(t, t′) = U†G(t, t′)U (D.9)

for

[G(t, t′)]ij = 2
e−λi|t−t′| − e−λit−λjt

′

λi + λj
[BB⊤]ij . (D.10)

We will measure the rate of convergence of the ensemble distribution to the stationary distribution
in the Kullback-Leibler (KL) divergence and 2-Wasserstein distance for several choices of D. We
note that this is not the same measure as considered in our numerical simulations, where we examine
the distribution of samples over time within a single trajectory, and measure the mean 2-Wasserstein
distance between univariate marginals. As noted in Appendix E, an organism must usually make
estimates based on the distribution of samples over a single trajectory. However, even at equilibrium,
it is challenging to analytically characterize the 2-Wasserstein distance between samples from a
Gaussian distribution and the underlying population distribution [23]. Therefore, we will consider
the ensemble distribution at a given time. We denote the KL divergence and 2-Wasserstein distances
as a function of time by K(t) and W2(t), respectively. As all distributions of interest are Gaussian,
we have the relatively simple formulas

K(t) =
1

2

[
trΣ−1C(t)− np + log

detΣ

detC(t)

]
(D.11)

and

W2(t)
2 = tr

[
C(t) +Σ− 2(Σ1/2C(t)Σ1/2)1/2

]
. (D.12)

D.1 Naïve Langevin dynamics

We first consider naïve Langevin sampling with D = Inp and S = 0. In this case, A = (D +

S)Σ−1 = Σ−1 is symmetric and therefore normal, hence, letting the diagonalization of Σ be

UΣU† = diag(σ1, . . . , σnn), (D.13)

the result above yields

C(t, t′) = U†G(t, t′)U (D.14)

for

[G(t, t′)]ij = σi(e
−|t−t′|/σi − e−(t+t′)/σi)δij (D.15)

for all t ≥ t′. In particular, equal-time covariances are governed by

[G(t, t)]ij = σi(1− e−2t/σi)δij . (D.16)

In matrix form,

C(t, t′) = Σ(e−Σ−1|t−t′| − e−Σ−1(t+t′)) (D.17)

and

C(t) = (Inp
− e−2Σ−1t)Σ. (D.18)

This choice yields stationary covariance

Cs(t− t′) = e−Σ−1|t−t′|Σ (D.19)

hence large eigenvalues of Σ will introduce long autocorrelation timescales.
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In this case, K(t) and W2(t) are simple to compute thanks to the fact that Σ commutes with C(t),
yielding

K(t) = −1

2

[
tr e−2Σ−1t + log det(Inp − e−2Σ−1t)

]
. (D.20)

and

W2(t) =

√
tr
{
Σ
[
Inp

− (Inp
− e−2Σ−1t)1/2

]2}
. (D.21)

In terms of the eigenvalues σ1, . . . , σn of Σ, these distances are

K(t) = −1

2

np∑
i=1

[
e−2t/σi + log det(1− e−2t/σi)

]
. (D.22)

and

W2(t) =

√√√√ np∑
i=1

σi
[
1− (1− e−2t/σi)1/2

]2
. (D.23)

D.2 Sampling in the space of natural parameters

We now consider sampling in the space of natural parameters, with D = Σ and S = 0. In this case,
A = DΣ−1 = Inp is trivially normal, hence, for t ≥ t′,

C(t, t′) = (e−|t−t′| − e−(t+t′))Σ, (D.24)

with

C(t) = (1− e−2t)Σ (D.25)

in particular. In this case, the stationary covariance is

Cs(t− t′) = e−|t−t′|Σ, (D.26)

hence the stationary autocorrelation timescale will be independent of the spectrum of Σ.

This setup can also easily be generalized to the case in which S ̸= 0. In this case, A = (D+S)Σ−1 =
Inp

+ SΣ−1 is not in general a normal matrix. However, we can evaluate the covariance function
by exploiting the particular structure of the problem. Factoring out the terms involving the identity
matrix and using the skew-symmetry of S, we have

C(t, t′) = 2

∫ min(t,t′)

0

ds e−SΣ−1(t−s)ΣeΣ
−1S(t′−s)e−(t−s)−(t′−s). (D.27)

We now observe that

ΣeΣ
−1S(t′−s) =

∞∑
j=0

(t′ − s)j

j!
Σ(Σ−1S)j (D.28)

=

∞∑
j=0

(t′ − s)j

j!
(SΣ−1)jΣ (D.29)

= eSΣ
−1(t′−s)Σ, (D.30)

hence e−SΣ−1(t−s)ΣeSΣ
−1(t′−s) = e−SΣ−1(t−s)eSΣ

−1(t′−s)Σ = e−SΣ−1(t−t′)Σ, and therefore

C(t, t′) = 2

∫ min(t,t′)

0

ds e−(t−s)−(t′−s)e−SΣ−1(t−t′)Σ. (D.31)

The equal-time covariance is then

C(t) = 2

∫ t

0

ds e−2(t−s)Σ (D.32)

= (1− e−2t)Σ, (D.33)
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as in the case S = 0. Thus, the rate of convergence of the ensemble sampling distribution to the
stationary distribution will be unaffected if we add this skew-symmetric term. With the addition of
the skew-symmetric term, the stationary covariance is

Cs(t− t′) = e−|t−t′|e−SΣ−1(t−t′)Σ, (D.34)

which reflects the fact that this term introduces non-reversible dynamics. The spectrum of this matrix
is, however, not easy to analyze in general.

Once again, K(t) and W2(t) are easy to compute thanks to the fact that C(t) commutes with Σ,
yielding

K(t) = −n
2

[
e−2t + log(1− e−2t)

]
. (D.35)

and

W2(t) =
√
trΣ

[
1− (1− e−2t)1/2

]
. (D.36)

Comparing the W2 distance for naïve Langevin sampling (D.23) with (D.36), we can see that
sampling in the space of natural parameters eliminates the sensitivity of convergence speed to large
eigenvalues of the covariance matrix. Moreover, comparing the stationary cross-covariance at timelag
τ ≡ t − t′ for naïve Langevin sampling, Cs(τ) = e−Σ−1|τ |Σ, to that for sampling in the natural
space, Cs(τ) = e−|τ |Σ, we can see that the same qualitative difference is present. We note that
Hennequin et al. [10] focused on the speed of decay in Cs(τ). Therefore, in this simple setting, there
is a clear intuitive picture of why natural gradients enable fast sampling.

E Numerical methods and supplementary figures

In this appendix, we describe our numerical methods and include supplementary figures. All
simulations were run in MATLAB 9.10 (R2021a) or 9.12 (R2022a) (The MathWorks, Natick, MA,
USA) on desktop workstations (CPU: Intel i9-9900K or Xeon W-2145, 64GB RAM). They were
not computationally intensive, and required less than 24 hours of compute time in total. The code
used to generate all figures is available from GitHub: https://github.com/Pehlevan-Group/
FastSpikingSampler.

For the sweeps in ρ we tested 100 values of ρ ∈ [0; 0.99]. For the dimension sweeps we varied
np ∈ [2, 4, 8, 16, 32, 64] and k = nn

np
∈ [1, 5, 10, 20] is the number of neurons per parameters. Here,

we showed results for k = 10. As expected, sampling failed in the case of k = 1 as the sign constraint
introduced by spiking restricts the network to efficiently sample only one half on the values for each
parameter but results were qualitatively similar for k = nn/np ∈ [5, 10, 20].

In Figures 2, E.2, E.3, 4, and E.4, convergence statistics are computed based on distributions
of samples over time, that is, the values visited by the sampler over the course of a single trial.
Note that this is different than many machine learning studies, which instead consider distributions
across realizations at a single timepoint. However, for an organism, probabilistic inference must
be performed within a single trial. Because estimation of the full 2-Wasserstein distance between
high-dimensional distributions is computationally expensive [24], we instead computed the mean
across dimensions of the 2-Wasserstein distances between the marginals of the sampling and target
distributions.

For Figures 2, E.2 and E.3, we sampled with a discretization timestep of ∆ = 10−4 s and a membrane
time constant of τm = 20 ms. Γ by drawing independent and identically distributed Gaussian element.
We uses τs = 0.01τm and scaled the elastic net regularization parameters using α = λ =

√
nn.

For Figures 3, 4, and E.4, we simulated a Metropolis-Hastings sampling network with a discretization
timestep of ∆ = 10−5 s and a membrane time constant of τm = 20 ms. In the naïve case, we
generated the readout matrices as Γ = [−M,M] for random matrices M with independent and
identically distributed Gaussian elements. To perform sampling in approximately the natural space,
we chose Γ = Σ1/2[−M,M] for M a random matrix with i.i.d. Gaussian elements. For the
dimension sweeps in 4c and E.4b, we scale the variance of the elements of M to be 1/np. We
probe the sensitivity of the sampler to the variance of the random matrix in Figure B.1, showing
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a b c

Figure E.1: Time course of the inference statistics in EBNs implementing Langevin sampling using
naïve and natural geometry. There is initially no input (target mean µ = 0). At time t = 0.5s, the
stimulus appears (target mean µ = 6). The network parameters are ρ = 0.8, np = 20 and nn = 200.
This corresponds to network parameters for which the difference between the naïve and natural
geometry starts to be sizeable (See Figures 2.c and E.3.a). a. The inferred mean converges faster for
the natural geometry and there is a steady state error in the naïve implementation. b. The transient in
the value of the estimated variance at stimulus onset (t = 0.5s) and the steady state error are larger
and the transient relaxes to baseline more slowly in the naïve implementation than with the natural
geometry. c. The transient in the W2 distance to the target distribution at stimulus onset (t = 0.5s)
and the steady state W2 distance are larger and the transient relaxes to baseline more slowly in the
naïve implementation than with the natural geometry. Shaded error patches show 95% confidence
intervals computed via bootstrapping over 100 realizations in all panels
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Figure E.2: Additional statistics of spike trains in EBNs implementing Langevin sampling using
naïve and natural geometry. a. Marginal distribution of θi after stimulus onset. b. Example raster
plots over a 100 ms window for naïve and natural geometry. c. The distribution of coefficients of
variation of ISIs across neurons.

that its performance is robust within some range of variances. The distributions in Figure 3b were
generated using 1000 realizations of the randomness in the proposal and accept/reject steps for a
single realization of the random matrix M. Statistics in Figures 4 and E.4 were computed across 100
realizations of the random matrix M and of the randomness in the proposal and accept/reject steps.
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