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A Additional background, preliminaries, and related work

A.1 Parities: orthogonality and computational hardness

For each integer n � 1 and nonempty subset of indices S ✓ [n], define the (n, S)-parity function
�S(x) =

Q
i2S xi, i.e. the parity of the bits at the indices in S. We define the (n, S)-parity

distribution DS over examples (x, y) as follows: the features x ⇠ Unif({±1}n) are uniform
random bits, with labels y 2 {±1} given by the parity function y = �S(x). For 0  k  n, the
corresponding (n, k)-parity learning problem is the task of identifying an unknown size-k set S
(chosen at random), using samples from DS . With knowledge of k but not S, a learner must use the
labels to distinguish between

�n
k

�
possible “relevant feature sets”; thus, the statistical limit for this

problem is log
�n
k

�
= ⇥(k log n) samples.

This work leverages the parity problem as a “computationally hard case” for identifying the features
S which are relevant to the label. Observe that for any S0 ✓ [n], it holds that

E
x⇠Unif({±1}n)

[�S(x)�S0(x)] = E
(x,y)⇠DS

[�S0(x) y] =

⇢
1 S0 = S
0 otherwise

. (2)

That is, a learner who guesses indices S0 cannot use correlations as feedback to reveal which (or
how many) indices in S0 are correct, unless S0 is exactly the correct subset. In this sense, for the
(n, k)-parity problem, the

�n
k

�
� 1 wrong answers are indistinguishable from each other. Thus, the

structure of this problem forces this form of learner (but not necessarily all learning algorithms) to
perform exhaustive search over subsets.

Property 2 (a.k.a. the orthogonality of parities under the correlation inner product) implies that any
function f : {±1}n ! R has a unique Fourier expansion (see, e.g. (O’Donnell, 2014)):

f(x) =
X

S✓[n]

bf(S)�S(x), bfS = E
x⇠Unif({±1}n)

[f(x)�S(x)] . (3)

In the statistical query (SQ) model (Kearns, 1998), Property (2) implies computational lower bounds.
In this model, a learner, rather than having access to examples drawn from the distribution, can query
an oracle, which responds with noisy estimates of the query over the distribution. Namely, each
iteration the learner outputs a query qi : {±1}n ! [�1, 1], and the oracle returns some value vi
satisfying |vi � E(x,y)⇠D [qi(x, y)] |  ⌧ , for some tolerance parameter ⌧ > 0. It can be shown
that Equation 2 implies that each query will have a non-trivial correlation only with a small fraction
(namely, 1/⌧2) of the possible parities, which then implies that an SQ algorithm which solves the
(n, k)-parity problem using T queries of tolerance ⌧ must satisfy T/⌧2 � ⌦(nk). This constitutes
a lower bound on the number of queries (and/or on the tolerance), which indicates that essentially,
SQ algorithms cannot do much better than exhaustive search (going over all the possible choices of
size-k subsets).

It should be mentioned that the (n, k)-parity problem can be solved efficiently by a learning algorithm
that has access to examples (i.e., an algorithm that does not operate in the SQ framework). Specifically,
this problem can be solved by the Gaussian elimination algorithm. Moreover, it has been shown
that the (Stochastic) Gradient Descent algorithm, discussed in the next section, can also be utilized
for solving parities, given accurate enough estimates of the gradient and a very particular choice of
neural network architecture Abbe and Sandon (2020). That said, when the accuracy of the gradients
is not sufficient, GD suffers from the same SQ lower bound mentioned above (i.e., GD is essentially
an SQ algorithm Abbe et al. (2021)).

Learning sparse noisy parities, even at a very small noise level (i.e., o(1) or n��) is believed to be
computationally hard. This was first explicitly conjectured by Alekhnovich (2003), and has been the
basis for several cryptographic schemes (e.g., (Ishai et al., 2008; Applebaum et al., 2009, 2010)). For
noiseless sparse parities, Kol et al. (2017) show time-space hardness in the setting where k = !(1).
We present some experiments with noisy parities in Appendix C.6, finding that our empirical results
(and theoretical analysis) are robust to ⇥(1) noise.

A.2 Neural networks and standard training

Next, we establish notation for the standard neural network training pipeline. Our main results are
presented in the online learning setting, with a stream of i.i.d. batches of examples. At each iteration
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t = 1, . . . , T , a learning algorithm receives a batch of B examples {(xt,i, yt,i)}Bi=1 drawn i.i.d. from
DS , then outputs a classifier byt : {±1}n ! {±1}. If E(x,y)⇠DS

[ [byt(x) 6= y]]  ✏ (i.e. byt agrees
with the correct parity on at least a (1� ✏) fraction of inputs), the learner is said to have solved the
parity problem with error ✏ in t iterations (tB samples); the smallest t for which this is true is the
convergence time tc. A learner may also output an initial classifier by0 before observing any data.

This formulation permits improper function classes (i.e. other than parities over subsets S0) for the
parity learning problem. In particular, we will focus on hypothesis classes of continuous functions
f : {±1}n ⇥⇥ ! R, which map to classifiers by(x) = sign(f(x; ✓))13. When ⇥ is a vector space
over R, a ubiquitous online learning algorithm is gradient descent (GD). For a choice of loss function
` : {±1}⇥R! R, initialization ✓0, learning rate schedule {⌘t}Tt=1 ✓ R and weight-decay schedule
{�t}Tt=1 ✓ R, GD defines iterative updates

✓t+1  (1� �t)✓t � ⌘tr✓

 
1

B

BX

i=1

`(yt,i, f(xt,i; ✓t))

!
, (4)

where f (the architecture) and ` are assumed to be such that this gradient (more generally, subgradient)
is well-defined. In this context, online and stochastic gradient descent (OGD/SGD) are equivalent
names for the update rule (4).

A fundamental object of study in deep learning is the multi-layer perceptron (MLP). In this setting, a
2-layer MLP with width h and activation function � : R ! R, parameterized by W 2 Rr⇥n, b 2
Rr, u 2 Rr, specifies the function

f(x;W, b, u) = u>�(Wx+ b),

where �(·) is applied entrywise. It is standard to use GD to jointly update the network’s parameters.
Our results include positive results about “single neurons”: MLPs with width r = 1. We note that
for our theoretical analysis, when training MLPs with GD, we allow for different learning rate and
weight decay schedule for the different layers.

Finally, we will analyze randomized learning algorithms, such as GD with random initialization
✓0, whose iterates ✓t (and thus classifiers by) are random variables even when the samples are
not. A learning algorithm has permutation symmetry if, for all sequences of data {(xt,i, yt,i)}, the
classifiers byt � ⇡ resulting from feeding {(⇡(xt,i), yt,i)} to the learner have identical distributions as
⇡ ranges over all permutations of indices. The neural architectures and initializations (and thus, SGD)
considered in this work are permutation-symmetric; for this reason, it is convenient for notation to
choose S = [k] as the canonical (n, k)-parity learning problem, without loss of generality.

A.3 Additional related work

Feature learning using GD on neural networks. A line of recent work has focused on understand-
ing the feature learning ability of gradient descent dynamics on neural networks. These analyses go
beyond the Neural Tangent Kernel (NTK) regime, where they show a separation between learning
with fixed features versus GD on neural networks, for these problems. Several of these works
assume structure (often "sparse") in the input data which is useful for the prediction task, and helps
avoid computational hardness. In contrast, our work focuses on studying hard problems at their
computational limit. Here we discuss the most relevant works in detail:

A line of work (Diakonikolas et al. (2020); Yehudai and Ohad (2020); Frei et al. (2020)) focuses on
learning a single non-linearity y = �(w>x) (typically �(·) is the ReLU or sigmoid) using gradient-
based methods. These works obtain polynomial-time convergence guarantees when the distribution
satisfies a spread condition. These results do not extend to the Boolean hypercube.

Daniely and Malach (2020) also study the problem of learning sparse parities using neural networks.
One key difference from our work is that they assume a modified version of the problem, where the
input distribution is not uniform over the hypercube, but instead leaks information about the label.
In particular, the distribution ensures that the relevant parity bits always have the same value. Shi
et al. (2021) generalize this setting by considering a setting where labels are generated based on
certain class specific patterns and the data itself is generated using these patterns with some extra

13When f(x; ✓) = 0 in practice (e.g. with sign initialization), we break the tie arbitrarily. We ensure in the
theoretical analysis that this does not happen.
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background patterns. This also embeds information in the data itself regarding the label, unlike our
setting, where the labels are uncorrelated with the input features. Under these structural assumption,
the papers study how GD on a two-layer network can learn useful features in polynomial time. Both
these analysis also exploits the first gradient step to find useful features. Shi et al. (2021) additionally
require a second step to refine the features.

Ba et al. (2022) show how the first gradient step is important for feature leaning. In particular, they
show that first update is essentially rank-1 and aligns with the linear component of the underlying
function. The functions we consider (parity) do not have a linear component.

Abbe et al. (2022) define a notion of initial alignment between the network at initialization and the
target function and show that it is essential to get polynomial time learnability with noisy gradients
on a fully connected network. Our MLP results also exploit the correlation between the gradient and
the label to ensure that the gradient update gives us signal.

Frei et al. (2022) also study learnability of a parity-like function with k = 2 under noisy labels. The
paper analyzes early stopping GD for learning the underlying labeling function. Our setup is quite
different from theirs and can handle k > 2.

In concurrent work, Damian et al. (2022) consider the problem of learning polynomials which depend
on few relevant directions using gradient descent on a two-layer network. They assume that the
distributional Hessian of the ground truth function spans exactly the subspace of the relevant direction.
Using this, they show that gradient descent can learn the relevant subspace with sample complexity
scaling as d2 and not dp where p is the degree of the underlying polynomial as long as the number of
relevant directions is much less than d. Their proof technique is similar to our two-layer MLP result
which also exploits correlation in the first gradient step. However, for our setting, the distributional
Hessian has rank 0 and does not satisfy their assumptions.

Statistical mechanics of machine learning. An extensive body of work originating in the statistical
physics community has studied phase transitions in the learning curves of neural networks (Gardner
and Derrida, 1989; Watkin et al., 1993; Engel and Van den Broeck, 2001). These works typically
focus on student-teacher learning in the “thermodynamic limit”, in which the number of training
examples is ↵ times larger than the input dimension and both are taken to infinity. One of the
classic toy architectures analyzed in this literature is the parity machine (Mitchison and Durbin,
1989; Hansel et al., 1992; Opper, 1994; Kabashima, 1994; Simonetti and Caticha, 1996). In our
work, we introduce PolyNets, a variant of parity machines in which the output is real-valued rather
than ±1; and we theoretically analyze disjoint-Polynets, which are the real-output analogue of the
oft-considered parity machines with tree architecture. While much of the statistical mechanics of
ML literature focuses on an idealized training limit in which the weights reach a Gibbs distribution
equilibrium, there is a strand of the literature that aims to characterize the trajectory of SGD training
in the high-dimensional limit with constant-sized sets of ordinary differential equations (Saad and
Solla, 1995b,a; Goldt et al., 2019). These papers discuss cases, including problems that share aspects
with 2-sparse parities Refinetti et al. (2021), where the network gets stuck in (and then escapes from)
a plateau of suboptimal generalization error. Recently, Arous et al. (2021) studied (for rank-one
parameter estimation problems) the relative amount of time spent by SGD in an initial high-error
“search” phase versus a final “descent” phase, which is reminiscent of the framing of Theorem 6.
However, to our knowledge prior work has not shown k-sparse parities can be learned with a number
of iterations that nearly matches known lower bounds, nor has it specifically studied phase transitions
in k-sparse parity learning during gradient descent.

Learning parities with the NTK. Another relevant line of work studies learning the parity problem
using the neural tangent kernel (NTK) (Jacot et al., 2018). Namely, in some settings, when the
network’s weights stay close to their initialization throughout the training, SGD converges to a
solution that is given by a linear function over the initial features of the NTK. As shown in Theorem
5, learning parities over a fixed set of features requires the size of the model to be ⌦(nk). In contrast,
the model size (number of hidden neurons) considered in this paper does not depend at all on the
input dimension n. Nevertheless, the NTK analysis does give better sample complexity guarantees
than the ones presented in this work, with a somewhat more natural version of SGD. For example,
the work of Ji and Telgarsky (2019) demonstrates learning 2-sparse parities using NTK analysis
with a sample complexity of O(n2), which matches the sample complexity lower bound for learning
this problem with NTK (see Wei et al. (2019)). Concurrent work by Telgarsky (2022) shows that
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this sample complexity can be improved to O(n) once the optimization leaves the NTK regime.
However, this analysis is given for networks of size O(nn), much larger than the networks considered
in this paper. We refer the reader to Table 1 in Telgarsky (2022) for a complete comparison of the
sample-complexity, run-time and model-size bounds achieved by different works studying 2-sparse
parities.

B Proofs

B.1 Global convergence for SGD on MLPs

For some even number r, consider a ReLU MLP of size r:

f(x; ✓) =
rX

i=1

ui�(w
>
i x+ bi)

Where � is the ReLU activation �(x) = max{x, 0}, w1, . . . , wr 2 Rr⇥n, b 2 Rr, u 2 Rr and we
denote the set of parameters by ✓ = {w1, . . . , wr, b, u}. We denote by u(t)

i , w(t)
i , b(t) and ✓t the

value of the relevant parameters at iteration t of gradient-descent. For brevity, we sometimes denote
wi = w(0)

i , bi = b(0)i , ui = u(0)
i . W.l.o.g., we assume that S = [k], and so y = �[k](x) =

Qk
i=1 xi.

Indeed, since the weights’ initialization we consider is permutation symmetric, this does not limit
the generality of the results. We take ` to be the hinge loss: `(y, by) = max{1� yby, 0}. We use the
following unbiased initialization:

• For all 1  i  r/2, randomly initialize

w(0)
i ⇠ Unif ({±1}n) , u(0)

i ⇠ Unif ({±1}) , b(0)i ⇠ Unif({�1 + 1/k, . . . , 1� 1/k})

• For all r/2 < i  r, initialize

w(0)
i = w(0)

i�r/2, b
(0)
i = b(0)i�r/2, u

(0)
i = �u(0)

i�r/2

We start by computing the population gradient at initialization. Using the fact that `0(0, y) = �y we
get the following:

E
⇥
rwi,j `(f(x; ✓0), y)

⇤
= E

⇥
�yrwi,jf(x; ✓0)

⇤
(5)

= E [�yui1 {wi · x+ bi > 0}xj ] .

For j 2 [k] we have:

E
⇥
rwi,j `(f(x; ✓0), y)

⇤
= �ui E

2

4

0

@
Y

j02[k]\{j}

xj0

1

A 1 {wi · x+ bi > 0}

3

5

For j /2 [k] we have:

E
⇥
rwi,j `(f(x; ✓0), y)

⇤
= �ui E

2

4

0

@
Y

j02[k][{j}

xj0

1

A 1 {wi · x+ bi > 0}

3

5

Finally, we have:

E [rbi`(f(x; ✓0), y)] = �ui E

2

4

0

@
Y

j02[k]

xj0

1

A 1 {wi · x+ bi > 0}

3

5

Denote
gi,j = E

⇥
rwi,j `(f(x; ✓0), y)

⇤
, �i = E [rbi`(f(x; ✓0), y)]

For some function f and some subset S ✓ [n], denote bf(S) = E[f(x)�S(x)].
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Denote LTFw,b(x) = 1{w · x + b > 0} and let Maj(x) = sign (
Pn

i=1 xi) and observe that, if
|b| < 1,

LTFw,b(x) =
1

2
+

1

2
Maj(w � x)

where w � x = (w1x1, . . . , wnxn) 2 {±1}. Since {�S}S✓[n] is a Fourier Basis, we can write
Maj =

P
S✓[n]

dMaj(S)�S and therefore:

LTFw,b(x) =
1

2
+

1

2
Maj(w � x) =

1

2
+

1

2

X

S✓[n]

dMaj(S)�S(w � x)

=
1

2
+

1

2

X

S✓[n]

dMaj(S)�S(w)�S(x)

So, for every S ✓ [n] with |S| � 1 we have dLTFw,b(S) =
1
2
dMaj(S)�S(w) and so |dLTFw,b(S)| =

1
2 |dMaj(S)|.

Lemma 1 (O’Donnell (2014), Section 5.3). Fix some k, and assume that n � 2k2. Then, for every
S ✓ [n] s.t. |S| = k it holds that:

• If k is even: dMaj(S) = 0.

• If k is odd:

c21k
�2/3 

✓
n

k

◆
dMaj(S)2  c22k

�2/3

for some universal constants c1, c2. More precisely,

dMaj(S) = (�1)
k�1
2

�n�1
2

k�1
2

�

�n�1
k�1

� · 2�(n�1)

✓
n� 1
n�1
2

◆

Observe that for all S ✓ [n] s.t. |S| = k it holds that dMaj(S) = dMaj([k]) and denote ⇠k := dMaj([k]).

Therefore, by the previous lemma we get that for every even k the following holds:

⇠2k+1

⇠2k�1


c22(k � 1)2/3

� n
k�1

�

c21(k + 1)2/3
� n
k+1

�  c2
c1

(k + 1)k

(n� k)(n� k + 1)
 8c2

c1

k2

n2
(6)

Also, observe that

Lemma 2 (Fourier gap for majority). Fix some k and assume that n � 4k. Then, Majority has a
�k-Fourier gap at S of size k with �k = 0.03(n� 1)�

k�1
2 .

Proof. First we establish a simple relationship between |⇠k�1| and |⇠k+1|.

|⇠k�1| =

� n�1
2

k
2�1

�

�n�1
k�2

� 2�(n�1)

✓
n� 1
n�1
2

◆

=
n� k

k � 1
·

�n�1
2
k
2

�

�n�1
k

� · 2�(n�1)

✓
n� 1
n�1
2

◆

=
n� k

k � 1
· |⇠k+1|.

Here, the first equation follows from Lemma 1, and the second equation follows by simple algebra
using the following equality:

�m
r

�
= m�r+1

r

� m
r�1

�
.
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Now, we can bound the difference,

|⇠k�1|� |⇠k+1| =
n� 2k + 1

k � 1
· |⇠k+1|

=
n� 2k + 1

k � 1
·

�n�1
2
k
2

�

�n�1
k

� · 2�(n�1)

✓
n� 1
n�1
2

◆

� n� 2k + 1

k � 1
·
✓
n� 1

k

◆�k/2

· e�k · 2
p
2⇡

e2
p
n� 1

� 0.03(n� 1)�
k�1
2 .

Here, the first equality holds from above, the second by Lemma 1, the third inequality holds from
standard approximations of the binomial coefficients, and the last inequality follows from the
following inequalities: n � 2k + 1 � (n � 1)/2 (by assumption on n) and

p
2⇡kk/2

(k�1)ek+2 > 0.03 (by
standard calculus). This gives us the desired result.

Lemma 3. Assume that k is even and that n � 2(k + 1)2. Then, the following hold:

1. If j 2 {1, . . . , k} then:

gi,j = �
1

2
ui⇠k�1 · �[k]\{j}(wi)

2. If j 2 {k + 1, . . . , n} then:

gi,j = �
1

2
ui⇠k+1 · �[k][{j}(wi)

3. �i = 0.

Proof. If j 2 [k] then:

gi,j = �ui E
⇥
�[k]\{j}(x)LTFwi,bi(x)

⇤
= �ui

dLTFwi,bi([k] \ {j})

= �1

2
ui
dMaj([k] \ {j})�[k]\{j}(wi) = �

1

2
ui⇠k�1 · �[k]\{j}(wi)

Similarly, if j /2 [k] we have:

gi,j = �ui E
⇥
�[k][{j}(x)LTFwi,bi(x)

⇤
= �ui

dLTFwi,bi([k] [ {j})

= �1

2
ui
dMaj([k] [ {j})�[k][{j}(wi) = �

1

2
ui⇠k+1 · �[k][{j}(wi)

Finally, we have:
�i = �ui

dLTFwi,bi([k]) = �ui
dMaj([k]) = 0

Lemma 4. Let ⌧ > 0 be some tolerance parameter, fix ✏ 2 (0, 1) and let ⌘ = 1
k|⇠k�1| . Assume that

k is an even number. Fix some w1, . . . , wk 2 {±1}n, b1, . . . , br 2 (�1, 1) and u1, . . . , uk 2 {±1}.
Let bwi = �⌘bgi and bbi = bi � ⌘b�i s.t. kbgi � gik1  ⌧ and kb�i � �ik  ⌧ . Assume the following
holds:

• For all i, j 2 [k] it holds that wi,j = ui · sign ⇠k�1.

• bi = � 1
2 + i+1

k

Then, if ⌧  |⇠k�1|
16k
p

2n log(2k/✏)
and n � 211k4c22 log(2k/✏)

c21
there exists some bu 2 Rk with kbuk1  8k

s.t. f(x) =
Pk

i=1 bui�( bwi · x+bbi) satisfies

E
x
[`(f(x),�[k](x))]  16✏k2n

Additionally, for all i and all x it holds that |�( bwi · x+bbi)|  n+ 1.
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Proof. We start with the following claim.

Claim 1: For all i and for all j 2 [k] it holds that
�� bwi,j � 1

2k

��  ⌧
|⇠k�1| .

Proof: First, observe that by the assumption it holds that for all i, j 2 [k],

ui · �[k]\{j}(wi) = ui ·
kY

j02[k]\{j}

wi,j = ui · (ui · sign ⇠k�1)
k�1 = sign ⇠k�1

Now, from Lemma 3 we have:

gi,j = �
1

2
ui⇠k�1 · �[k]\{j}(wi) = �

1

2
|⇠k�1|

and so
����wi,j �

1

2k

���� =
�����⌘bgi,j �

1

2k

���� =
1

k

�����k⌘bgi,j +
gi,j

|⇠k�1|

���� =
1

k|⇠k�1|
|gi,j � bgi,j | 

⌧

|⇠k�1|

Claim 2: For all i and for all j > k it holds that | bwi,j |  |⇠k+1|+2⌧
2k|⇠k�1|

Proof: Using Lemma 3 we have:

| bwi,j | = ⌘|bgi,j |  ⌘(|gi,j |+ |gi,j � bgi,j |)  ⌘

✓
|⇠k+1|
2

+ ⌧

◆
=

|⇠k+1|+ 2⌧

2k|⇠k�1|

Claim 3: For all i it holds that |bbi � bi|  ⌧
k|⇠k�1|

Proof: Using Lemma 3 we have:

|bbi � bi| = ⌘|bgi,0| = ⌘|gi,j � bgi,j |  ⌘⌧ =
⌧

k|⇠k�1|

Claim 4: Fix � > 0. Let hi be a function s.t. hi(x) = �( 1
2k

Pk
j=1 xj + bi) and bhi a function s.t.

bhi(x) = �( bwi,j · x+bbi). Then, if ⌧  �
2

k|⇠k�1|p
2n log(2k/✏)

and n � 32c22 log(2k/✏)
c21�

2 , the following holds:

1. Px⇠{±1}n

h
|hi(x)� bhi(x)| � �

i
 ✏

k

2. |bhi(x)|  n+ 1

Proof: Let x ⇠ {±1}n, and denote x̃j = bwi,jxj . Denote � = |⇠k+1|+2⌧
2k|⇠k�1| . So, for j > k, x̃j is a

random variable satisfying |x̃j |  �. Furthermore, it holds that E
hP

j>k x̃j

i
= 0. Therefore, from

Hoeffding’s inequality:

P

2

4

������

X

j>k

x̃j

������
� �

r
n log(2k/✏)

2

3

5  2 exp

0

BBB@
�
2

✓
�
q

n log(2k/✏)
2

◆2

n�2

1

CCCA
 ✏

k
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Now, fix some x s.t.
���
P

j>k x̃j

���  �
q

n log(2k/✏)
2 . In this case we have:

|hi(x)� bhi(x)| 

������
1

2k

kX

j=1

xj + bi � bwi · x+bbi

������


kX

j=1

����
1

2k
xj � bwi,jxj

����+

������

X

j>k

bwi,jxj

������
+
���bi �bbi

���

 k⌧

|⇠k�1|
+�

r
n log(2k/✏)

2
+

⌧

k|⇠k�1|

=
⌧(k2 + 1)

k|⇠k�1|
+

|⇠k+1|+ 2⌧

2k|⇠k�1|
·
r

n log(2k/✏)

2

=
⌧
⇣p

2(k2 + 1) +
p
n log(2k/✏)

⌘

p
2k|⇠k�1|

+
|⇠k+1|

p
n log(2k/✏)

2
p
2k|⇠k�1|


⌧
p
2n log(2k/✏)

k|⇠k�1|
+

2
p
2c2
p
log(2k/✏)

c1
p
n

where in the last inequality we use Eq. (6). So, choosing ⌧  �
2

k|⇠k�1|p
2n log(2k/✏)

and n � 32c22 log(2k/✏)
c21�

2

gives the required.

Claim 5: Let h1, . . . , hk be the functions defined in the previous claim. Then, there exists weights u⇤

with ku⇤k1  8k s.t. for f⇤(x) =
Pk

i=1 u
⇤
i hi(x) it holds that f⇤(x) = 2�[k](x) for all x 2 {±1}n.

Proof: For i  k � 2 define u⇤
i = 8k(�1)i+1 and u⇤

k�1 = 6k, u⇤
k = �2k.

Proof of Lemma 4: Choose bu = u⇤. Using Claim 4 and the union bound, w.p. 1�✏ over x ⇠ {±1}n
it holds that for all i 2 [k], |hi(x)� bhi(x)|  �. Therefore, w.p. � 1� ✏

|f(x)� f⇤(x)| =

�����

kX

i=1

u⇤
i (hi(x)� bhi(x))

����� 
kX

i=1

|u⇤
i |
���hi(x)� bhi(x)

���  8k2�

so, choosing � = 1
8k2 we get that, w.p. at least 1�✏ over the choice of x it holds that f(x)�[k](x) � 1.

Additionally, for every x it holds that

|f(x)| 
kX

i=1

|u⇤
i |
���bhi(x)

���  8k2(n+ 1)  16k2n

Therefore, we get:

E
x

⇥
`(f(x),�[k](x))

⇤
 ✏E

x

⇥
`(f(x),�[k](x))|f(x)�[k](x) < 1

⇤

 ✏E
x

⇥
|f(x)||f(x)�[k](x) < 1

⇤
 16✏k2n

Lemma 5. Assume we randomly initialize an MLP using the unbiased initialization defined previously.
Consider the following update:

w(1)
i = (1� �0)w

(1)
i � ⌘0bgi, b(1)i = b(1)i � ⌘0b�i

where

bgi =
1

B

BX

l=1

rwi`(f(x0,l; ✓0), y0,l), b�i =
1

B

BX

l=1

rbi`(f(x0,l; ✓0), y0,l)

Let k be even number. Then, for every ✏, � 2 (0, 1/2), denoting ⌧ = |⇠k�1|
16k
p

2n log(2k/✏)
, if ⌘ = 1

k|⇠k�1| ,

�0 = 1, r � k · 2k log(k/�), B � 2
⌧2 log(4nr/�) and n � 211k4c22 log(2k/✏)

c21
, w.p. at least 1 � 2�
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over the initialization and the sample, there exists bu 2 Rr with kbuk1  8k and kbuk2  8k
p
k s.t.

f(x) =
Pr

i=1 bui�
⇣
w(1)

i · x+ b(1)i

⌘
satisfies

E
x
[`(f(x),�[n](x))]  16✏k2n

Additionally, it holds that k�(W (1) · x+ b(1))k1  n+ 1.

Proof. Note that by the choice of initialization it holds that f(x;W (0)) = 0, and by the assumption
on the loss function `0(f(x;W (0)), y) = �y. Therefore, we get that E

⇥
rwi`(f(x;W

(0)), y)
⇤
= gi

and E
⇥
rbi`(f(x;W

(0)), y)
⇤
= �i.

Claim: with probability at least 1� �,

for all i, j :
���bgi � E

h
rwi`(f(x;W

(0)), y)
i���

1
 ⌧ and

���b�i � E
h
rbi`(f(x;W

(0)), y)
i���  ⌧

(7)

Proof: Fix some i, j and note that by Hoeffding’s inequality,

Pr [|bgi,j � E bgi,j | � ⌧ ]  2 exp
�
�B⌧2/2

�
 �

nr + r

and similarly we get Pr [|b�i � E b�i| � ⌧ ]  �
nr+r . The required follows from the union bound.

Now, assume that Eq. (7) holds. For some random wi ⇠ {±1}n, the probability that wi,j = wi,j0 for
all j, j0 2 [k] is 2�k+1. Additionally, for some fixed i0 2 [k], the probability that bi = � 1

2 + i0

k is 1
2k .

Therefore, for some fixed i 2 [r/2] and i0 2 [k], with probability 1
k·2k�1 , bi = bi+r/2 = � 1

2 + i0

k

and either wi,j = ui sign ⇠k�1 or wi+r/2,j = ui+r/2,j sign ⇠k�1. Taking r � k · 2k log(k/�), we get
that the probability that there is no i 2 [r/2] that satisfies the above condition (for fixed i0) is:

✓
1� 1

k2k�1

◆r/2

 exp
⇣
� r

2k2k�1

⌘
 �

k

Using the union bound, with probability at least 1� �, there exists a set of k neurons satisfying the
conditions of Lemma 4, and therefore the required follows from the Lemma.

We use the following well-known result on convergence of SGD (see for example Shalev-Shwartz
and Ben-David (2014)):
Theorem 8. Let M, ⇢ > 0. Fix T and let ⌘ = M

⇢
p
T

Let F be a convex function and u⇤ 2
argminkuk2M f(u). Let u(0) = 0 and for every t, let vt be some random variable s.t. E

⇥
vt|u(t)

⇤
=

ru(t)F (u(t)) and let u(t+1) = u(t) � ⌘v(t). Assume that kvtk2  ⇢ w.p. 1. Then,

1

T

TX

t=1

F (u(t))  F (u⇤) +
M⇢p
T

We prove the following theorem:
Theorem 4 (SGD on MLPs learns sparse parities; full statement). Let k be an even number. Assume
we randomly initialize an MLP using the unbiased initialization defined previously. Fix ✏ 2 (0, 1/2)

and let T � 29k3rn2

✏2 , r � k·2k log(8k/✏), B � c�1
1 28k7/6n

� n
k�1

�
log(128k3n/✏) log(32nr/✏), n �

211k4c22 log(128k3n/✏)
c21

. Choose the following learning rate and weight decay schedule:

• At the first step, use ⌘0 = 1
k|⇠k�1| , �0 = 1 for all weights.

• After the first step, use ⌘t = 0 for the first layers weights and biases and ⌘t =
4k1.5

n
p

r(T�1)

for the second layer weights, with �t = 0 for both layers.

• Bias terms are never regularized.
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Then, the following holds, with expectation over the randomness of the initialization and the sampling
of the batches:

E

min
t2[T ]

`(f(x; ✓t), y)

�
 ✏

Proof. Let F (u) = Ex

⇥
`(u>�(W (1)x+ b(1)), y)

⇤
and notice that F is a convex function. For every

t, denote

vt =
1

B

BX

l=1

ru(t)`(f(xt,l; ✓t), y) =
1

B

BX

l=1

ru(t)`

✓⇣
u(t)
⌘>

�(W (1)xl,t + b(1)), yl,t

◆

where we use the fact that we don’t update the weights of the first layer after the first step. From the
above we get E[vt|u(t)] = ru(t)F (u(t)).

Now, we will show that w.h.p. there exists u⇤ with good loss. Let ✏0 = ✏
64k2n , �

0 = ✏
8 . Denote

⌧ = |⇠k�1|
16k
p

2n log(128k3n/✏)
= |⇠k�1|

16k
p

2n log(2k/✏0)
. Observe that r � k · 2k log(k/�0), and using the fact

that |⇠k�1| � c1(k � 1)�1/3
� n
k�1

��1 we get

B � 28k2 · n log(128k3n/✏)

|⇠k�1|
log(32nr/�) =

2

⌧2
log(4nr/�0)

and additionally n � 211k4c22 log(2k/✏0)
c21

.

From the above, applying Lemma 5 with ✏0, �0 we get that w.p. 1� ✏/4 there exists u⇤ 2 Rr with
ku⇤k2  8k

p
k s.t. F (u⇤)  ✏/4 and for all i and all x it holds that k�(W (1) · x+ b(1))k1  n+1.

Using this, we get:

kvtk2 
1

B

BX

l=1

k�(W (1)xl,t + b(1)), yl,tk2 
p
r(n+ 1)

So, we can apply Theorem 8 with M = 8k
p
k and ⇢ = 2

p
rn and get that, w.p. 1 � ✏/4 over the

initialization and the first step, it holds that

E
steps 2...T


min

t2{2,...,T}
`(f(x; ✓t), y)

�
 E

"
1

T � 1

TX

t=2

`(f(x; ✓t), y)

#

= E

"
1

T � 1

TX

t=2

F (u(t))

#
 ✏/4 +

16k1.5
p
rnp

T � 1
 ✏/2.

Now, that after the first step we have u(1) = 0 and therefore `(f(x; ✓1), y) = 1, and so we always
have mint2[T ] `(f(x; ✓t), y)  1. Therefore, taking expecation over all steps we get:

E
steps 1...T


min
t2[T ]

`(f(x; ✓t), y)

�
 ✏/2 + ✏/2 = ✏.

The simplified form B = ⌦(nk log(n/✏)) in the main paper comes from the fact that
� n
k�1

�


nk�1/(k � 1)!. This 1/(k � 1)! factor dominates the other poly(k) factors.

B.2 Recoverability of the parity indices from Fourier gaps

Given a network architecture where some neuron has a �-Fourier gap with respect to the target subset
S, we quantify how the indices in S can be determined by observing an estimate of the population
gradient for a general activation function � and wt:
Proposition 9 (Fourier gap implies feature recoverability). For an activation function � : R! R,
let f(x;w) = �(w>x) be the corresponding 1-neuron predictor. Let DS be an (n, k)-sparse parity
distribution. Let g(w) be an estimate14 for the neuron’s population gradient of the correlation loss `:

||g(w)� E
(x,y)⇠DS

[rw`(y, f(x;w))] ||1 < �/2.

14For O(1)-bounded stochastic gradient estimators, O
⇣

logn
�2

⌘
samples suffice to obtain such an estimate.
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Figure 5: Example training curves for the disjoint-PolyNet trained with correlation loss, which is the
setting of Appendix B.3. The left plot shows validation error under population gradient descent with
small step size, approximating the setting of Section B.3.1, and the right plot shows a run of SGD
with batch size 1, as in Section B.4, though with a constant learning rate schedule. Initialization is
i.i.d. standard Gaussian.

Then, for every w such that �0(w>x) has a �-Fourier gap at S, the k indices at which g(w) has the
largest absolute values are exactly the indices in S.

Proof. Let h(x) := �0(w>x). We compute the population gradient, we we call ḡ(w):

[ḡ(w)]i = E
(x,y)⇠DS

[rwi`(y, f(x;w))] = � E
(x,y)⇠DS

⇥
�0(w>x)yxi

⇤

=

8
<

:
E
h
�0(w>x)

Q
j2S\{i} xi

i
i 2 S

E
h
�0(w>x)

Q
j2S[{i} xi

i
i /2 S

=

(
bh(S \ {i}) i 2 S
bh(S [ {i})  bh(S [ {i})� � i /2 S

,

where the inequality in the final i 62 S case is due to the Fourier gap property. Then, it holds that for
all i 2 S we have |gi| > �/2 and for all i /2 S we have |gi| < �/2. Thus, the largest entries of the
estimate g(w) occur at the indices in S, as claimed.

B.3 Global convergence for disjoint-PolyNets

In this section we will develop theory for disjoint-PolyNets trained with correlation loss, as illustrated
in Figure 5. Section B.3.1 will consider optimization with gradient flow, and section B.4 will consider
optimization with SGD at any batch size B � 1.

For any n � 1 and 1  k  n such that n0 := n/k is an integer, let P1, . . . , Pn0 denote (without loss
of generality) the partition Pi := {n0(i� 1) + 1, . . . , n0 · i}. Then, the (n, k)-disjoint-PolyNet is the
neural architecture, with trainable parameters are {wi 2 Rn0}ki=1, which outputs

f(x;w1:k) :=
kY

i=1

hwi, xPii.

B.3.1 Gradient flow analysis

For i, E [rwi`(f(x;w1:k), y)] = 0, so the irrelevant weights remain fixed at initialization. For each
i 2 [k], let v(t)i be the relevant weight in the kth partition.

In gradient flow, the relevant weights evolve according to the following differential equations:

8i 2 [n] : v̇i =
Y

j 6=i

vj
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Lemma 6. Suppose disjoint-PolyNet for k > 2 is initialized such that
Q

i vi(0) > 0, and optimized

with gradient flow. Let v̄a := 1
k

Pk
i=1(vi(0))

2, and v̄g :=
⇣Qk

i=1(vi(0))
2
⌘1/k

. For any b � 0 and
i 2 [k], let Ti(b) := arg supt�0(|vi(t)|  b). Then

Ti(b) �
1

k � 2

⇣
v̄1�k/2
a � (v̄a + b2 � vi(0)

2)1�k/2
⌘
.

Let Ti(1) := arg supt�0(|vi(t)| <1). Then

Ti(1)� Ti(b) 
1

k � 2
(v̄g + b2 � vi(0)

2)1�k/2.

Proof. First, observe that the product of the relevant weights is non-decreasing during gradient flow.

d
⇣Qk

i=1 vi(t)
⌘

dt
=

kX

i=1

@
⇣Qk

i=1 vi
⌘

@vi
· v̇i =

kX

i=1

0

@
Y

j 6=i

vi

1

A
2

> 0

Thus,
Q

i vi(0) > 0 implies that
Q

i vi(t) > 0 for all t.

Observe that
dv2i
dt

= 2viv̇i = 2
kY

j=1

vj = 2
kY

j=1

|vj |.

This implies that for all i, l 2 [t],
dv2i
dt

=
dv2l
dt

. (8)

In other words, the squares of the relevant weights each follow the same trajectory, shifted according
to their initializations. Let q(t) := (vi(t))2 � (vi(0))2, for any i. This quantity evolves as follows:

q̇ = 2
kY

i=1

|vi| = 2

 
kY

i=1

(q(t) + (vi(0))
2)

!1/2

Since q(t) is strictly increasing, its inverse q�1 is well-defined, and we can use the inverse function
theorem to characterize q�1 for all t � 0:

q�1(c) =

Z c

0

1

2

 
kY

i=1

(� + (vi(0))
2)

!�1/2

d�.

We can upper- and lower-bound the integrand by applying Maclaurin’s inequality (see page 52 in
Hardy et al. (1952)):

(� + v̄g)
k 

kY

i=1

(� + (vi(0))
2)  (� + v̄a)

k .

The amount of time it takes for q to reach a value of c is thus:
Z c

0

1

2

 
kY

i=1

(� + (vi(0))
2)

!�1/2

d� �
Z c

0

1

2
(�+v̄a)

�k/2d� =
1

k � 2

⇣
v̄1�k/2
a � (c+ v̄a)

1�k/2
⌘
.

Hence, for any b � 0, for each i, |vi(t)|  b as long as

t  1

k � 2

⇣
v̄1�k/2
a � (v̄a + b2 � vi(0)

2)1�k/2
⌘
.

Meanwhile, the amount of time after q�1(c) it takes for q to explode to infinity is

Z 1

c

1

2

 
kY

i=1

(� + (vi(0))
2)

!�1/2

d� 
Z 1

c

1

2
(� + v̄g)

�k/2d� =
1

k � 2
(c+ v̄g)

1�k/2.
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Substituting c = b2 � vi(0)2, we obtain that the amount of time it takes for |vi| to grow from b to1
is

1

k � 2
(v̄g + b2 � vi(0)

2)1�k/2.

We can upper- and lower-bound q̇ by applying Maclaurin’s inequality (see page 52 in Hardy et al.
(1952)):

2 (q(t) + v̄g)
k/2  q̇  2 (q(t) + v̄a)

k/2 .

When k = 2, solving the LHS and RHS differential inequalities yields:

v̄g(e
2t � 1)  q(t)  v̄a(e

2t � 1).

When k > 2, we obtain:

(v̄�(k/2�1)
g � (k � 2)t)�

1
k/2�1 � v̄g  q(t)  (v̄�(k/2�1)

a � (k � 2)t)�
1

k/2�1 � v̄a (9)

From the lower bound on q(t), we can infer that the relevant weights all explode to infinity by the
following time:

t =
1

(k � 2)
v̄�(k/2�1)
g =

1

(k � 2) (
Q

i vi(0))
1�2/k

From the upper bound, we can infer that for any c > 0, it is the case that q(t)  c so long as

t  1

k � 2

⇣
v̄�(k/2�1)
a � (v̄a + c)�(k/2�1)

⌘
.

Hence, for each i, |vi(t)|  b for all

t  1

k � 2

⇣
v̄�(k/2�1)
a � (v̄a + b2 � (vi(0))

2)�(k/2�1)
⌘
.

Now we analyze the relationship between the relevant weights and the accuracy of the disjoint-
PolyNet.

For y 2 R, let

sign(y) =

8
<

:

1 if y > 0
0 if y = 0
�1 if y < 0

Then define the error of f with parameters w1:k as

err(w1:k) := Pr
x⇠{±1}n

[sign(f(x;w1:k)) 6= �S(x)]

Lemma 7. Let w be any setting of the weights of a disjoint-PolyNet such that
Q

i vi > 0. For ease of
notation, let ui := wi,2:n0 be the irrelevant portion of wi. There is a constant c such that

1

2
� 1

2

kY

i=1

✓
erf

✓
|vi|

kuik2
p
2

◆
+

ckuik1
kuik32

◆
 err(w1:k)  2

kX

i=1

exp

✓
� |vi|2

kuik22

◆

where erf is the Gauss error function erf(y) := 2p
⇡

R y
0 e�⌧2

d⌧ .

Proof. Let zi = x(i�1)n0+1 be the ith relevant coordinate of x, and let z�i = x(i�1)n0+2:in0 be the
irrelevant coordinates in Pi.
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Then we have that the error of f with parameters w1:k is

err(w1:k) = Pr
x

"
sign

 
kY

i=1

w>
i xPi

!
6= �S(x)

#

= Pr
x

"
sign

 
kY

i=1

w>
i xPi

!
= ��S(x)

#
+ Pr

x

"
kY

i=1

w>
i xPi = 0

#

= Pr
x

"
sign

 
kY

i=1

w>
i xPi

!
= ��S(x)

#
+ Pr

x

"
kY

i=1

w>
i xPi = 0

#

= Pr
x

⇥
#{i 2 [k] : sign(vizi + u>

i z
�
i ) = �zi} is odd

⇤
+ Pr

x

"
kY

i=1

w>
i xPi = 0

#

= Pr
z�
1 ,...,z�

k

⇥
#{i 2 [k] : u>

i z
�
i > vi} is odd

⇤
/2

+ Pr
z�
1 ,...,z�

k

⇥
#{i 2 [k] : u>

i z
�
i < �vi} is odd

⇤
/2 + Pr

x

"
kY

i=1

w>
i xPi = 0

#
(10)

= Pr
z�
1 ,...,z�

k

⇥
#{i 2 [k] : u>

i z
�
i > vi} is odd

⇤
+ Pr

x

"
kY

i=1

w>
i xPi = 0

#
(11)

= Pr
z�
1 ,...,z�

k

⇥
#{i 2 [k] : u>

i z
�
i > |vi|} is odd

⇤
+ Pr

x

"
kY

i=1

w>
i xPi = 0
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The indicator random variables 1I[u>
i z

�
i > |vi|] are independent of each other, so the first term in

line 12 can be characterized using the distribution of the parity of a sum of independent Bernoulli
random variables. Let Xi ⇠ Ber(pi) for i 2 [k], and let X =
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i=1 Xi. The generating function for
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by Hoeffding’s inequality, and we are done.

Now we will prove the lower bound on err. We have
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We can bound this expression using the Berry-Esseen theorem (Berry, 1941; Esseen, 1942). Let
� ⇠ N(0, kuik22). Then, the Berry-Esseen theorem states that there is a constant c (which in practice
can be .56) such that for any i 2 [k],

����Przi
[|u>

i z
�
i |  |vi|]� Pr[|�|  |vi|]

���� 
ckuik1
kuik32

and we can use the characterization
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Plugging this into equation 13, we obtain the lower bound on err.

First, we’ll apply Lemma 6 and Lemma 7 to the situation where the wi’s have ±1 initialization. This
generalizes Theorem 6.
Corollary 10. Suppose all the weights in a disjoint-Polynet are initialized randomly in ±1 and
k � 3.

Let T (↵) := arg supt�0(err(w1:k(t)) � ↵. Then, for � 2 (0, 1/2), if
Q

i vi(0) > 0 (which happens
w.p. 1/2),

T (1/2� �)

T (0)
= 1�O((n0)1�k/2 · �2/k�1).

Thus, even for � arbitrarily close to 0, when the input is sufficiently long, the network spends almost
all of training with error above 1/2� �.

Proof. For ±1 initialization,
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so by Lemma 7,
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By Lemma 6, |vi(t)|  b for all i whenever

t  1

k � 2

�
1� b2�k

�
.

Setting
b =

p
⇡n0/2

⇣
�1/k � c(n0)�3/2

⌘
,

we obtain that T (1/2� �) = 1
k�2 (1�O((n0)1�k/2 · �2/k�1)).
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Also by Lemma 6, using the language of that lemma statement, for all i

Ti(1)� Ti(b) 
1

k � 2
· b2�k =

1

k � 2
·O((n0)1�k/2 · �2/k�1).

Once all the relevant weights have exploded to infinity, the error of the network will have zero error,
so the result follows.

Now let us apply Lemma 6 and Lemma 7 to the situation where the wi’s have standard normal
initialization. Again we find that with high probability, the phase of learning with near-trivial
accuracy is much longer than the subsequent period until perfect accuracy, as illustrated by the
left-hand plot in Figure 5. This culminates in the full theorem statement regarding phase transitions
in the loss:
Theorem 6 (Loss plateau for gradient flow on disjoint-PolyNets; full statement). Suppose all the
weights in a disjoint-PolyNet are initialized ⇠ N(0, 1), and k � 3. Then, conditioned on

Q
i vi(0) >

0, with probability 1� 1/poly(n0) over the randomness of the initialization, for � 2 (0, 1/2),
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where T (·) is defined as in Corollary 10.

Proof. By a standard application of the generic Chernoff bound (Wainwright, 2019), for each
i 2 [k], j 2 [n0 � 1], we have

Pr[|ui,j | > ⌧ ]  2e�⌧2/2 for all ⌧ � 0.

Applying the union bound, we obtain
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For each i, kuik22 follows a chi-squared distribution with n0 � 1 degrees of freedom. By Laurent and
Massart (2000), for any ⌧ � 0,

kuik22 2 [(n0 � 1)� 2
p
(n0 � 1)⌧ , (n0 � 1) + 2

p
(n0 � 1)⌧ + 2⌧ ] w.p. � 1� 2e�⌧ .

Hence, w.p. � 1� ✏/2,
8i : kuik2 =

p
n0 +O(

p
log(k/✏)) (15)

With probability 1� ✏ both kuik1 and kuik2 are bounded as above, in which case we obtain that for
✏ = 1/poly(n0, k), and for some c1, c2 > 0,

kuik1
kuik32


c1
p
log(n0k)

⇣p
n0 + c2

p
log(n0k)

⌘3  Õ
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Plugging this into Lemma 7 gives us

err(w1:k(t)) =
1

2
� 1

2

kY

i=1

✓
erf

✓
|vi(t)|
kuik2

p
2

◆
+O

✓
kuik1
kuik32

◆◆

� 1

2
� 1

2

kY

i=1

✓
Õ
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Thus, we can choose b = ⌦̃(�1/k
p
n0) such that if vi(t)  b for all i, then err(w1:k(t)) � 1

2 � �.
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By Lemma 6, for all i,
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By the Chernoff bound, maxi |vi(0)| 
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Also by Lemma 6,
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Combining Equation 16 and Equation 17, we obtain the desired statement.

B.4 Global convergence and phase transition for gradient flow on disjoint-PolyNets

In this section we will analyze the training of a disjoint-PolyNet using SGD with online (i.i.d.)
batches. We will show a convergence result for the 0-1 error of the learned classifier.
Theorem 7 (SGD on disjoint-PolyNets learns disjoint parities; full statement). Assume we randomly
initialize the disjoint-PolyNet with weights drawn uniformly from {±1}. Fix ✏ 2 (0, 1/2) and run
SGD at any batch size B � 1 for T � 6 log(2nT/�) log(2k/✏)(3n0 � 2)2k�1 iterations. There
exists an adaptive learning rate schedule, such that, with probability 1/2 over the randomness of the
initialization and 1� � over the sampling of SGD, the following holds:

err
⇣
w(T+1)

1:k

⌘
 ✏.

Proof. For simplicity of presentation, we will assume B = 1. Let the sample at iteration t be
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Then, for every t < T and i, j, by the Azuma-Hoeffding inequality, with probability 1 � �
nT ,

|s(t)i,j |  1/2. By the union bound, w.p. at least 1 � �, for every t < T and all i, j it holds that
|s(t)i,j |  1/2. Let us assume this holds.
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Claim 11. For all t  T + 1, for j > 1, |w(t)
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Figure 6: Additional training curves (on the (50, 3)-parity problem, except the first row); full details
are in Appendix D.1.6. 1st row: The same architecture, initialization, and training algorithm (a
width-100 ReLU MLP in this case), without an explicit sparse prior, adapts to the computational
difficulty parameters n, k. 2nd row: Our positive empirical results hold over a wide range of batch
sizes B, all the way down to B = 1. Training is unstable (more outliers) at very large and very
small batch sizes. 3rd row: Even the least overparameterized neural networks, which are barely
wide enough to represent parity, converge with reasonable probability (sometimes failing to reach a
global minimum). 4th row: Larger models (width-1000 MLPs and demb = 1024 Transformers) are
robust to a wide range of batch sizes. Note the lack of plateaus in setting (vi), which is revisited in
Appendix C.8.

Using Lemma 7, we have with probability 1� �,

err(w(T+1)
1:k )  2k exp

✓
� (↵+ 1)2

9(n0 � 1)

◆
= ✏.

C Additional figures, experiments, and discussion

This section contains our unabridged empirical results, visualizations, and accompanying discussion.
Additional example training curves (like the assortment in Figure 1 (left)) are shown in Figure 6;
more examples can be found in the subsections below.

Convergence times, success probabilities, and scaling laws. We first present the full empirical
results outlined in Section 3 of the main paper. Figure 7 shows convergence times tc on small
parity instances for all of the architecture configurations enumerated in Section 3.1. In some of
these settings, tc exhibits high variance due to unlucky initializations (see Figure 8); thus, we report
10th percentile convergence times. Figure 9 gives coarse-grained estimates for how tc scales with
(n, k), based on small examples. For selected architectures, Figure 10 shows how these convergence
times scale with n and k more precisely: for small n, power law relationships tc / n↵·k (for small
constants ↵) are observed for all configurations. Note that for larger n, the exponent (i.e. the slope in
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Figure 7: 10th percentile convergence times tc of SGD (with n = 30, hinge loss, uniform initialization,
and best learning rate ⌘ 2 {1, 10�1, 10�2, 10�3}), for various architectures, parity degrees k, and
batch sizes B. See Appendix D for full details.

the log-log plot) increases: with a constant learning rate and standard training, the n⇥(k) does not
continue indefinitely. All additional details are in Appendix D.

Guide to this section. The remainder of Appendix C expands on the various discussions and figures
from Sections 4 and 5.

• Appendix C.1 gives experimental evidence that Fourier gaps are present at iterates wt and initializa-
tions w0 other than sign vectors, as well as for activation functions other than ReLU. This suggests
that the feature amplification mechanism is robust, and illuminates directions for strengthening the
theoretical results.

• Appendix C.2 discusses how the building blocks of deep learning (activation functions, biases,
initializations, learning rates, and batch sizes) play multiple, sometimes conflicting roles in this
setting.

• Appendix C.3 provides additional white-box visualizations of hidden progress from Figure 3.
• Appendix C.4 explores the implications of the feature amplification mechanism for scaling model

size– namely, unlike random search, large width does not impart parallel speedups.
• Appendix C.5 shows that our results hold in the finite-sample setting (allowing for multiple passes

over a training set of size m). In particular, we show that in low-data regimes, the models exhibit
the grokking phenomenon.

• Appendix C.6 extends our results to noisy parities (which comprise the true “emblematic
computationally-hard problem”).

• Appendix C.7 introduces a counterexample for “layer-by-layer learning”, using parity distributions
whose degrees are higher than those of the individual layers’ polynomial activations. Preliminary
experiments show that standard training works in this setting.

• Appendix C.8 presents examples of training curves for wide polynomial-activation MLPs, where,
unlike the other settings, there is no initial plateau in the model’s error.

C.1 Fourier gaps at initialization and SGD iterates

Proposition 9 shows that if the function x 7! �0(w>
0 x) has a Fourier gap at S, then S can be

identified from a batch gradient at initialization w0 with B = O(1/�2) samples. Our end-to-end
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Figure 8: Percentage of converged runs (tc < 105) out of 25 random trials, with the same architectures
and training parameters as Figure 7. With sufficiently large batch sizes, training is extremely robust
in settings (i) through (xv).

Figure 9: Coarse scaling estimates for the 10th percentile convergence time of SGD (with hinge loss,
uniform initialization, and best learning rate) on every architecture: c,↵ such that tc  c · (n� n0)↵

on small parity instances n 2 {10, 20, 30}, k 2 {2, 3, 4}. Missing entries denote cases where < 10%
of trials were convergent for any n (see Figure 8). Boxes are colored according to ↵. See Appendix D
for full details.
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Figure 10: Finer-grained plots of convergence times for selected architecture configurations, for
n 2 {10, 11, . . . , 39, 40} and k 2 {2, 3, . . . , 8}. Medians over 1000 runs are shown, with 95%
bootstrap confidence intervals. Top row: standard MLP configurations (i) through (vi). Bottom row:
Miscellaneous settings (1-neuron networks; Transformers; larger n). For details on each setting, see
Appendix D.1.7.

result (Theorem 4) requires ReLU activations and sign vector initialization, because the Fourier gap
condition (Definition 1) arises from exact formulas for the Fourier coefficients of the majority function.
Stronger end-to-end theoretical guarantees would follow from analogous Fourier gaps in more general
population gradients. This requires x 7! �0(w>x) to satisfy these conditions simultaneously:

• Fourier concentration: upper bounds on the degree-(k+1) coefficients bf(S [ {i}), for i 62 S. The
term is borrowed from Klivans et al. (2004), who use upper bounds on Fourier coefficients of LTFs
to approximate them (thus, learn halfspaces) with low-degree polynomials.

• Fourier anti-concentration: lower bounds on the degree-(k � 1) coefficients bf(S \ {i}), for i 2 S.

A natural question is: which Boolean functions, other than majority, satisfy the �-Fourier gap property
at S, for � � n�⌦(k)?

We present some numerical evidence for large Fourier gaps in functions x 7! �0(w>x) other than
majority, which arise from gradients of architectures other than ReLU MLPs with sign initialization.
This shows that the mechanism of feature emergence is empirically robust in settings not fully
explained by our current theory. Establishing corresponding theoretical guarantees would enable
stronger end-to-end global convergence guarantees for MLPs and other architectures.

In these experiments, population gradients were computed by brute force integration over all 2n
Boolean inputs x 2 {±1}n. In all cases, for various choices of �, w, we measure a slightly relaxed
notion of Fourier gap � in the population gradient:

��,k(w) := max
i2[k]

|gi|�max
i 62[k]

|gi|, g := E[yx�0(w>x)].

If � > 0, then one15 coordinate from the parity can be identified from O
⇣

logn
�2

⌘
samples of the

gradient at w.

Random LTFs. For ReLU activations and symmetric Bernoulli (i.e. random sign) initialization
wi ⇠ Unif({±c}n), the Fourier coefficients are the same as those of majority; thus, there is a Fourier
gap of � � n�⌦(k) at every set S (and the same is true of �). We probe the Fourier gaps of linear
threshold functions (LTFs) under other ubiquitous initializations: i.i.d. uniform and Gaussian. These
are shown in Figure 11, which indicates (at least for small n, k) that the Fourier gap is comparable to
that of majority with non-negligible probability.

15Replacing the first max in the definition of � with min would give us the same notion of Fourier gap as
Definition 1: if all the relevant coordinates are larger than all of the irrelevant ones, estimating the population
gradient allows us to recover the relevant coordinates.
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Figure 11: Distributions of exact Fourier gaps ��,k(w) when � = ReLU, and w is an i.i.d. {uniform,
Gaussian} random vector. These are derived from the Fourier coefficients of the corresponding
random LTFs, computed here in exponential time for n = 15.

Figure 12: Numerical evidence for Fourier gaps beyond random LTFs. Left: Fourier gaps of
exact population gradients EDS [yxi sin(w>x/

p
n)] induced by sinusoidal activations, for random

initializations w. In these small cases, they are comparable the the Fourier gaps of majority (red
dashed line). Right: Fourier gaps of a sinusoidal neuron’s population gradients along the SGD
optimization path (10 trials shown). The Fourier gap is consistently positive at initialization, but
somewhat smaller than that of majority (red dashed line). Interestingly, it amplifies through the course
of training.

Random non-LTFs. The successful convergence of architectures with smoother activations (in
the parity setting and beyond) motivates the question of whether large Fourier gaps are present in
population gradients corresponding to functions other than LTFs. Figure 12 (left) shows that this is
the case for sinusoidal activations.

Boolean functions along the SGD path. Finally, to further close the gap between Theorem 4 and
the empirical results, it is necessary to address the fact that SGD accumulates gradients with respect
to time-varying iterates, while our analysis approximates this using a large-batch gradient at a static
iterate w0. In fact, SGD seems to help in some cases: Figure 12 (right) shows that when training a
sinusoidal neuron, SGD amplifies the initial Fourier gap.

C.2 Counterintuitive roles of the building blocks of deep learning

Even in this simple problem setting, the simultaneous computational and statistical considerations
lead to counterintuitive consequences for the optimal configurations of architectures and algorithms
for this setting. We encountered the following, in the search for architecture configurations for the
empirical study:

• Activation functions. This mechanism of features emerging via Fourier gaps (see Definition 1)
is strongest with non-smooth activations such as the ReLU, whose derivatives are discontinuous
threshold functions. This is an orthogonal consideration to representational capacity and mitigation
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of local minima (under which one might conclude that degree-k polynomial activations are optimal).
In summary, in feature learning settings where the Fourier gaps and low-complexity solutions are
simultaneous relevant, there is a sharpness-smoothness tradeoff for the activation function.

• Biases. The symmetry of the majority function (as well as all unbiased LTFs) causes its even-degree
Fourier coefficients to be zero; thus, certain variants of the setups in Section 3 fail for odd k. Bias
terms (trainable or fixed) are necessary to break this symmetry, in theory and practice. Simultane-
ously, biases serve the more conventional role of shifting the loss surface; see Section D.1.2 for
how this affects the details of how the biases were chosen in the experiments.

• Initializations. The role of the initialization distribution is similarly twofold in this setting: w0

should be close to the desired solution w⇤, but it must also be selected such that SGD will
successfully amplify the Fourier gap. A third consideration, which we do not attempt to study
in this work, is that multiple randomly-initialized neurons will tend to learn the correct features
at different times (see the weight trajectory visualizations in Figure 3 and Figure 13, as well the
staircase-like training curves seen for MLPs in Figure 1 (left)). We expect this symmetry breaking
phenomenon to be present in more complex feature learning settings. Finally, as shown in the
training curves from setting (vi) in Figure 6, and in more detail in Appendix C.8, the choice of
activation function influences the qualitative behavior of the training curves: namely, whether the
plateaus disappear at large widths and batch sizes.

• Batch sizes and learning rates. The empirical and theoretical results both suggest that SGD uses
independent samples to gradually amplify a signal containing the correct features in the initial
population gradient of the correlation

�
rw E[�yxi�0(w>x)]

�
|w=w0 . However, it would be truer

to this mechanism to stay at the initialization w0 until the algorithm has accumulated enough data
to discern the correct indices (equivalently, scale up the batch size); in contrast, standard training
takes gradients with respect to wt along the SGD path. We hypothesize that the bias incurred
by this drifting wt (and thus drifting population gradient) accounts for the degradations seen in
Figure 2 (right) and Figure 10. However, Figure 12 (right) shows that the movement of SGD can
be helpful, amplifying the Fourier gap.

C.3 Hidden progress measures

In this section, we provide an expanded discussion and plots for the investigations outlined in Figure 3
and the “hidden progress measures” section in Section 5.

For a neural network training pipeline which outputs a sequence of iterates ✓0, . . . , ✓T 2 ⇥, we
define a progress measure ⇢ : ⇥! R to be any function of the training algorithm’s state16 which is
predictive of the time to convergence (i.e. conditioned on ✓t, the random variables ⇢ and tc � t are
not independent). By this definition, the only algorithms which have no progress measures are those
whose convergence times tc are memoryless (independent of ✓t).

Note that many trivial progress measures exist: an example to keep in mind is that for the algorithm
which exhaustively enumerates over a deterministic list of hypotheses (say, the possible k-element
subsets S in lexicographical order) and terminates when it finds the correct one, the current iteration
t is a progress measure. Thus, the purpose of demonstrating hidden progress measures ⇢ is not to
provide further evidence that SGD finds the features using Fourier gaps. Rather, it is to (1) further
refute the hypothesis of SGD performing a memoryless Langevin-like random search, and (2) provide
a preliminary exploration of how progress can be quantified even when the natural metrics of loss
and accuracy appear to be flat.

Fourier gaps over time. The Fourier gap visualizations in Section C.1 already provides an example
of a quantity which varies continuously as the model trains, despite no apparent progress in the loss
and accuracy curves. However, none of our theoretical analyses capture the empirical observation
that this quantity tends to amplify over time. Below, we consider other quantities which reveal hidden
progress in parity learning, which are more straightforward and closer to our analyses.

Weight movement. The most direct observation of hidden progress simply comes from the move-
ment of the neurons’ weights at the relevant indices: that is, for a single neuron’s weights wt 2 Rn,

16In addition to the model’s parameters, the full state of the training procedure should also include the auxiliary
variables defined by the optimization algorithm; two ubiquitous ones in deep learning are the momentum vector
and the adaptive preconditioner. Here, we only consider vanilla SGD, which maintains no auxiliary variables.
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Figure 13: Supplementary plots for visualizations of the optimization trajectory wt, and the hidden
progress measure ⇢(w0:t). In the MLP plots, the single scalar ⇢ is the1-norm of the entire first
layer W , and weights are color-coded by row (i.e. neuron). With small batch sizes B 2 {1, 4},
per-iteration losses are averaged over a short window (lengths 16 and 4, respectively).

the quantity ⇢([wt]i) : i 2 S. In the main paper, Figure 3 (left, center) directly visualizes the evolu-
tion of the weights wt for a single sinusoidal neuron (with a bias, but no second layer). Figure 13
supplements these plots from the main paper with additional plots of weight trajectories, at different
batch sizes B, as well as a width-10 MLP architecture. As seen in these plots, progress only becomes
visible in the loss once the relevant weights become larger than all of the irrelevant weights.

`1 path length. Finally, we present an example of a single measurement of the optimization path
which captures hidden progress in this setting, which can be plotted alongside loss and accuracy
curves. For any iterates of a neuron’s weights wt 2 Rn, we choose the1-norm of the movement
from initialization: ⇢(w0:t) := ||wt � w0||1. We present a brief intuitive sketch of the motivation
for this choice of ⇢(·), and some additional visualizations.

From the theoretical analysis, under the approximation r`(wt) ⇡ r`(w0) (so that feature learning
is performed by estimating the initial population gradient to high precision), we can think of the i-th
coordinate of wt as a biased random walk with constant variance �2; the Fourier gap condition entails
that biases �i of these random walks are large when i 2 S. Then, this choice of ⇢ is an estimate for
the drift term t ·maxi |�i|, which is larger than the �

p
t contribution of the variance for sufficiently

large t.

This progress measure is shown alongside the loss curves in Figure 13, in red. We do not attempt to
characterize the dynamics of ⇢; we only note that they are clearly distinguishable from the maximum
of n unbiased random walks, even when SGD appears to make no progress in terms of loss and
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Figure 14: Number of iterations for MLPs (with standard initialization and training) to converge
on sparse parity problems, in terms of width r. Boxes denote interquartile ranges over 1000 runs;
whiskers denote ±1.5·IQR;⇥markers denote minimum and maximum outliers. Underparameterized
models (r < k) are shown in red, and considered “converged” at 55% accuracy. Scaling r this way
does not lead to r⇥ parallel speedups, like the expected success time for r copies of random search
(shown in green for comparison).

accuracy. Studying hidden progress measures in deep learning more quantitatively, as well as in more
general settings, presents a fruitful direction for future work.

C.4 Convergence time vs. width

We provide supplementary plots for the experiment outlined in Figure 4 (left), which probes whether
extremely large widths (r � nk) afford factor-r parallel speedups of the parity learning mechanism
(as one would expect from random search). On 3 parity instances n 2 {30, 40, 50}, k = 3, we varied
the width r 2 {1, 2, 3, . . . , 9, 10, 30, 100, 300, . . . , 106, 3 ⇥ 106}, keeping all other parameters the
same (B = 128, ⌘ = 0.1).

Results. We did not find evidence of such parallel speedups over 1000 runs in each setting; see
Figure 14. This serves as further evidence that the mechanism by which standard training solves
parity is best understood as deterministic and sequential, rather than behaving like random search
over size-k subsets. A benefit of width appears to be variance reduction: the upper tail of long
convergence times is mitigated by a large number of randomly-initialized neurons.

C.5 Learning and grokking in the finite-sample case

We provide some supplementary plots for the experiments outlined in Figure 4 (right). In these
settings, a fixed architecture (width-100 MLP with ReLU activations) is trained with minibatch SGD
in an otherwise fixed configuration (hinge loss, learning rate ⌘ = 0.1, batches of size B = 32) on a
finite training sample of size m. We also vary a weight decay parameter �.

As shown in Figure 15, the weight decay parameter � modulates a delicate computational-statistical
tradeoff: it improves generalization (expanding the range of m for which training eventually finds
the correct solution), but the model fails to train at large values of �. For small m and appropriately
tuned �, we observe grokking: the model initially overfits the training data, but finds a classifier that
generalizes after a large number of iterations.

C.6 Learning noisy parities

The other empirical results in this work focus on noiseless parity distributions DS , to reduce the
number of sources of variance and degrees of freedom. However, the setting of random classification
noise is important for several reasons. In this section, we briefly demonstrate that our results extend to
this case. Let D(✏)

S denote the (n, k, ✏)-noisy parity distribution, defined by flipping the labels in the
(n, k)-parity distribution DS independently with probability 1

2 � ✏. Note that when ✏ = 0, the labels
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Figure 15: Supplementary plots for the finite-sample setting. The same configuration (width-100
ReLU MLP, B = 32, ⌘ = 0.1) varying the sample size m (decreasing from left to right) and weight
decay � (increasing from top to bottom). When m is sufficiently large (much larger than the statistical
threshold ⇥(k log n)), generalization error is negligible. When m is too small, the model fails to train.
In between, we observe eventual convergence to the correct solution, with training curves exhibiting
the grokking phenomenon. Weight decay governs a statistical-computational tradeoff in this setting:
larger � improves generalization, but can cause optimization to fail (bottom row).

are completely random (thus, S cannot be learned). By a standard PAC-learning argument, when
0 < ✏  1

2 , the statistical limit for identifying S from i.i.d. samples from DS scales as ⇥
⇣

k logn
✏2

⌘
.

Motivations. First, learning parities from noisy samples is the true “emblematic computationally-
hard distribution”. Without noise, there is a non-SQ algorithm which avoids the exponential-in-k
computational barrier: Gaussian elimination can identify S in O(n3) time and ⇥(n) samples. Second,
viewing parities as an idealized setting in which to understand training dynamics, resource scaling,
and emergence in deep learning, it is important to see that this phenomenon is robust to label noise.

Theory. It is easy to incorporate label noise into the theoretical analysis, which works with correla-
tions of the form EDS [y f(x)]; each coordinate of the population gradient of the correlation loss is a
quantity of this form. In the noisy case, these quantities are replaced with

E
(x,y)⇠D(✏)

S

[y f(x)] = ✏ · E
(x,y)⇠DS

[y f(x)].

In particular, when architecture’s population gradient has a Fourier gap with parameter � in the
noiseless case implies a Fourier gap with parameter ✏ · �.

Experiments. We find that the experimental findings are robust to label noise, in the sense that
models are able to obtain nontrivial (and sometimes 100%) accuracy; see Figure 16 for some training
curves under various settings of ✏. This provides concrete evidence against the (already extremely
dubious) hypothesis that neural networks, with standard initialization and training, learn noiseless
parities by implicitly simulating an efficient algorithm such as Gaussian elimination. Note that with a
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Figure 16: Training curves (over 5 random seeds) for a width-100 ReLU MLP on noisy (50, 3, ✏)-
parity learning problems at various batch sizes B and noise levels (flipping labels with probability p,
so that ✏ = 1� 2p). The models learn the features and converge successfully (measured by accuracy
on the noiseless distribution), even with 49% of labels flipped randomly (i.e. ✏ = 0.01). This is a
preliminary illustration that the phenomena investigated in this paper are robust with respect to i.i.d.
label noise. Note that the scale of t is much larger for small batches and high noise.

constant learning rate (here, ⌘ = 0.1) and label noise, the iterates of SGD do not always converge to
100% accurate solutions.

C.7 Counterexample for layer-by-layer learning

Notation. Consider an L-layer MLP with activation �, parameterized by weights and biases

✓ = (W1, b1, . . . ,WL�1, bL�1, u),

and defined by
fmlp(x; ✓) := (fL � fL�1 � · · · � f2 � f1)(x),

where fi denotes the function z 7! �(Wiz + bi) for 1  i  L� 1, and fL denotes z 7! u>z. The
shapes of the parameters Wi, bi, u are selected such that each function composition is well-defined.
Let the intermediate activations at layer i be denoted by

zi(x; ✓) := (fi � . . . � f1)(x).

Finally, ri (the width at layer i) refers to the dimensionality of zi as defined above.

Construction where layer-by-layer learning is impossible. Notice that when � is a degree-2
polynomial (say, �(z) = z2), an L-layer MLP can represent parities up to degree 2L�1– for example,
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a 3-layer MLP (which composes quadratic activations twice) can represent a 4-sparse parity as a
2-sparse parity of 2-sparse parities. However, Equation (2) implies the following:

• An individual layer cannot represent a parity of k > 2 inputs.
• The population gradient (as in Equation (5) is zero (since every coordinate of the gradient is the

correlation between a k-wise parity and a polynomial of degree 2).

Thus, this setting serves as an idealized counterexample for layer-by-layer learning: if SGD succeeds
on parities with higher degree than the architecture’s polynomial activations, it must do so by an
end-to-end mechanism. Intuitively, earlier layers can only make progress by knowing how their
outputs will be used downstream. Concretely, consider the population gradient of the correlation
loss, with respect to a first-layer neuron’s weights w := (W1)j,:. With layer-by-layer training, this
gradient contains no information:

rw E[�yxi �
0(w>x)| {z }
degree 1

uj ] = 0.

However, in end-to-end training, the presence of downstream layers removes this barrier:

rw E
h
� yxi �

0(w>x)| {z }
degree 1

@fL � . . . � f2
@(z1)j| {z }

degree 2L�2 � 1

i
,

giving the gradient greater representation capacity (in terms of polynomial degree). The question
remains of whether end-to-end training works in this setting, which we resolve positively in small
experiments.

Results: end-to-end training works empirically. We empirically observed successful training (to
100% accuracy) in a few settings (with SGD, learning rate ⌘ = 0.01, batch size B = 32, and default
uniform initialization as described in Appendix D.1):

• L = 3, n 2 {10, 20, 30}, k 2 {1, 2, 3, 4}. Small widths suffice: (r1, r2) = (2, 1). Over 10 random
seeds, all models converged within 20000 iterations.

• L = 4, n 2 {10, 20, 30}, k 2 {1, 2, 3, 4, 5, 6}. Widths were chosen to be slightly larger for
stability: (r1, r2, r3) = (10, 10, 1). Over 10 random seeds, all models converged within 50000
iterations. Additionally, models trained on (n, k) 2 {(10, 7), (20, 7), (30, 7), (10, 8)} converged
within 500000 iterations.

As a sanity check, the models failed to converge in experimental setups where k > 2L�1: (L =
2, k � 3) and (L = 3, k � 5).

Discussion. This construction serves as a simple counterexample to the “deep only works if shallow
is good” principle of Malach and Shalev-Shwartz (2019), demonstrating a case where a deep network
can get near-perfect accuracy even when greedy layerwise training (e.g. (Belilovsky et al., 2019))
cannot beat trivial performance. It remains to characterize these positive empirical results theoretically,
as well as to investigate whether there are pertinent analogues in real data distributions.

C.8 Lack of plateaus for wide polynomial-activation MLPs

An interesting qualitative observation from the training curves in Figure 6 is that the validation
accuracy curves in setting (vi) (width-1000 polynomial-activation MLPs) do not follow the same
“plateau” or ”staircase” pattern as the others. Figure 17 shows a few additional examples of training
curves for polynomial-activation MLPs, varying the width r and batch size B. We find that the rate of
descent of the validation error increases with both of these parameters; note that this does not occur
with ReLU activations (where there are sharp phase transitions between plateaus at all batch sizes).

This constitutes an exception to this paper’s theme of “hidden progress” behind flat loss (or error)
curves: with enough overparameterization and “over-sampling”, the continuous progress of SGD
in this setting is no longer hidden, and manifests in the training curves. This phenomenon seems
to be specific to certain activation functions (i.e. xk but not ReLU); we leave it for future work to
understand why and when it occurs, as well as potential practical implications.
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Figure 17: Additional training curves for polynomial-activation MLP architectures (iv), (v), (vi), on
the (50, 3)-sparse parity problem. Unlike the other architectures, these settings exhibit continuous
progress when the width r and batch size B are large.

D Details for all experiments

D.1 Deep learning configurations

Losses. Our “robust space” of empirical results use the following loss functions:

• Hinge: `(y, by) := (1� yby)+.
• Square: `(y, by) := (y � by)2.

• Cross entropy: `(y, by) := � log eyby

1+eyby .

Additionally, the theoretical analysis considers the correlation loss `(y, by) := �yby.

In the configurations corresponding to all of the figures and convergence time experiments, we used
the hinge loss. This was a relatively arbitrary choice (i.e. they appeared to be interchangeable upon
running small experiments); an advantage of the hinge and square losses over cross entropy is that for
architectures that can realize the parity function, there is a zero-loss solution with finite weights.

Initializations. Our empirical results use the following i.i.d. weight initializations:

• Uniform on the interval [�c, c], where the scale c is chosen for all affine transformation parameters
using the “Xavier initialization” convention (Glorot and Bengio, 2010). The experiments are quite
tolerant to the particular choice of c (as these are not deep networks); this choice, which is the
default in deep learning packages, emphasizes that our positive empirical results hold under a
standard initialization scheme.

• Gaussian with mean 0 and variance �2, selected using the “Kaiming initialization” convention (He
et al., 2015).

• Bernoulli (i.e. random sign) initialization: the discrete distribution Unif({�c, c}), for the same
choice of c as for the uniform distribution.

D.1.1 2-layer MLPs

We consider 2-layer MLPs f(x;W, b, u) = u>�(Wx+ b) for two choices of activations:
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Figure 18: Visualizations of all activation functions considered in this work. As discussed in
Section D.1.2, care must be taken to ensure that the architectures can realize sparse parities with the
same bias b (in particular, b = 0) across varying k. Multiple k-dependent displacements are shown
for the1-zigzag and sinusoidal activations.

• ReLU: �(z) := (z)+ = max(0, z).
• Degree-k polynomial: �(z) := zk.

In both cases, whenever r � k (and, in the case of polynomial activations, choosing the degree to
be k), there exists a width-r MLP which can represent k-sparse parities: for all (n, k) and |S| = k,
there is a setting of W, b, u such that f(x;W, b, u) = �S(x).

Note that if the output f(x; ✓) is a degree-k0 < k polynomial in x (e.g. an MLP with �(z) = zk
0

activations), the architecture is incapable of representing a parity of k inputs. In fact, it is incapable of
representing any function that has a nonzero correlation with parity; this follows from orthogonality
(Equation (2)).

D.1.2 Single neurons

To explore the limits of concise parameterization for architectures capable of learning parities, we
propose a variety of non-standard activation functions which allow a single neuron to learn sparse
parities. These constructions leverage the fact that the parity is a nonlinear function of the sum of its
inputs w>

S x, where wS :=
P

i2S ei.

k-zigzag activation. �(·) is the piecewise linear function which interpolates the k + 1
points {(k,+1), (k � 2,�1), (k � 4,+1), . . . , (�k + 2,±1), (�k,⌥1)} with k linear regions
{(�1,�k], [�k,�k + 2], . . . , [k � 2, k], [k,+1)}. Then, �(w>

S x) = �S(x).

Oscillating polynomial activation. �(·) is the degree-k polynomial which interpolates the same
points as above.

1-zigzag activation. The infinite extension of the zigzag activation is the triangle wave function
�(·) which linearly interpolates the infinite set of points

S
i2Z{(2i,+1), (2i + 1,�1)}. This can

express parities of arbitrary degree. The +1 and �1 can be swapped (resulting in an activation
which is equivalent when shifted by a bias term). However, in our experiments, we choose the sign
convention depending on k such that �(w>

S x) = +1. This allows different convergence time curves
to be more directly comparable across different k, since it removes the effects of the bias of the global
minimizer alternating with k.

Sinusoidal activation. �(z) := sin(z). The sinusoidal neuron sin(w>x + b) can also express
parities of arbitrary degree, since it can interpolate the same set of points as the1-zigzag activation.
In the experiments, we pick a shift � and use the activation �(z) := sin(⇡2 z + �), such that �(z)
interpolates the same points as the sign convention selected for the 1-zigzag activation. In the
experiments in Section 3, the sinusoidal activation is additionally scaled by a factor of 2 (z 7! �(2z));
this is interchangeable with scaling the learning rate and initialization, and is done to obtain more
robust convergence in the particular setting of (n, k) = (50, 3).
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Figure 18 visualizes all families of activations considered in this paper.

D.1.3 Parity Transformer

The Transformer experiments use a slightly simplified version of the architecture introduced in
(Vaswani et al., 2017). In particular, it omits dropout, layer normalization, tied input/output embedding
weights, and a positional embedding on the special [CLS] token. Including these does not change
the results significantly; they are all present in the preliminary findings in (Edelman et al., 2021) (in
which an “off-the-shelf” Transformer implementation successfully learns sparse parities). We specify
the architecture below.

Our Parity Transformer has the following hyperparameters: sequence length n, token embedding
dimension demb, attention embedding dimension dattn, feedforward embedding dimension dmlp, and
number of heads H . Its trainable parameters (together denoted by ✓) are:

• Token embeddings E�1, E+1, E[CLS] 2 Rdemb and position embeddings P1, . . . , Pn 2 Rdemb . Let
✓emb denote this subset of parameters.

• Attention head matrices: W [h]
Q ,W [h]

K ,W [h]
V 2 Rdemb⇥dattn and W [h]

out 2 Rdattn⇥demb , for h =
1, . . . , H . Let ✓attn denote this subset of parameters.

• MLP weights and biases: W1 2 Rdmlp⇥demb , b1 2 Rdmlp ,W2 2 Rdmlp⇥demb , b2 2 demb. Let ✓mlp

denote this subset of parameters.
• Classification head: u 2 Rdemb .

Then,
ftf(x; ✓) := u> (fmlp(fattn(femb(x; ✓emb); ✓attn); ✓mlp)) ,

where these submodules are defined by

• Embedding femb : {±1}n ! R(n+1)⇥demb : femb(x; ✓emb)i,: := Exi + Pi for i 2 [n]. We will
include an the extra index [CLS], for which femb(x; ✓emb)[CLS],: := E[CLS] (with no positional
embedding). [CLS] stands for “classification”, as in “use the output at this position to classify the
sequence”. This is a standard construction which makes the classifier permutation-invariant.

• Attention block fattn : R(n+1)⇥demb ! Rdemb :

fattn(X; ✓attn) = X[CLS],: +
HX

h=1

softmax

✓
1p
dattn

X[CLS],:W
[h]
Q (XW [h]

K )>
◆
W [h]

V W [h]
out,

where softmax(z) := exp(z)/1> exp(z). Note that we have specialized this architecture to a
single output, at the [CLS] position.

• MLP fmlp : Rdemb ! Rdemb :
fmlp(z; ✓mlp) := z +W2�(W1x+ b1) + b2,

where �(·) = GeLU(·) (the Gaussian error linear unit) is the standard choice in Transformers.

Training. Each matrix-shaped parameter was initialized using PyTorch’s default “Xavier uniform”
convention. Unlike the other settings considered in this paper, we were unable to observe successful
convergence beyond a few small (n, k) using standard SGD. As is common practice when training
Transformers, we used Adam (Kingma and Ba, 2014) with default adaptive parameters �1 =
0.9,�2 = 0.999, ✏ = 10�8 in our experiments. While there are more fine-grained accounts of why
Adam outperforms vanilla SGD (Zhang et al., 2020; Agarwal et al., 2020), finding the optimal
optimizer configuration and investigating ablations of this optimizer are outside the scope of this
work. In this work, we only tune Adam’s learning rate ⌘.

D.1.4 PolyNet

For positive integers n, k, the PolyNet architecture is parameterized by weights and biases ✓ :=
{(wi 2 Rn, bi 2 R)}ki=1, and is defined by

fPolyNet(x; ✓) :=
kY

i=1

(w>
i x+ bi).
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Even with all biases bi set to 0, this architecture can realize a k-wise parity, by setting {wi} = {ej :
j 2 S} in any permutation.

D.1.5 Details for Figure 1 (left)

Figure 1 (left) shows training curves from 8 representative configurations, with online i.i.d. samples
from the same distribution, corresponding to the (n = 50, k = 3)-sparse parity problem. The first
row encompasses various MLP settings with standard activations:

• Setting (i): width-10 MLP with ReLU activation (B = 32, ⌘ = 0.5).
• Setting (i): width-10 MLP with ReLU activation, with large batches (B = 1024, ⌘ = 0.05).
• Setting (ii): width-100 MLP with ReLU activation, with tiny batches (B = 1, ⌘ = 0.05).
• Setting (iv): width-10 MLP with polynomial �(z) = z3 activation (B = 32, ⌘ = 0.05).

The second row shows other settings:

• Setting (vii): width-1 MLP with a piecewise linear k-zigzag activation (B = 32, ⌘ = 0.2).
• Setting (x): width-1 MLP with a sinusoidal activation (scaled and shifted for k = 3; see the

discussion in Section D.1.2) (B = 32, ⌘ = 0.05).
• Setting (*iii): Parity Transformer, with demb = 1024, dattn = 8, H = 128 (B = 32, ⌘ =
5⇥ 10�4).

• Setting (xv): degree-3 PolyNet (B = 32, ⌘ = 0.07).

D.1.6 Details for Figure 6

The first row uses the width-10 ReLU MLP configuration (ii), holding B = 32
and ⌘ = 0.1 while varying the task difficulty across 6 settings: (n, k) 2
{(30, 3), (60, 3), (90, 3), (30, 4), (30, 5), (30, 6)}. The remaining plots are all for the (50, 3)
setting.

The second row uses the k = 3 PolyNet configuration (xv), varying (B, ⌘) 2
{(1, 0.005), (4, 0.01), (16, 0.1), (64, 0.1), (256, 0.1), (1024, 0.1)}.

The third row uses the minimally-wide configurations (*i), (*ii), (vii), (viii), (xi), (xii) (thus presenting
an example for each non-standard activation), holding batch size B = 1. ⌘ = 0.1 in each of the cases
except (*ii), where ⌘ = 0.01.

The fourth row uses three large architectures: settings (iii), (vi), and (*iii), with (B, ⌘) 2
{(1, 0.1), (1024, 0.1), (1, 0.001), (1024, 0.01), (32, 0.0003), (1024, 0.0003).} (*iii) uses the Adam
optimizer instead of SGD.

D.1.7 Details for Figure 10

Figure 10 contains scaling plots in various settings for the median convergence time tc. Below, we
give comprehensive details about these settings. For each of these runs, we chose B = 32 (settings
with smaller batch sizes exhibited additional variance; with larger batch sizes, the models were slower
to converge), as well as the hinge loss. We used SGD with constant learning rate ⌘ (enumerated
below), except in setting (*iii).

The top row shows MLP settings (i) through (vi). From left to right:

• Setting (i): width-10 MLP with ReLU activation (⌘ = 1).
• Setting (ii): width-100 MLP with ReLU activation (⌘ = 1).
• Setting (iii): width-1000 MLP with ReLU activation (⌘ = 1).
• Setting (iv): width-10 MLP with �(z) = zk activation (⌘ = 0.01).
• Setting (v): width-100 MLP with �(z) = zk activation (⌘ = 0.01).
• Setting (vi): width-1000 MLP with �(z) = zk activation (⌘ = 0.01).

The bottom row shows miscellaneous settings. From left to right:
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• Setting (vii): width-1 MLP with degree-k oscillating polynomial activation interpolating the parity
function (⌘ = 0.01).

• Setting (xiv): single sinusoidal neuron with no second layer (⌘ = 0.01).
• Setting (*iii): Parity Transformer, with demb = 1024, dattn = 8, H = 128 (B = 32, ⌘ =
3⇥ 10�4).

• Setting (iv): degree-k PolyNet (⌘ = 0.05).
• Setting (ii): width-100 MLP with ReLU activation (⌘ = 1), showing an expanded range of n for

smaller k.
• Setting (xv): width-100 MLP with �(z) = zk activation (⌘ = 1), showing an expanded range of n

for smaller k.

D.2 Training curves and convergence time plots

For all example training curves in all figures (in Sections 3 and 5, as well as the appendix), population
losses and accuracies are approximated using a batch of size 8192, sampled once at the beginning of
training from the same distribution DS . All plots of single representative training runs use a fixed
random seed (torch.manual_seed(0)); when R training runs are shown, seeds 0, . . . , R� 1 are
used.

In Figures 7 and 8, validation accuracies were recorded every 10 iterations, and a run was recorded as
converged if it reached 100% accuracy within 105 iterations; we report the 10th percentile over 25
random seeds, to reduce variance arising from the more initialization-sensitive settings. In Figure 9,
coarse-grained scaling estimates for the (10th percentile) convergence time are computed as follows:
for n 2 N := {10, 20, 30}, the smallest ↵ is chosen such that tc  c · (n � n0)↵, choosing
n0 = minN � 1 = 9, so that c = tc at n = 10. These estimates are calculated to give quantitative
order-of-magnitude upper bounds for the convergence time. Indeed, the power-law convergence times
do not extrapolate at a constant learning rate; see Figure 2 (right), the “larger n” plots in Figure 10,
and the discussion on batch sizes and learning rates in Appendix C.2.

To reduce computational load, for the larger-scale probes of convergence times tc, validation accura-
cies were instead checked on a sample of size 128. For the underparameterized networks (i.e. unable
to represent parity, but can still get a meaningful gradient signal), this threshold was changed to 10
consecutive batches with accuracy at least 55%. Note that for parity learning in particular, a weak
learner can be converted into a strong learner: there is an efficient algorithm (Goldreich and Levin,
1989; Kushilevitz and Mansour, 1993) which, given a classifier which achieves 1/2 + ✏ accuracy on
DS for a constant ✏ > 0, outputs S with high probability.

In the median convergence time plots in Figure 1 (right), Figure 2 (right), and Figure 10, error bars
for median convergence times in all plots are 95% confidence intervals, computed from 100 bootstrap
samples. Each point on the each curve corresponds to 1000 random trials. Halted curves signify more
than 50% of runs failing to converge within T = 105 iterations (hence, infinite medians).

D.3 Implementation, hardware, and compute time

All training experiments were implemented using PyTorch (Paszke et al., 2019).

Although most of the networks considered in the main empirical results are relatively small, a large
(⇠ 108) total number of models were trained to certify the “robust space” of results and obtain
precise scaling curves. These individual experiments were not large enough to benefit from GPU
acceleration; on an internal cluster, the CPU compute expenditure totaled approximately 1500 CPU
hours.

A subset of these experiments stood to benefit from GPU acceleration: width r � 100 MLPs;
scaling behaviors for n � 100; all experiments involving Transformers. These were performed with
NVIDIA Tesla P100, Tesla P40, and RTX A6000 GPUs on an internal cluster, consuming a total of
approximately 200 GPU hours.
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