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Abstract

Knowledge distillation (KD) is essentially a process of transferring a teacher
model’s behavior, e.g., network response, to a student model. The network response
serves as additional supervision to formulate the machine domain (machine for
short), which uses the data collected from the human domain (human for short) as
a transfer set. Traditional KD methods hold an underlying assumption that the data
collected in both human domain and machine domain are both independent and
identically distributed (IID). We point out that this naïve assumption is unrealistic
and there is indeed a transfer gap between the two domains. Although the gap offers
the student model external knowledge from the machine domain, the imbalanced
teacher knowledge would make us incorrectly estimate how much to transfer from
teacher to student per sample on the non-IID transfer set. To tackle this challenge,
we propose Inverse Probability Weighting Distillation (IPWD) that estimates the
propensity score of a training sample belonging to the machine domain, and assigns
its inverse amount to compensate for under-represented samples. Experiments
on CIFAR-100 and ImageNet demonstrate the effectiveness of IPWD for both
two-stage distillation and one-stage self-distillation.

1 Introduction

Knowledge distillation (KD) [20] transfers knowledge from a teacher model, e.g., a big, cumbersome,
and energy-inefficient network, to a student model, e.g., a small, light, and energy-efficient network,
to improve the performance of the student model. A common intuition is that a teacher with better
performance will teach a stronger student. However, recent studies find that the teacher’s accuracy is
not a good indicator of the resultant student performance [8]. For example, a poorly-trained teacher
with early stopping can still teach a better student [8, 11, 67]; or, a teacher with a smaller model size
than the student is also a good teacher [67]; or, a teacher with the same architecture as the student
helps to improve the student—self-distillation [13, 71, 70, 25].

Should we view KD in the perspective of domain transfer [12, 55], we would better understand the
above counter-intuitive findings. From Figure 1, we can see that teacher predictions and ground-truth
labels indeed behave differently. Although the teacher is trained on the balanced dataset, its predicted
probability distribution over the dataset is imbalanced. Even on the same training set with the same
model parameter, teachers with different temperature τ yield different “soft label” distributions from
the ground-truth ones. This implies that human and teacher knowledge is from different domains,
and there is a transfer gap that drives the “dark knowledge” [20] transferring from teacher to student—
regardless of “strong” or “weak” teachers, it is a valid transfer as long as there is a gap. However,
the transfer gap affects the distillation performance of the under-represented classes, i.e., classes
on the tail of teacher predictions, which is overlooked in recent studies. Take CIFAR-100 as an
example. We rank and divide the 100 classes into four groups according to the ranks of predicted
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Dataset: CIFAR-100; Teacher: ResNet-110 Dataset: ImageNet; Teacher: ResNet-50
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Figure 1: Illustration of the distribution discrepancies among ground-truth annotations and teacher
predictions. Although the teacher model is trained on the balanced data (blue dashed), its prediction
distributions are imbalanced according to various temperatures.

probability. As shown in Table 1, compared to vanilla training, KD achieves better performance in
all the subgroups. However, the increase in the top 25 classes is much higher than that in the last
25 classes, i.e., averagely 5.14% vs. 0.85%. We ask: what causes the gap in the first place; or more
specifically, why does the teacher’s non-uniform distributed predictions implies the gap? We answer
from an invariance vs. equivariance learning point of view [4, 60]:

Table 1: Improvement of KD over vanilla student for different
classes. The metric is macro-average recall.

Arch. style Top 1-25 Top 26-50 Top 51-75 Top 76-100
ResNet50 -> MobileNetV2 +4.96 +5.92 +1.76 +1.20
resnet32x4 -> ShuffleNetV1 +5.80 +2.68 +2.52 +0.84
resnet32x4 -> ShuffleNetV2 +4.72 +1.92 +2.24 +0.76
WRN-40-2 -> ShuffleNetV1 +5.08 +7.20 +4.48 +0.60

Human domain: context invari-
ance. The discriminative gener-
alization is the ability to learn
both context-invariant and class-
equivariant information from the
diverse training samples per class.
The human domain only provides
context-invariant class-specific
information, i.e., hard targets. We normally collect a balanced dataset to formulate human domain.

Machine domain: context equivariance. Teacher models often use a temperature variable to
preserve the context. The temperature allows the teacher to represent a sample not only by its context-
invariant class-specific information, but also its context-equivariant information. For example, a dog
image with a soft label 0.8·dog + 0.2·wolf may imply that the dog has wolf-like contextual attributes
such as “fluffy coat” and “upright ears”. Although the context-invariance (i.e., class) is balanced in
the training data, the context-equivariance (i.e., context) is imbalanced because the context balance is
not considered in class-specific data collection [58]. To construct the transfer set for the machine
domain, the teacher model annotates each sample after seeing others, i.e., being pre-trained on the
whole set. Interestingly, the diverse context results in a long-tailed imbalanced distribution, which is
exactly reflected in Figure 1. In other words, the teacher’s knowledge is imbalanced even though the
teacher is trained on a class-balanced dataset.

Now we are ready to point out how the transfer gap is not properly addressed in conventional
KD methods. Conventional KD calculates the Cross-Entropy (CE) loss between the ground-truth
label and the student’s prediction, and the Kullback–Leibler (KL) divergence [30] loss between the
teacher’s and student’s predictions, where a constant weight is assigned for the two losses. This is
essentially based on the underlying assumption that the data in both the human and machine domains
are IID. Based on the analysis of context equivariance, we argue that the assumption is unrealistic,
i.e., the teacher’s knowledge is imbalanced. Therefore, a constant sample weight for the KL loss
would be a bottleneck. In this paper, we propose a simple yet effective method, Inverse Probability
Weighting Distillation (IPWD), which compensates for the training samples that are under-weighted
in the machine domain. For each training sample x, we first estimate its machine-domain propensity
score P (x|machine) by comparing class-aware and context-aware predictions. A sample with a low
propensity score would have a high confidence from class-aware predictions and a low confidence
from context-aware predictions. Then, IPWD assigns the inverse probability 1/P (x|machine) as
the sample weight for the KL loss to highlight the under-represented samples. In this way, IPWD
generates a pseudo-population [34, 24] to deal with imbalanced knowledge.
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We evaluate our proposed IPWD on two typical knowledge distillation settings: two-stage teacher-
student distillation and one-stage self-distillation. Experiments conducted on CIFAR-100 [29] and
ImageNet [10] demonstrate the effectiveness and generality of our IPWD.

Our contributions are three-fold:

• We formulate KD as a domain transfer problem and argue that the naïve IID assumption on machine
domain neglects the imbalanced knowledge due to the transfer gap.

• We propose Inverse Probability Weighting Distillation (IPWD) which compensate for the samples
that are overlooked in the machine domain to tackle the imbalanced knowledge in transfer gap.

• Experiments on CIFAR-100 and ImageNet for both two-stage distillation and one-stage self-
distillation show that the proper handling of the transfer gap is a promising direction in KD.

2 Related Work

Knowledge distillation (KD) was first introduced to transfer knowledge from an effective but
cumbersome model to a smaller and more efficient model [20]. The knowledge can be formulated
in either output space [20, 26, 32, 68, 67, 38, 53, 73, 28] or representation space [48, 23, 69, 27,
44, 18, 57, 7, 25]. KD has attracted a wide interest in theory, methodology, and applications [14].
For applications, KD has shown its great potential in various areas, including but not limited to
classification [33, 47, 36, 21], detection [31, 52, 61], segmentation [17, 39, 35] for visual recognition
tasks, and visual question answering [41, 1, 42], video captioning [43, 72], and text-to-image
synthesis [56] for vision-language tasks. Recent studies further discussed how and why KD works.
Specifically, Müller et al. [40] and Shen et al. [51] empirically analyzed the effect of label smoothing
on KD. Cho et al. [8], Dong et al. [11], and Yuan et al. [67] pointed out that early stopping is a good
regularization for a better teacher. Yuan et al. [67] further found that a poorly trained teacher, even
a model smaller than the student, can improve the performance of the student. Besides, Memon et
al. [37] and Zhou et al. [73] proposed a bias-variance trade-off perspective for KD. In this paper, we
point out that existing KD methods hold an underlying assumption that the IID training samples are
also IID in the machine domain, which overlooks the transfer gap.

Self-distillation is a special case of KD, which uses the student network itself as the teacher instead of
the cumbersome model, i.e., the teacher and student models have the same architecture [13, 71, 70, 25].
This process can be executed in iterations and produce a stronger ensemble model [13]. Similar to
KD, traditional self-distillation follows a two-stage process: first pre-training a student model as the
teacher, and then distilling the knowledge from the pre-trained model to a new student model. In
order to perform the teacher-student optimization in one generation, recent studies [65, 28] proposed
one-stage self-distillation that adopts student models at earlier epochs as teacher models. These
one-stage self-distillation methods outperform vanilla students by large margins. In this paper, we
also evaluate the effectiveness of our IPWD as a plug-in in one-stage self-distillation.

Inverse Probability Weighting (IPW) [49, 34, 24, 5], also known as inverse probability of treatment
weighting or inverse propensity weighting, was proposed to correct the selection bias when the
observations are non-IID. IPW uses the inverse of the probability (i.e., propensity score) that the
individual would be assigned to the treatment group to reweight the samples. Propensity-weighting
techniques have been widely applied and studied in many areas [50], such as causal inference [24],
complete-case analysis [34], machine learning [9, 6, 54], and recommendation systems [50, 62, 3].
In this paper, we view the distillation process as a domain transfer problem and adopt IPW to
dynamically assign the weight to each training sample for the distillation loss.

3 Analysis

3.1 Knowledge Distillation (KD)

We view knowledge distillation from a perspective of domain transfer, and take the image classification
task as the case study. Suppose that the training data D= {X ,Y}={(x, y)} contains x as the input
(e.g., image) and y∈RC as its ground-truth annotation (e.g., one-hot label), where C denotes the
number of classes. A standard solution to train the classifier θ uses the cross-entropy loss as the
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objective:

Lcls(human; θ) = E(x,y)∼Phuman [ℓcls(x, y; θ)] ≈
1

|D|
∑

(x,y)∈D

ℓcls(x, y; θ) ≜ Lcls(D; θ), (1)

where ℓcls(x, y) = H(ys, y) is the classification loss for sample x, H(p, q) =
∑C

i=1 −qi log pi
denotes the cross entropy between p and q, ys = f(x; θ) denotes the model’s output probability
given x, i.e., ysk=

exp(zs
k)∑C

i=1 exp(zs
i )

, where zs is the output logits of the model. The hard targets provide

context-invariant class-specific information from the human domain. An assumption held behind
Eq. (1) is that the samples are independent and identically distributed (IID) in the training and test set.

KD adopts a teacher model θt to generate soft targets as extra supervisions, i.e., context-equivariant
information. To formulate the machine domain, traditional KD methods commonly use the training set
D to construct the transfer set Dt using the same copy of X , i.e., Dt={(x, yt)} where yt=f(x; θt)
and x ∈ X . Traditional KD approaches use the KL divergence [30] loss for knowledge transfer:

Ldist(machine; θ) = E(x,y)∼Pmachine [ℓdist(x, y; θ)] ≈
1

|Dt|
∑

(x,yt)∈Dt

ℓdist(x, y
t; θ) ≜ Ldist(Dt; θ),

(2)

where ℓdist(x, y
t; θ) = τ2 · [H(ysτ , y

t
τ ) − H(ytτ , y

t
τ )] denotes the distillation loss for sample x.

Normally, the outputs of the student and teacher are softened using a temperature τ , i.e., ysτ,k =

exp(zs
k/τ)∑C

i=1 exp(zs
i /τ)

and ytτ,k=
exp(zt

k/τ)∑C
i=1 exp(zt

i/τ)
. The overall objective combines Lcls and Ldist as:

Lkd = α · Lcls + β · Ldist, (3)

where α and β are the hyper-parameters. The underlying assumption of traditional KD behind Eq. (2)
is that the transfer set Dt is an unbiased approximation of the machine domain. However, the observed
long-tailed and temperature-sensitive distributions of teacher’s predictions in Figure 1 rationally
challenge this assumption. As a result, samples with lower P (x|machine) are under-represented
during the distillation process, which affects the unbiasedness of knowledge transfer. This analysis
indicates that Eq. (2) is not optimal to utilize the teacher’s imbalanced knowledge.

3.2 Transfer Gap in KD

𝑋 𝑌𝑡

𝐷
θ𝑡
𝐷𝑡

Figure 2: Causal graph for KD.

We interpret the transfer gap and its confounding effect from the
perspective of causal inference. Figure 2 illustrates the causal
relations between the image X , training data D = {(x, y)},
teacher’s parameters θt and teacher’s output Y t in KD. Overall,
D and θt jointly act as the confounder of X and Y t in the
transfer set. First, the training set D and transfer set of teacher
model Dt = {(x, yt)} share the same image set, and X = x is sampled from the image set of D,
i.e., D serves the cause of X . Second, the teacher θt is trained on D, and yt is calculated based on
θt and x, i.e., yt = f(x; θt). Therefore, X and θt are the cause of Y t. Note that the transfer set is
constructed based on the images on D and teacher model θt. Therefore, we regard the transfer set Dt,
the joint of D and θt, as the confounder of X and Y t.

Although D is balanced when considering the context-invariant class-specific information, the context
information (e.g., attributes) is overlooked, which makes the D imbalanced on context. As shown in
Figure 1, such an imbalanced context leads to an imbalanced transfer set Dt and further affects the
distillation performance of teacher’s knowledge.

To overcome such confounding effect, a commonly used technique is intervention via P (yt|do(x)) in-
stead of P (yt|x), which is formulated as P (yt|do(x)) =

∑
Dt P (y|x,Dt)P (Dt) =

∑
Dt

P (x,yt,Dt)
P (x|Dt) .

This transformation suggests that we can use the inverse of propensity score, 1/P (x|Dt), as sample
weight to implement the intervention and overcome the confounding effect. Thanks to the causality-
based theory [49, 5], we can use the Inverse Probability Weighting (IPW) technique to overcome the
confounding effect brought by the transfer gap.

4



In
pu

t

st
ud

en
tb

ac
kb
on

e

fe
at
ur
e

L k
d

D
ist
ill
he

ad

ys In
pu

t

st
ud

en
tb

ac
kb
on

e

fe
at
ur
e

CL
S
he

ad
D
ist
ill
he

ad

yc
ls

ys

L c
ls

L ip
w
d

w

Eq. (3)
Eq. (1)

Eq. (9)

(a) Traditional KD (b) IPWD

Figure 3: The comparison of training pipelines between traditional KD and our IPWD. The module
and outputs in grey are not used in the delivered student model.

4 Method

We propose a simple yet effective method, Inverse Probability Weighting Distillation (IPWD), to
respect the transfer gap and imbalance knowledge in KD. In this section, we first introduce the overall
framework of IPWD, then present the implementation details.

4.1 Inverse Probability Weighting for KD

As analyzed in Section 3, the IID training samples in the human domain are no longer IID in the
machine domain. Simply assuming the training set as the perfect transfer set may lead to the selection
bias: samples that match “head” knowledge are over-represented and easy to be observed, while
samples that match “tail” knowledge are under-represented and hard to be observed. This would
suppress the transfer of “tail” knowledge. The analysis from the perspective of causal inference in
Section 3.2 suggests that we can use Inverse Probability Weighting (IPW) for debiased distillation.
In short, IPW generates a pseudo-population where under-represented samples are assigned with
large weights and over-represented samples are assigned with small weights. The weight for sample
x is determined as the inverse of its probability, also known as propensity score, to the domain
d ∈ {human,machine}, i.e., wx|d = 1/p(x|d). We adopt IPW to KD and obtain the following
objective for sample x:

ℓ(x; θ) =
∑
d

wx|d · ℓd(x, yd; θ) =
1

P (x|human)
ℓcls(x, y; θ) +

1

P (x|machine)
ℓdist(x, y

t; θ). (4)

4.2 Implementation

Since the training and test data are normally IID in the human domain, we safely and rationally
use the empirical risk. Therefore, we assign a constant weight to each sample when calculating
the classification loss. For sure, the training and test samples can be both non-IID, e.g., long-tailed
recognition tasks, which is out of the scope of this paper.

As analyzed in Section 1, the assumption held by traditional KD, i.e., both P (X|human) and
P (X|machine) are IID, is unrealistic in practice. Therefore, we should consider the propensity
score P (x|machine) as a sample-specific value for the distillation loss to improve the generalization.
Traditional IPW estimates the propensity score using logistic regression, i.e., P̂ (x|machine) =
1/(1+ exp(−zx)), where zx is the logit for x. Since the ground-truth annotation of P (x|machine) is
not available, it is not practicable to directly train the regression model in a fully-supervised manner.
Therefore, we estimate the propensity score in an unsupervised way.

Recall that the samples with high propensity are over-represented in the transfer set. As a result, the
student model would learn less from the under-represented group via distillation. Therefore, we use a
classification-trained (CLS-trained) classifier for the human domain as reference, and assume that a
KD-trained classifier for the machine domain is more confident for the over-represented group than
the CLS-trained classifier. We compare the outputs of two classifiers to identify whether a sample
is under-represented in the machine domain. Suppose that the KD-trained output is ykd and the
CLS-trained output is ycls. The assumption implies that the logit zx is negatively correlated with
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Figure 4: Illustration of the sample weights. Bold underlined class denotes the ground-truth label.
The areas in ykd and ycls represent the proportion of the predicted probability. A high rank indicates
a large sample weight, while a low rank indicates a small sample weight.

H(ykd, y) and positively correlated with H(ycls, y), where H(·, ·) is the cross-entropy defined in
Section 3. Considering the range of logit, we estimate zx as zx = log H(ycls,y)

H(ykd,y)
.

Figure 3 illustrates the comparison between traditional KD and our IPWD. We take the KD-trained
student’s output ys as ykd, and train an extra classifier head (i.e., “CLS head” in Figure 3(b)) to
calculate ycls, which is optimized using the cross-entropy loss Lcls with the ground-truth labels. As
shown in Table 5, we empirically found that directly using ys and ycls would lead to a high variance.
For example, a wrongly classified sample may have an extremely large loss and heavily suppress the
distillation of other samples. Therefore, we normalize the logits by dividing them by the standard

deviation σs and σcls, i.e., ỹs = exp(zs
k/σ

s)∑C
i=1 exp(zs

i /σ
s)

and ỹcls =
exp(zcls

k /σcls)∑C
i=1 exp(zcls

i /σcls)
. In this way, the

outputs are at the same scale with a standard deviation equal to 1, which helps to reduce the variance.
We finally take ỹs as ykd and ỹcls as ycls. Combining zx into the propensity score, we have:

P̂ (x|machine) =
H(ycls, y)

H(ycls, y) +H(ykd, y)
, (5)

and the estimated weight ŵx for sample x is ŵx = 1
P̂ (x|machine)

= 1 + H(ykd,y)
H(ycls,y)

. Figure 4 illustrates
some examples of training samples and their assigned weights. Under-represented samples, for
which the KD-trained classifier is less confident than the CLS-trained classifier, are assigned with a
large weight (Figure 4(a)). Over-represented samples, for which the KD-trained classifier is more
confident than the CLS-trained classifier, are assigned with a small weight (Figure 4(c)). Samples
for which the two classifiers behave similarly are assigned with a balanced weight (Figure 4(b)). The
weighted distillation loss is formulated as:

Lipw-dist =
1

|Dt|
∑

(x,yt)∈Dt

ŵx · ℓdist(x, yt; θ), (6)

Our final IPWD objective is formulated as:

Lipwd = Lcls + αLipw-dist (7)

where α is a trade-off hyper-parameter between classification and distillation.

Limitations and negative societal impacts.. As introduced in Section 4.2, we estimate the propensity
score by comparing the heads of the student model. Therefore, the estimation relies on the quality
of the student model. A poor student may not correctly estimate the propensity, which may further
suppress the effectiveness of IPWD. Also, we assume that the training and test samples are IID in
the human domain, which may not be valid for long-tailed tasks. To the best of our knowledge, as
our work is purely an algorithm for knowledge distillation, we haven’t found any negative societal
impact.
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Table 2: Top-1 accuracies (%) on CIFAR-100 for two-stage distillation. ∗ denotes our reproduced
results using the same teacher model.

Same architecture style Different architecture style

Teacher WRN-40-2 resnet56 resnet110 resnet32x4 resnet32x4 WRN-40-2 ResNet50 ResNet50

Student WRN-40-1 resnet20 resnet32 resnet8x4 ShuffleNetV1 ShuffleNetV1 vgg8 MobileNetV2

Teacher 75.61 72.34 74.31 79.42 79.42 75.61 79.34 79.34
Student 71.98 69.06 71.14 72.50 70.50 70.50 70.36 64.60

FitNet [48] 72.24 69.06 71.06 73.50 73.59 73.73 70.69 63.16
AT [69] 72.77 69.21 72.31 73.44 71.73 73.32 71.84 58.58
SP [59] 72.43 69.67 72.69 72.94 73.48 74.52 73.34 68.08
CC [46] 72.21 69.63 71.48 72.97 71.14 71.38 70.25 65.43
VID [2] 73.30 70.38 72.61 73.09 73.38 73.61 70.30 67.57
RKD [44] 72.22 69.61 71.82 71.90 72.28 72.21 71.50 64.43
PKT [45] 73.45 70.34 72.61 73.64 74.10 73.89 73.01 66.52
AB [19] 72.38 69.47 70.98 73.17 73.55 73.34 70.65 67.20
FT [27] 71.59 69.84 72.37 72.86 71.75 72.03 70.29 60.99
NST [23] 72.24 69.60 71.96 73.30 74.12 74.89 71.28 64.96
KD [20] 73.54 70.66 73.08 73.33 74.07 74.83 73.81 67.35
CRD [57] 74.14 71.16 73.48 75.51 75.11 76.05 74.30 69.11
WSLD∗ [73] 73.74 71.53 73.36 74.79 75.09 75.23 73.80 68.79

IPWD 74.64 71.32 73.91 76.03 76.03 76.44 74.97 70.25

5 Experiments

We take the image classification task as a case study to evaluate the effectiveness and generalizability
of our IPWD. Following previous works [57, 73, 28], we conduct experiments with two settings,
two-stage distillation and one-stage self-distillation.

5.1 Datasets and Settings

Datasets. We conducted experiments on CIFAR-100 [29] and ImageNet [10]. CIFAR-100 contains
50K images in the training set and 10K images in the test set from 100 classes. ImageNet provides
1.2M images in the training set and 50K images in the validation set from 1K classes.

Settings. Two-stage distillation is the conventional setting that pre-trains a teacher model at the first
stage and transfers the knowledge to a student model at the second stage. Commonly, the teacher is a
larger model, and the student is a smaller model. For self-distillation, the teacher and student have
the same architecture. One-stage self-distillation aims to complete the teacher-student optimization
simultaneously [65, 28], i.e., the pre-training and transfer processes are reduced to one.

5.2 Two-stage Distillation

Baseline methods. For two-stage distillation, following Tian et al. [57] and Zhou et al. [73], we
considered the following methods as baselines: KD [20], FitNet [48], AT [69], SP [59], CC [46],
VID [2], RKD [44], PKT [45], FSP [66], AB [19], FT [27], NST [23], CRD [57], SSKD [64], and
WSLD [73]. In particular, WSLD [73] is the most related work to us, which proposed a bias-variance
trade-off perspective for KD and also assigns different weights to each training sample. Similarly, the
weight is positive related to the cross-entropy loss of student’s output. The main differences between
our IPWD and WSLD are as follows. First, our formulation of samples weights is theoretically
guaranteed by the causal theory behind Inverse Probability Weighting (IPW) [49, 34, 24, 5]. Second,
WSLD estimates the sample weight using both the student model and the teacher model. As a
comparison, we use the student model with two different classifier heads to guarantee that the
capacities of the compared models are close.

Implementation. For experiments on CIFAR-100, we followed CRD [57] based on the open-sourced
code. We set the trade-off hyper-parameter α = 5 in Eq. (7) and the temperature τ = 10. Other
training details were the same as CRD [57] and provided in the appendix. For ImageNet, we followed
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Table 3: Top-1 accuracies (%) on CIFAR-100 test set as a plug-in on SSKD [64]. We reproduced the
results of SSKD using the same teacher model.

Same architecture style Different architecture style

Teacher WRN-40-2 WRN-40-2 resnet56 resnet32x4 ResNet50 resnet32x4 WRN-40-2 vgg13

Student WRN-16-2 WRN-40-1 resnet20 resnet8x4 MobileNetV2 ShuffleNetV1 ShuffleNetV1 MobileNetV2

Teacher 76.46 76.46 73.44 79.63 79.10 79.63 76.46 75.38
Student 73.64 72.24 69.63 72.51 65.79 70.77 70.77 65.79

SSKD∗ [64] 75.74 75.59 70.61 75.80 72.22 77.71 78.49 77.32
+ IPWD 76.39 76.09 71.69 76.74 72.85 78.30 79.17 77.95

Zhou et al. [73] to conduct experiments based on their open-sourced code. We used the same hyper
parameters as WSLD [73], i.e., α as 2.5 and τ as 2.

Comparison with baseline methods. Table 2 shows the results of student models on CIFAR-100 with
different teacher-student architectures, which can be grouped into same architecture style and different
architecture style. Note that the results of WSLD reported in [73] used a different pre-trained teacher
model. Since some training techniques like early-stopping [8, 11, 67] may improve the distillation
performance, we reimplemented WSLD using the same teacher model for a fair comparison. Overall,
our IPWD outperforms KD by large margins and outperforms other baseline methods on most of
the architectures, which demonstrates the effectiveness of our IPWD. In particular, the improvement
with the same architecture style is smaller than the different style. The reason is that the different
architecture style reflects the bigger gap between the human domain and machine domain. Since our
IPWD weights the training samples to address the non-IID problem, IPWD successfully outperforms
KD and other state-of-the-art methods by large margins when the transfer gap is significant.

Table 4: Acc. (%) on ImageNet for two-stage distillation.

Same arch. style Diff. arch. style

Teacher ResNet-34 ResNet-50
Student ResNet-18 MobileNet-v1

Top-1 Top-5 Top-1 Top-5
Teacher 73.31 91.42 76.16 92.87
Student 69.75 89.07 68.87 88.76

AT [69] 71.03 90.04 70.18 89.68
NST [23] 70.29 89.53 — —
FT [27] — — 69.88 89.50
FSP [66] 70.58 89.61 — —
AB [19] — — 68.89 88.71
RKD [44] 70.40 89.78 68.50 88.32
KD [20] 70.67 90.04 70.49 89.92
Overhaul [18] 71.03 90.15 71.33 90.33
CRD [57] 71.17 90.13 69.07 88.94
SSKD [64] 71.62 90.67 — —
DGKD [53] 71.73 90.82 — —
WSLD [73] 72.04 90.70 71.52 90.34

IPWD 71.88 90.50 72.65 91.08

Note that SSKD [64] achieves higher per-
formance because of (1) a better teacher
model, and (2) data augmentation for
structured knowledge distillation. We
further apply IPWD to SSKD as a plug-
in by weighting the logit distillation ob-
jective and keeping the structured knowl-
edge distillation terms unchanged. Ta-
ble 3 shows that our IPWD can consis-
tently improve SSKD by 0.5~1.0% for
different architectures. These results in-
dicate that our IPWD is a good comple-
mentary to distillation methods.

Table 4 further shows the comparison
on ImageNet. Following CRD [57]
and WSLD [73], we used two teacher-
student architectures as the representa-
tives. For the same architecture style,
our IPWD improves KD by 1.21%, and
achieves competitive performance com-
pared to WSLD. For the different archi-
tecture style, the improvement of WSLD
over KD drops from 1.37% to 1.03%. As
a comparison, our IPWD improves KD
by 2.16%, and outperforms WSLD by 1.13%. This improvement on the large-scale dataset further
demonstrates the effectiveness of our IPWD in bridging the transfer gap when the student and teacher
model have different architecture styles, which is more practical in real-world applications.

Ablation study: technical designs. As introduced in Section 4.2, we used an extra classifier head
to produce CLS-trained output, and normalized the logits to reduce the variance for propensity
estimation. Note that WSLD [73] uses the teacher model to estimate the sample weight, and the
teacher model is also trained with the cross-entropy loss. Therefore, we considered an alternative
which replaces the classification head with the teacher model to produce the classification-aware
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Table 5: Ablation study of technical designs for weight estimation on CIFAR-100. “CLS head”
denotes the usage of an extra classification head. “logits norm.” denotes that the logits are normalized
before calculating the propensity.

Same architecture style Different architecture style

WRN-40-2 resnet110 resnet32x4 resnet32x4 resnet32x4 WRN-40-2

↓ ↓ ↓ ↓ ↓ ↓
CLS head logits norm. WRN-40-1 resnet32 resnet8x4 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

training diverges 52.81 57.99 53.31
✓ 74.01 73.41 75.89 75.49 76.48 76.34

✓ 74.42 73.48 75.97 75.80 76.45 75.96

IPWD ✓ ✓ 74.64 73.91 76.03 76.03 76.61 76.61

output. To evaluate the contribution of logits normalization, we considered an alternative that the
logits are not normalized by the standard deviation. Results in Table 5 verify the contribution of each
design. Without the classification head and logit normalization, the training is hard to converge or the
performance is much worse. As a comparison, either the classification head or logit normalization
helps with stable training. Besides, a combination of both further improves the performance and
achieves the best results. The crash of training is due to the high variance of sample weights. Since
the teacher model is well pre-trained and has more parameters, it has a larger capacity than the student
model. Differently, an extra head with a shared backbone guarantees a similar capacity. Also, the
normalization will avoid an extremely large or small CE loss, which further reduces the variance.

Teacher trained with label smoothing. Recent works [40, 51] observed that KD performs poorly
with label smoothing. Similar to KD, the performance of IPWD drops when the teacher model is
trained with label smoothing, but still outperforms KD. However, we found that the improvement of
IPWD compared to KD also decreases with label smoothing. For example, on CIFAR-100, given
ResNet50 as teacher and MobileNetV2 as student, IPWD outperforms KD by 1.12% (69.67% vs.
68.55%) without label smoothing, but the improvement drops to 0.56% (66.79% vs. 66.23%) with
label smoothing. Given resnet32x4 as teacher and ShuffleNetV1 as student, IPWD outperforms
KD by 1.52% (75.79% vs. 74.27%) without label smoothing, but the improvement drops to 0.53%
(73.27% vs. 72.74%) with label smoothing. We observed that teacher trained with label smoothing
produces more balanced predictions compared to teacher trained without label smoothing. Therefore,
the results are consistent with our hypothesis that IPWD helps to bridge the transfer gap especially
when the context information of teacher is imbalanced.

5.3 One-stage Self-Distillation

Baseline methods and metrics. For one-stage self-distillation, we apply our method to the state-
of-the-art PS-KD [28] method as a plug-in, and consider label smoothing (LS) method and two
self-distillation methods, CS-KD [68] and TF-KD [67], as baselines. PS-KD proposed a one-stage
framework that progressively distills the knowledge of a model itself to soften the one-hot supervisions
as regularization. The knowledge is transferred using a conventional distillation loss. As for metrics,
besides top-1 and top-5 accuracy, we follow Kim et al. [28] to report expected calibration error (ECE,
%) and the area under the risk-coverage curve (AURC, ×103). A low ECE indicates well-calibrated
predictions, and a low AURC represents the well-separation of correct and incorrect predictions.

Implementation. We follow all the training details of PS-KD for a fair comparison. Specifically, the
architectures we considered are ResNet-18 [16], ResNet-101 [15], ResNeXt-29 [63] (cardinality=8,
width=64), and DenseNet-121 [22] (growth rate=32). During training, PS-KD gradually determines
how much the student learns from the teacher’s knowledge. The formulation is:

Lps-kd = (1− αt) · Lcls + αt · Ldist, (8)

where the trade-off parameter αt=αT × t/T , T is the number of total epochs (e.g., 300), t is the
current epoch, and αT is a hyperparameter. Compared to Eq. (8), our IPWD applied on PS-KD is
formulated as

Lps-kd + ipw = (1− αt) · Lcls + αt · Lipw-dist (9)
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Table 6: Results on CIFAR-100 test set for the one-stage self distillation setting over four architectures.
Top-1 and Top-5 indicate the accuracy.

Method Top-1 Top-5 ECE AURC
ResNet-18 75.82 93.10 11.84 67.65
+ LS 79.06 93.98 10.79 57.74
+ CS-KD [68] 78.70 94.30 6.24 56.56
+ TF-KD [67] 77.12 93.99 11.96 61.77
+ PS-KD [28] 79.18 94.90 1.77 52.10
+ PS-KD + Ours 79.82 95.15 1.39 49.71
ResNet-101 79.25 94.72 10.02 55.45
+ LS 80.16 94.93 3.43 95.76
+ CS-KD [68] 79.24 94.38 12.18 64.44
+ TF-KD [67] 79.90 94.90 6.14 58.80
+ PS-KD [28] 80.57 95.70 6.92 49.01
+ PS-KD + Ours 81.39 95.91 3.19 43.82

Method Top-1 Top-5 ECE AURC
DenseNet-121 79.95 95.01 7.34 52.21
+ LS 80.20 94.54 0.92 91.06
+ CS-KD [68] 79.53 93.79 13.80 73.37
+ TF-KD [67] 80.12 94.90 7.33 69.23
+ PS-KD [28] 81.27 96.10 3.71 45.55
+ PS-KD + Ours 81.60 96.04 3.48 45.33
ResNeXt-29 81.35 95.53 4.17 44.27
+ LS 82.40 95.77 22.14 41.92
+ CS-KD [68] 81.74 95.63 5.95 42.11
+ TF-KD [67] 82.67 96.13 6.73 40.34
+ PS-KD [28] 82.72 96.40 9.15 39.78
+ PS-KD + Ours 83.30 96.60 4.93 37.49

Since both the student and teacher models are poor at early epochs, the weight estimation is not
accurate at early epochs, which may lead to a worse self-teacher. Therefore, we apply IPWD at the
last 75 epochs over the total 300 epochs.

Comparison with baseline methods. Table 6 shows the results of one-stage self-distillation methods
over four architectures. Our IPWD can effectively and constantly improve the top-1 accuracy of
PS-KD by 0.33%∼0.82% with different architectures. Besides, our IPWD significantly lowers the
ECE and AURC of PS-KD. These results demonstrate the effectiveness of our IPWD.

Table 7: Ablation study on the start of applying IPWD.

Method Top-1 Acc Top-5 Acc ECE AURC
PS-KD [28] 82.72 96.40 9.15 39.78
+ IPWD (early) 82.86 96.35 8.56 38.16
+ IPWD (late) 83.30 96.60 4.93 37.49

Ablation study: IPWD stage. We
conduct an ablation study to analyze
whether IPWD should be started from
an early stage (e.g., the beginning of
training) or a late stage (e.g., last 1/4 of
the epochs). We take ResNeXt-29 as an
example. As shown in Table 7, apply-
ing IPWD from the beginning slightly
outperforms PS-KD and under-performs the student modal that applies IPWD only at the late stage
by large margins. As the student model is poorly trained at the early stage, the weight estimation
is inaccurate and hurts the performance of self-teacher. These results indicate that the quality of
estimated weight and distillation performance relies on the student model and self-teacher.

6 Conclusion

In this paper, we point out that conventional KD methods hold an invalid IID assumption and
does not properly address the transfer gap between the context-invariant human domain and the
context-equivariant machine domain, especially the imbalanced knowledge of the teacher model on
the transfer set. We further proposed a simple yet effective method, Inverse Probability Weighting
Distillation (IPWD), to deal with the imbalanced knowledge caused by transfer gap. In the future,
we will extend our IPWD to (1) tasks beyond classification, like detection and segmentation, and (2)
long-tailed tasks where the training samples in the human domain are also non-IID.
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using/curating? [Yes] All the used existing assets are open-sourced for research.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] The benchmark dataset does not contain
personally identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15


	Introduction
	Related Work
	Analysis
	Knowledge Distillation (KD)
	Transfer Gap in KD

	Method
	Inverse Probability Weighting for KD
	Implementation

	Experiments
	Datasets and Settings
	Two-stage Distillation
	One-stage Self-Distillation

	Conclusion

