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Appendix

1 Experimental Settings

1.1 Two-stage Distillation

Implementation. We follow the training details of Tian et al. [18] for CIFAR-100 and Zhou et
al. [23] for ImageNet. Specifically, for CIFAR-100, we set the mini-batch size as 64 and an initial
learning rate as 0.05. We train the model for 240 epochs. The learning rate is decayed by 10 every
30 epochs after 150 epochs. We initialize the learning rate as 0.01 for MobileNetV2, ShuffleNetV1
and ShuffleNetV2, and as 0.05 for other models. The experiments are conducted using one NVIDIA
TITAN RTX GPU. For ImageNet, we train the model for 100 epochs. We set the mini-batch size
as 256, an initial learning rate as 0.1, and decay it by 10 every 30 epochs. The experiments are
conducted using four Tesla V100 GPUs.

Architectures. We follow Tian et al. [18] for the choice of network architectures. Specifically,
“WRN-d-w” denotes Wide Residual Network (WRN) [21] with depth d and width factor w. “resnet-d”
represents cifar-style ResNet [3] with 3 groups of basic blocks, each with 16, 32, and 64 channels
respectively. For example, resnet8x4 and resnet32x4 represent a 4 times wider network, i.e., with
64, 128, and 256 channels respectively. “ResNet-d” represents the ImageNet-style ResNet with
Bottleneck blocks and more channels. MobileNetV2 [16] has a width multiplier of 0.5. “vgg”
denotes VGGNet [17] that is adapted from its original ImageNet counterpart. “ShuffleNetV1” [22],
“ShuffleNetV2” [10] are adapted with input size as 32x32.

1.2 One-stage Self-Distillation

Implementation. We follow all the training details of PS-KD [9]. The standard data argumentation
schemes are 32x32 random crop after padding with 4 pixels and random horizontal flip. The networks
are trained for 300 epochs using SGD with a momentum of 0.9. The learning rate is decayed by 10 at
150 and 225 epochs. We set the mini-batch size as 128, an initial learning rate as 0.1, and a weight
decay as 0.0005. The experiments are conducted using four Tesla V100 GPUs.

Metrics. Besides top-1 and top-5 accuracies, we follow Kim et al. [9] and report Expected calibration
error (ECE) and Area under risk-coverage curve (AURC) for evaluation. Expected calibration error
(ECE) [11] is used to evaluate the confidence calibration performance of models, i.e., the expected
gap between accuracy and confidence. Specifically, the samples are partitioned by confidence into
M bins B1, · · · , BM . The m-th bin Bm contains samples with confidence within [m−1

M , m
M ]. For N

samples, ECE is formulated as:

BCE =
1

N

M∑
m=1

|Bm| × |Acc(Bm)− Conf(Bm)|,
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Table 1: Top-1 accuracy of student networks on CIFAR-100 test set for the two-stage distillation
setting. ∗ denotes our reproduced results using the same teacher model.

Same architecture style Different architecture style

Teacher WRN-40-2 resnet110 resnet32x4 vgg13

Student WRN-16-2 resnet20 ShuffleNetV2 MobileNetV2

Teacher 75.61 74.31 79.42 74.64
Student 73.26 69.06 71.82 64.60

FitNet [15] 73.58 68.99 73.54 64.14
AT [20] 74.08 70.22 72.73 59.40
SP [19] 73.83 70.04 74.56 66.30
CC [14] 73.56 69.48 71.29 64.86
VID [1] 74.11 70.16 73.40 65.56
RKD [12] 73.35 69.25 73.21 64.52
PKT [13] 74.54 70.25 74.69 67.13
AB [4] 72.50 69.53 74.31 66.06
FT [8] 73.25 70.22 72.50 61.78
NST [6] 73.68 69.53 74.68 58.16
KD [5] 74.92 70.67 74.45 67.37
CRD [18] 75.48 71.46 75.65 69.73
WSLD∗ [23] 75.63 71.20 75.55 68.50

IPWD 75.83 71.22 76.61 69.81

where Acc(Bm) denotes the accuracy of samples in Bm, and Conf(Bm) denotes the average confi-
dence of samples in Bm. A lower BCE indicates a well-calibrated model.

Area under risk-coverage curve (AURC) [2] measures how well predictions are ordered by confidence
values. Specifically, we can determine a threshold for classification, where only samples with
confidence higher than the threshold are accepted. After that, we can obtain the proportion of covered
samples to the whole dataset, i.e., coverage, and define the risk as the error rate computed by using
the covered samples. AURC is defined as the area under the risk-coverage curve. A lower AURC
indicates that the correct and incorrect predictions are well-separable by confidence values.

1.3 License of Assets

We reimplemented WSLD1 and SSKD2 based on their open-resourced codes. Both WSLD and SSKD
did not mention the license in their open-resourced codes.

2 Additional Results

2.1 Architecture styles

Due to page limitation, we did not include all the results of different architecture styles on CIFAR-100
in the main paper. We provide additional results in Table 1. Results show that our IPWD achieves
competitive performances and outperforms KD by large margins.

2.2 Feature-based Methods

Note that our proposed IPWD is a logit-based distillation method. An interesting question is whether
the reweighting strategy can work with feature-based distillation methods. We select ReviewKD
as an example, which is a recent representative feature-based distillation method. As shown in
Figure 2, the gap between ReviewKD+IPWD and ReviewKD is very marginal, which indicates that
IPWD cannot promote feature-based distillation. The possible reasons are two-fold. First, the logit
knowledge of label y is long-tailed but the representation knowledge of sample x may be relatively
balanced. Second, as pointed out by Kang et al. [7], “data imbalance might not be an issue in learning

1https://github.com/bellymonster/Weighted-Soft-Label-Distillation
2https://github.com/xuguodong03/SSKD
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Table 2: ReviewKD with our IPWD reweighting strategy on feature level.

Teacher WRN-40-2 resnet56 resnet110 resnet32x4 WRN-40-2

Student WRN-16-2 resnet20 resnet32 ShuffleV2 ShuffleV1

ReviewKD 76.12 71.89 73.89 77.78 77.14
ReviewKD + IPWD 76.25 71.51 73.79 77.74 77.06

Table 3: Ablation study of CE-aware output on CIFAR-100. ∗ denotes that the CE-aware output is
obtained from an extra student model.

Teacher resnet110 resnet32x4 resnet32x4 resnet32x4

Student resnet32 resnet8x4 ShuffleV1 ShuffleV2

Teacher 74.31 79.42 79.42 79.42
Student 71.14 72.50 70.50 71.82

IPWD∗ 73.64 75.88 75.98 76.83
IPWD 73.91 76.03 76.03 76.61

high-quality representations” for long-tailed classification, which implies that the reweighting strategy
is not compatible at feature level.

2.3 Long-tailed Methods for KD

Following LA, we applied the class prior to the student output when calculating the KL divergence
distillation loss. We found that KD+LA underperforms KD by averagely 0.5% on CIFAR-100. The
possible reason is that the introduced prior indirectly breaks the teacher’s knowledge for each training
sample, which hurts the effectiveness of distillation. These results indicate that logit-adjust-based
long-tailed techniques are not applicable to the issue of KD.

2.4 Ablation Studies

We have conducted ablation studies on the components of our proposed IPWD. In the appendix, we
further provide ablation studies on the technical designs.

We take two-stage distillation on CIFAR-100 as an example. Recall that the sample weights are
estimated based on the two types of student’s outputs, KD-trained output ykd from the student’s
original head and CLS-trained output ycls from the student’s extra head. We further conduct ablations
on the selection of two outputs.

For CE-aware output ycls, an straightforward alternative is using an extra model that has the same
architecture as student with totally different parameters. This extra model is trained using the cross-
entropy classification loss. In other words, the difference is whether the visual backbone is shared
for the two outputs. We denote this alternative as IPWD∗. Table 3 shows the comparison. Overall,
IPWD∗ achieves competitive results compared to IPWD. However, training an extra model leads
to more memory and time cost. Therefore, our design that takes an extra head is both effective and
efficient.

For KD-trained output ykd, an straightforward alternative is using an extra distillation head like the
classification head. Different from the original head of the student, the distillation head is trained only
using the distillation loss, which simply mimics the teacher’s output without ground-truth annotations.
We denote this alternative as IPWD†. Table 4 shows the comparison. Overall, IPWD† slightly
underperforms IPWD with different four architectures. The reason is that the extra distillation head
only learns from the teacher model, which is sensitive to the teacher’s performance and weights hard
samples more. These two ablation studies further verify the effectiveness of our techinical designs.
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Table 4: Ablation study of KD-aware output on CIFAR-100. † denotes that the KD-aware output is
obtained from another extra head trained only with the original distillation loss.

Teacher resnet110 resnet32x4 resnet32x4 resnet32x4

Student resnet32 resnet8x4 ShuffleV1 ShuffleV2

Teacher 74.31 79.42 79.42 79.42
Student 71.14 72.50 70.50 71.82

IPWD† 73.56 75.88 75.93 76.44
IPWD 73.91 76.03 76.03 76.61
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